Bachelorarbeit

Entwicklung eines Unterrichtskonzepts für Schulversuche zur Radioaktivität unter Verwendung von Augmented Reality Methoden

vorgelegt von: Charlotte Schütte
Matrikelnummer: 10014496
Studiengang: Fächerübergreifender Bachelor Physik/Mathe
vorgelegt am: 12.07.2021
1. Gutachter: Prof. Dr. Clemens Walther
2. Gutachter: Dr. Jan-Willem Vahlbruch
Inhaltsverzeichnis

Abbildungsverzeichnis V
Tabellenverzeichnis VII
Abkürzungs- und Symbolverzeichnis IX

1 Einleitung 1

2 Vorüberlegungen 2
 2.1 Experimentieren im Physikunterricht 2
 2.1.1 Zielsetzungen von Experimenten 2
 2.1.2 Experimentelle Teilkompetenzen 2
 2.1.3 Merkmale erfolgreicher Experimente im Unterricht 3
 2.1.4 Bedeutung für die Planung von Unterricht 3
 2.2 Medien im Unterricht ... 3
 2.2.1 Digitale Medien ... 4
 2.2.2 Klassische Medien 5
 2.2.3 Bedeutung für die Planung des Unterrichtkonzepts .. 5
 2.3 Alltagsvorstellungen .. 5
 2.3.1 Beispiele einiger Alltagsvorstellungen 6
 2.4 Forschend entdeckender Unterricht 8

3 Entwicklung der Augmented Reality Umgebung 10
 3.1 Versuchsbeschreibungen .. 10
 Versuch 1: Messung des Nulleffekts 10
 Versuch 2: Reichweite von Alphastrahlung 11
 Versuch 3: Absorption von Alphastrahlung 11
 Versuch 4: Reichweite von Betastrahlung 11
 Versuch 5: Absorption von Betastrahlung 11
 Versuch 6: Reichweite von Gammastrahlung 12
 Versuch 7: Schwächung von Gammastrahlung 12
 3.2 Grundlagen für die Programmierung 13
 3.2.1 Der Detektor ... 13
 3.2.2 Beschreibung von Alphastrahlung 14
 3.2.3 Beschreibung von Betastrahlung 14
 3.2.4 Beschreibung von Gammastrahlung 16
 3.2.5 Die Visualisierung 17
 3.3 Die entwickelte App .. 17
 3.3.1 Einschalten der App 18
 3.3.2 Experimentieren mit der App 18
 3.4 Physikalisches Vorwissen der Schüler*innen 19
 3.4.1 Nuklidkarte ... 19
 3.4.2 Strahlung radioaktiver Stoffe 19
 3.4.3 Detektoren und Maßeinheiten 19
 3.4.4 Methoden zur Versuchsauswertung 19
4 Entwicklung des Unterrichtskonzepts

4.1 Didaktische Analyse

4.1.1 Festlegen einer Zieldimension

4.1.2 Grobziele formulieren

4.1.3 Sachstrukturiendiagramm

4.2 Methodische Ausgestaltung

4.2.1 Unterrichtsskizze

4.3 Material

4.3.1 Tafelbilder

4.3.2 Arbeitsblätter

4.3.3 Abgestufte Lernhilfen

4.4 Versuche in der AR Umgebung als Wiederholung von Eigenschaften von Alpha-, Beta- und Gammastrahlung

5 Wie kann Unterricht analysiert werden?

5.1 Abfrage des Vorwissens und Lernzielkontrolle

5.2 Evaluation der App

6 Durchführung der Unterrichtsstunden

6.1 Anpassung der Stunden an die Klassen

6.2 Reflexion: Differenz von antizipiertem und realisiertem Unterricht

7 Auswertung der Unterrichtsanalyse

7.1 Auswertung der Multiple Choice Tests

7.2 Auswertung der Evaluation der App

8 Fazit

9 Ausblick: Erweiterungsmöglichkeiten der App

10 Literaturverzeichnis

A Anhang

A.1 Exkurs: Lernpsychologische Grundlagen

A.2 Bilder der App

A.3 Analyse mit dem Modell von Nawrath et al.

A.4 Druckvorlagen

A.4.1 Verhaltensregeln für den Umgang mit Tablets

A.4.2 Vorlage für die Versuchsprotokolle

A.4.3 Musterlösungen für die Versuchsprotokolle

A.5 Tafelbilder

A.5.1 Analyse vom Unterricht

A.6 Unterrichtsskizze zur Untersuchung des Durchdringungsvermögens an der Helene-Lange-Schule

A.7 Statistiken der Multiple Choice Tests

A.7.1 Notenschlüssel

A.7.2 Statistik für die Evaluationsbögen

B Eigenständigkeitserklärung
Abbildungsverzeichnis

2	Schwerpunkte zur experimentellen Kompetenzentwicklung für die Versuche in einer AR Umgebung	21
3	Sachstrukturiagramm	22
4	Vier abgestufte Lernhilfen zur Unterstützung der Bestimmung der Halbwertsschichtdicke	31
5	Lernhilfe zur Unterstützung der Umrechnung von Impulse pro 30 Sekunden in Impulse pro Sekunde	31
6	Abgestufte Lernhilfen zur Unterstützung des Zeichnens einer Ausgleichsfunktion	31
7	Identische Versuchsaufbauten für die Abschirmung von Betastrahlung zur Veranschaulichung der aufgetretenen Probleme	51
8	Fotos der beschrifteten QR-Codes	59
9	Foto der bildlichen Marker	59
10	Screenshot des App Menüs	60
11	Screenshot der Quelle mit einem Präparat ausgewählt	60
12	Screenshot der Quelle mit dem Drop Down Menü	61
13	Screenshot der Quelle mit ausgeschalteten Namen	61
14	Screenshot der Quelle mit einem ausgewählten Präparat. Der Name wird nicht angezeigt nur die Aktivität	62
15	Screenshot des Detektormenüs	62
16	Screenshot des Detektors, der die Zählrate in Impulsen pro Sekunde anzeigt	63
17	Screenshot des Detektors, der die Zählrate in Impulsen pro eingestelltem Zeitintervall misst	63
18	Screenshot der Abschirmung mit einigen der verschiedenen Möglichkeiten	64
19	Screenshot der Abschirmung, wenn ein Material ausgewählt ist	64
20	Analyse der Schwerpunkte zur experimentellen Kompetenzentwicklung für die Versuche in einer AR Umgebung	65
21	Tafelbild: Festhalten wichtiger Eigenschaften der AR Umgebung	81
22	Tafelbild: Tabelle zur Untersuchung der Reichweite	81
23	Tafelbild: Tabellen zur Untersuchung des Durchdringungsvermögens	82
24 Tafelbild: Festhalten wichtiger Eigenschaften der AR Umgebung in der Wiederholungsstunde . 83
25 Tafelbild: Tabelle zur Untersuchung der Reichweite in der Wiederholungsstunde . 83
26 Multiple Choice Tests . 84
27 Evaluation für die Bewertung der AR App 85
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Übersicht</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daten für die Alphastrahler der Augmented Reality Umgebung</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Dosisleistungsfunktion für Strontium-90 ($A = 2.87,\text{kBq}$) für verschiedene Abstände r [Vogt und Vahlbruch, 2019], die mit Formel 3 resultierende Dosisleistung und entsprechende Zählrate</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Kenndaten von Cobalt-60 [Vogt und Schultz, 2011]</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Reziproke Schwächungskoeffizienten $1/S(x)$ [Vogt und Schultz, 2011] für Gammastrahlung von Cobalt-60 für verschiedene Abschirmungsmaterialien</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Ausarbeitung der Unterrichtphasen mit dem Modell zum forschend entdeckenden Unterricht, Abb. 1</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Unterrichtsskizze zum Thema Reichweite von Strahlung radioaktiver Stoffe</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Unterrichtsskizze zum Thema Durchdringungsvermögen von Strahlung radioaktiver Stoffe</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Unterrichtsskizze zur Untersuchung von emittierter Strahlung von vier Präparaten</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Unterrichtsskizze zur Untersuchung des Durchdringungsvermögens in der 10a an der Helene-Lange-Schule</td>
<td>86</td>
</tr>
</tbody>
</table>
Abkürzungs- und Symbolverzeichnis

Formelzeichen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aktivität</td>
<td>Bq</td>
</tr>
<tr>
<td>d</td>
<td>Absorptionskoeffizient</td>
<td>$\frac{1}{m}$</td>
</tr>
<tr>
<td>E</td>
<td>Energie</td>
<td>eV</td>
</tr>
<tr>
<td>f_β</td>
<td>Dosisleistungsfunktion</td>
<td>$\frac{mSv}{hGBq}$</td>
</tr>
<tr>
<td>\dot{H}</td>
<td>Dosisleistung</td>
<td>Sv/h</td>
</tr>
<tr>
<td>\dot{N}</td>
<td>Zählrate</td>
<td>Imp/s</td>
</tr>
<tr>
<td>r</td>
<td>Abstand</td>
<td>m</td>
</tr>
<tr>
<td>R_L</td>
<td>maximale Reichweite in Luft</td>
<td>m</td>
</tr>
<tr>
<td>$\frac{1}{S}$</td>
<td>reziproker</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Dicke</td>
<td>m</td>
</tr>
<tr>
<td>Z_{eff}</td>
<td>Ordnungszahl</td>
<td></td>
</tr>
</tbody>
</table>

Griechische Buchstaben

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>γ, Γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>Γ_γ</td>
<td>Dosisleistungskonstante $\frac{mSv m^2}{hGBq}$</td>
</tr>
<tr>
<td>Γ_X</td>
<td>Dosisleistungskonstante $\frac{mSv m^2}{hGBq}$</td>
</tr>
<tr>
<td>μ</td>
<td>Mikro</td>
</tr>
<tr>
<td>τ</td>
<td>Totzeit</td>
</tr>
</tbody>
</table>

Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Augmented Reality</td>
</tr>
<tr>
<td>KC</td>
<td>Kerncurriculum</td>
</tr>
<tr>
<td>KMK</td>
<td>Kultusminister Konferenz</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
<tr>
<td>QR-Code</td>
<td>Quick Response Code</td>
</tr>
</tbody>
</table>
1 Einleitung

Es wird ein Evaluationsbogen entwickelt, auf dem Probleme mit der App benannt werden können, sowie Verbesserungsvorschläge und Wünsche an die App formuliert werden sollen. Aus den Erfahrungen und Erkenntnissen der Schüler*innen können wichtige Schlüsse für die Weiterentwicklung der App gezogen werden.

2 Vorüberlegungen

2.1 Experimentieren im Physikunterricht

Der Begriff Experiment kommt vom lateinischen Begriff „experimentum“, was soviel bedeutet wie Versuch, Probe, Erfahrung [Duden.de, 2021]. Im Weiteren werden die Begriffe Experiment und Versuch in Anlehnung an die Alltagssprache synonym verwendet [Girwidz, 2020a]. Unter einem naturwissenschaftlichen Experiment wird die Untersuchung einer Hypothese durch die Gewinnung empirischer Daten verstanden, um diese zu bestätigen oder zu widerlegen [e-teaching.org, 2016].

2.1.1 Zielsetzungen von Experimenten

2.1.2 Experimentelle Teilkompetenzen

Der Erwerb von prozessbezogenen Kompetenzen beim Experimentieren ist ein Hauptbestandteil des Physikunterrichts. Daher wurden die wichtigsten Kompetenzen zentral im Kerncurriculum festgehalten. Sie umfassen alle Fähigkeiten und Fertigkeiten, die Schüler*innen im Bereich des Experimentierens im Laufe ihrer Schulzeit erlangen sollen. Um die Planung eines kompetenzorientierten Unterrichts zu erleichtern, entwickelten
2.1.3 Merkmale erfolgreicher Experimente im Unterricht

Das Befolgen aller bisher genannten Kriterien führt nicht automatisch zu einem erfolgreichen Unterricht mit Experimenten. Wichtig ist vor allem die ausreichende Planung der Experimente und das Erstellen eines Sachstrukturdiagramms [Girwidz, 2020a], damit die Lehrkraft sicherstellen kann, dass alle Schüler*innen über das nötige Grundwissen verfügen oder dieses vor der Durchführung erarbeiten. Außerdem müssen Lernhilfen zur Verfügung gestellt werden [Girwidz, 2020a], damit den Schüler*innen zu jedem Zeitpunkt der Experimentierphase klar ist, was zu tun ist und das Experimentieren nicht zu planlosem Ausprobieren führt. Die Lehrkraft muss also eine klare Struktur des Experiments und der erforderlichen Arbeitsschritte vorgeben.

2.1.4 Bedeutung für die Planung von Unterricht

2.2 Medien im Unterricht

Der Zweck eines Medieneinsatzes im Unterricht hängt immer vom Kontext ab und muss daher bei der Analyse der Methoden im Bereich der Unterrichtsplanung berücksichtigt

- Kenntnisse über Symbol- und Codesysteme sicherstellen
- Informationsdichte angemessen wählen und auf mehrere Informationskanäle aufteilen
- Aufmerksamkeit auf wichtige Aspekte lenken und diese hervorheben
- Nur relevante Texte, Bilder oder Audiodateien ausgeben
- Verknüpfung von neuem Wissen mit vorhandenem Wissen ermöglichen

2.2.1 Digitale Medien

2.2.2 Klassische Medien

2. Strukturierung der Arbeitsschritte durch Hilfestellungen.

3. Hilfe für gezielte Auswertung beispielsweise mit Impulsfragen, die die Datenbearbeitung und Interpretation gliedern.

2.2.3 Bedeutung für die Planung des Unterrichtskonzepts

Die Strukturierungshilfen der klassischen Medien unterstützen bei der Vorbereitung von Tafelbildern und Arbeitsblättern. Weiter muss sich die Lehrkraft ausreichend mit der AR Umgebung beschäftigen, um Schwierigkeiten zu erkennen und im Unterricht darauf hinweisen zu können. Darüber hinaus muss sichergestellt werden, dass in einer Wiederholung alle relevanten Aspekte für das Verständnis der Visualisierung besprochen werden.

2.3 Alltagsvorstellungen

die Vorstellungen der Schüler*innen zu den jeweiligen Themen. Auch werden Einstellungen und Meinungen meist unreflektiert von Eltern und anderen Bezugspersonen übernommen.

Mit Physikunterricht sollte eine Koexistenz der fachlichen und alltäglichen Vorstellungen angestrebt werden. Am Ende einer Unterrichtseinheit sollen die Schüler*innen erkennen, dass die physikalische Sichtweise an manchen Stellen, wie zum Beispiel beim Beschreiben eines Experiments, sinnvoller ist als ihre Alltagsvorstellung.

2.3.1 Beispiele einiger Alltagsvorstellungen

In diesem Abschnitt werden einige Vorstellungen zum Thema Radioaktivität vorgestellt und die Relevanz für die Planung der Unterrichtseinheit aufgezeigt. Darüber hinaus wird ein direkter Bezug zu den Schulversuchen hergestellt. Außerdem müssen nicht nur die Alltagsvorstellungen zu den fachlichen Themen bei der Unterrichtsplanung berücksichtigt werden. Auch die Einstellungen gegenüber Experimenten sind von Bedeutung und werden daher kurz behandelt.

Einfluss von Alltagsvorstellungen auf Beobachtungen: Es wurde vorgestellt, dass Alltagsvorstellungen die Interpretationsgrundlage für Beobachtungen sind. Dies gilt auch für die Beobachtungen während Experimenten im Physikunterricht [Duit, 2020]. Wichtig ist daher, die relevanten Faktoren eines Experiments vor der Durchführung zu besprechen und so den Blick der Schüler*innen auf die wichtigen Stellen des Versuchsaufbaus zu lenken. Hierbei können Skizzen des Aufbaus und das Sammeln von Hypothesen unterstützen.
2.4 Forschend entdeckender Unterricht

Abbildung 1: Modell für forschend entdeckenden Unterricht nach Bell sowie Schmidkunz und Lindemann [Krabbe und Fischer, 2020, Bell, 2007, Höttecke, 2010]

Die erste Phase des Unterrichts besteht aus einer Orientierung. Hier wird das Problem erfasst, und die Schüler*innen werden motiviert. Als nächstes wird eine passende Fragestellung formuliert. Der dritte Schritt besteht aus der Ideensammlung zu Untersuchungsmöglichkeiten. Hier wird das Problem weiter aufgeschlüsselt und studiert, bis Ideen für Lösungsvorschläge gesammelt werden können. In der nächsten Unterrichtsphase wird eine Untersuchung geplant, das heißt es wird entschieden, welcher Lösungsvorschlag verfolgt werden soll und es werden entsprechende Versuche geplant. Nachdem die Experimente samt Aufbauskizze und Durchführung festgehalten wurden, stellen die Schüler*innen Hypothesen über die möglichen Ergebnisse des Experiments auf. Sind die Vermutungen festgehalten, um einen späteren Vergleich zu ermöglichen, so können die Schüler*innen mit der gezielten Überprüfung ihrer Hypothesen begin-

Die Lehrkraft muss also nicht nur ein produktives und strukturiertes Arbeitsumfeld schaffen, sondern auch entsprechendes Material zur Verfügung stellen [Bell, 2007], um den Lernprozess zu unterstützen. Dazu gehört es auch, klare Lernziele aufzustellen, die durch Unterstützung von entsprechenden Methoden, wie beispielsweise den abgestuften Lernhilfen, erreicht werden können [Krabbe und Fischer, 2020]. Weiter muss die Lehrkraft umfangreiches Wissen zu allen möglichen Themen mitbringen, die im Rahmen der Problemstellung auftauchen können [Bell, 2007].
3 Entwicklung der Augmented Reality Umgebung

In Zusammenarbeit mit dem Institut für Simulation und Graphik der Otto-von-Guericke-Universität Magdeburg wurde die AR Laborumgebung entwickelt. In dieser Arbeit werden die theoretischen Grundlagen erläutert, auf denen die Programmierung aufgebaut wurde. Auf Basis dieser Grundlagen und der im Folgenden beschriebenen Versuchsplänen wurden im Rahmen dieser Arbeit die Anforderungen an die AR Laborumgebung entwickelt und mit dem Software Entwickler der Arbeitsgruppe Visualisierung an der Universität Magdeburg abgestimmt. Für die genaue Implementierung wird daher auf die Arbeitsgruppe Visualisierung verwiesen.

3.1 Versuchsbeschreibungen

Material: Für die Experimente müssen die folgenden Komponenten verfügbar sein: Ein Detektor, verschiedene Strahlungsquellen und Abschirrmaterialien. Als Detektor bietet sich ein Geiger-Müller-Zählrohr an, welches die Impulse pro Zeitintervall misst. Als Strahlungsquellen muss je ein Alpha-, Beta- und Gammastrahlung zur Verfügung stehen. Als Material für die Abschirmung werden Aluminium, Polyethylen, Blei, Eisen und Beton genutzt.

Versuch 1: Messung des Nulleffekts

Durchführung: Ohne Präparat wird für 2 min der Nulleffekt des Zählrohrs gemessen und notiert.

Auswertung: Rechne die Zählerate um in Impulse pro Sekunde.

Anwendung: Bei den folgenden Versuchen wird der Nulleffekt von den gemessenen Zähleraten abgezogen, um die Nettozählerate zu erhalten.
Versuch 2: Reichweite von Alphastrahlung

Durchführung: Der Alphastrahler wird an das Glimmerfenster des Detektors gebracht. In verschiedenen Abständen wird die Zählpulse über 30 s gemessen. Die Impulse pro 30 s werden in einer Tabelle in Abhängigkeit vom Abstand dokumentiert und in Impulse pro Sekunde umgerechnet.

Auswertung: Stelle die Zählpulse bei zunehmendem Abstand dar. Bestimme die Reichweite der Alphastrahlung.

Versuch 3: Absorption von Alphastrahlung

Durchführung: Das Präparat wird mit etwas Abstand vom Detektor platziert, sodass noch eine Zählpulse gemessen wird. Wähle eine Abschirmung aus und stelle diese zwischen Zählrohr und Präparat.

Auswertung: Notiere die Beobachtungen.

Deutung: Welche Rückschlüsse lassen sich aus den Beobachtungen ziehen?

Versuch 4: Reichweite von Betastrahlung

Durchführung: Der Betastrahler wird an das Glimmerfenster des Detektors gebracht. In 5 cm Schritten wird die Zählpulse über 30 s gemessen. Die Impulse pro 30 s werden in einer Tabelle in Abhängigkeit vom Abstand dokumentiert und in Impulse pro Sekunde umgerechnet. Die Messung endet bei 55 cm.

Auswertung: Für die Bestimmung der Reichweite werden die Messwerte in Impuls pro Sekunde gegen den Abstand in ein Koordinatensystem eingetragen. Die Nullrate wird als konstante Gerade eingezeichnet.

Deutung: Durch das Zeichnen eines Ausgleichsgraphen kann der Schnittpunkt mit der Nullrate bestimmt werden. Hier ist die maximale Reichweite der Betastrahlung erreicht. Der Verlauf der Ausgleichsfunktion wird beschrieben, und die maximale Reichweite in Luft wird festgehalten.

Versuch 5: Absorption von Betastrahlung

Auswertung: Die Impulsrate in Imp/s wird als Funktion der Absorberschichtdicke aufgetragen. Die Nullrate wird ebenfalls eingezeichnet. Es wird eine Ausgleichsfunktion für die Messpunkte gezeichnet.

Deutung: Es wird der Verlauf der Ausgleichsfunktion beschrieben, und es werden die Fragen beantwortet, welches Material besser zur Abschirmung von Betastrahlung geeignet ist und warum.

Versuch 6: Reichweite von Gammastrahlung

Durchführung: Der Gammastrahler wird an das Glimmerfenster des Detektors gebracht. In 10 cm Abständen wird die Zählrate über 30 s gemessen. Die Impulse pro 30 s werden in einer Tabelle in Abhängigkeit vom Abstand dokumentiert und in Impulse pro Sekunde umgerechnet. Die Messung wird nach 1 m abgebrochen.

Auswertung: Die Messwerte abzüglich der Nullrate werden in Impulse pro Sekunde gegen den Abstand in ein Koordinatensystem eingetragen. Es wird eine Ausgleichsfunktion gezeichnet.

Deutung: Es wird der Verlauf der Ausgleichsfunktion beschrieben und es wird die Frage beantwortet, was mithilfe des Graphen über die Reichweite von Gammastrahlung ausgesagt werden kann.

Versuch 7: Schwächung von Gammastrahlung

Auswertung: Die Impulsrate in Imp/s abzüglich der Nullrate wird als Funktion der Dicke des Schwächungsmaterials aufgetragen. Es wird eine Ausgleichsfunktion gezeichnet und deren Verlauf beschrieben.

Mithilfe einer Ausgleichsfunktion lässt sich die sogenannte „Halbwertsschichtdicke“ bestimmen. Es wird die Zählrate \hat{N}_1 mit der Schichtdicke x_1 abgelesen. Dann wird die Zählrate \hat{N}_2 gesucht, die halb so groß ist wie \hat{N}_1, und die zugehörige Dicke x_2 bestimmt. Die Differenz $x_2 - x_1$ entspricht der Halbwertsschichtdicke $x_\frac{1}{2}$.

3.2 Grundlagen für die Programmierung

3.2.1 Der Detektor

Der Detektor muss zweidimensional verschoben werden können. Die Nullrate wird mit 1 Imp/s ≈ 70 nSv/h simuliert, die als Untergrund auf die Zählrate des Präparats addiert wird. Wird kein Präparat ausgewählt, zeigt der Detektor nur die Nullrate an. Es wird von einer Ungenauigkeit von ±5% ausgegangen.

Dosisleistungsmessgerät: Als zweite Möglichkeit steht ein Dosisleistungsmessgerät zur Auswahl, welches die Dosisleistung in µSv/h angibt. So kann analog zu einer Messung der Zählrate die Dosisleistung gemessen werden. Zur Vereinfachung werden die Dosisleistung \(\dot{H} \) und die Zählrate \(\dot{N} \) als proportional angesehen. Für die Bestimmung der Zählrate wurde ein Messwert für das entsprechende Strontium-90 Präparat aus dem Laborpraktikum genommen. Die Messung wurde mit einem Geiger-Müller-Zählrohr im Labor aufgenommen. Im Folgenden wird der Zusammenhang 1 angenommen. Die Dosisleistung in µSv/min wird in eine Zählrate in Imp/min umgerechnet.

\[
\dot{N} = 59703,6 \cdot \frac{\text{Imp}}{\mu\text{Sv}} \cdot \dot{H} \tag{1}
\]
3.2.2 Beschreibung von Alphastrahlung

Es wird von einer Punktquelle als Alphastrahler ausgegangen, die einen kegelförmigen Strahl emittiert. Um die Messung zu vereinfachen, wird angenommen, dass der Strahl mit zunehmendem Abstand leicht auffächert, daher die Kegelform. Es werden zwei Präparate zur Verfügung gestellt, die in Schulen typischerweise vorhanden sind. Es wurde Americium-241 mit einer Aktivität von 0,49 kBq und Radium-226 mit 60 kBq gewählt. Der Strahl hat eine konstante Zählrate \(\dot{N} \), siehe Tabelle 1. Die Zählrate bricht nahezu abrupt ab, wenn die maximale Reichweite der Alphastrahlung in Luft \(R_L \) erreicht ist. Diese ist abhängig von der Energie \(E \) in MeV und kann über die Formel \(R_L = 0,32 \cdot E^\frac{1}{2} \) abgeschätzt werden [Funke Digital GmbH, 2021]. Für Americium-241 beträgt die Reichweite in Luft ca. 4 cm, für Radium-226 ca. 3,3 cm.

Tabelle 1: Daten für die Alphastrahler der Augmented Reality Umgebung

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Aktivität (A) in kBq</th>
<th>(\alpha)-Energie (E) in MeV</th>
<th>Zählrate (\dot{N}) in Imp/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americium-241</td>
<td>0,49</td>
<td>5,486</td>
<td>58,8</td>
</tr>
<tr>
<td>Radium-226</td>
<td>60</td>
<td>4,784</td>
<td>7200</td>
</tr>
</tbody>
</table>

3.2.3 Beschreibung von Betastrahlung

Tabelle 2: Kenndaten von Strontium-90 [Vogt und Schultz, 2011]

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Aktivität (A) in kBq</th>
<th>(\beta)-max.-Energien in keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strontium-90</td>
<td>2,87</td>
<td>546</td>
</tr>
</tbody>
</table>

Die Dosisleistung \(\dot{H} \) nimmt näherungsweise mit zunehmendem Abstand von der Quelle antiproportional zum Abstandsquadrat ab. Dieser Zusammenhang wird mit der Formel

Die Zählrate wird über Formel 1 berechnet. Nach Berücksichtigung der Totzeit des Zählrohrs von $\tau = 100 \mu s$ ergeben sich die Werte für die gemessene Zählrate, gemäß Tabelle 3. Über die Formel 1 wird eine schon korrigierte Zählrate berechnet, die die Totzeit des Detektors nicht berücksichtigt. Um eine realistische Messung zu ermöglichen, muss die Zählrate mit Formel 2 angepasst werden.

$$\dot{N}_\tau = \frac{\dot{N}}{N \cdot \tau + 1} \quad (2)$$

$$\dot{H}(r) = f_\beta(r) \cdot A \quad (3)$$

Tabelle 3: Dosisleistungsfunktion für Strontium-90 ($A = 2,87 \text{ kBq}$) für verschiedene Abstände r [Vogt und Vahlbruch, 2019], die mit Formel 3 resultierende Dosisleistung und entsprechende Zählrate

<table>
<thead>
<tr>
<th>Abstand r in m</th>
<th>0,01</th>
<th>0,05</th>
<th>0,1</th>
<th>0,2</th>
<th>0,5</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosisleistungsfunktion $f_\beta(r)$ in $\frac{\text{mSv}}{\text{h GBq}}$</td>
<td>$1,7 \cdot 10^5$</td>
<td>$8 \cdot 10^3$</td>
<td>$2,0 \cdot 10^3$</td>
<td>450</td>
<td>70</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Dosisleistung \dot{H} in $\mu \text{Sv/h}$</td>
<td>487,900</td>
<td>22,960</td>
<td>5,740</td>
<td>1,291</td>
<td>0,189</td>
<td>0,042</td>
<td>0,005</td>
</tr>
<tr>
<td>Zählrate \dot{N} in Imp/min</td>
<td>259,525</td>
<td>20,806</td>
<td>5,340</td>
<td>120,9</td>
<td>189</td>
<td>42</td>
<td>5</td>
</tr>
</tbody>
</table>

Werden Abschirmungen benutzt, so kommt es zur Schwächung im Material. Für die Dosisleistung nach der Abschirmung wird Formel 4a verwendet, da eine natürliche Exponentialfunktion die Abschirmung von Betastrahlung für den Verwendungszweck ausreichend genau beschreibt.

$$\dot{H}_{\text{Abschirmung}}(r, x) = \dot{H}(r) \cdot \exp(-d \cdot x) \quad (4a)$$

$$\dot{N}_{\text{Abschirmung}}(r, x) = \dot{N}(r) \cdot \exp(-d \cdot x) \quad (4b)$$

Aus dem Laborpraktikum wird für den Absorptionskoeffizienten d für Aluminium $d = 1,084 \frac{1}{\text{mm}}$ und für Polyethylen $d = 0,356 \frac{1}{\text{mm}}$ übernommen. Die Dicke des Abschirmungsmaterials wird mit x bezeichnet. Die Dosisleistung \dot{H} berechnet sich über die
Formel 3. Je nachdem an welcher Stelle die Abschirmung eingesetzt wird, wird \(f_\beta(r) \) für die Dosisleistung entsprechend gewählt. Analog kann direkt auch die Zählrate \(\dot{N} \) anstatt der Dosisleistung \(\dot{H} \) eingesetzt werden, dann ergibt sich die Zählrate nach der Abschirmung mit Formel 4b.

Im Weiteren entsteht in der Abschirmung Bremsstrahlung. Diese findet für die Schulversuche keine Anwendung, wird aber für mögliche Erweiterungen der App direkt berücksichtigt. Wir nehmen für die Dosisleistung der Bremsstrahlung an, dass Formel 5 gilt. Dabei ist die Dosisleistungskonstante \(\Gamma \frac{Z}{Z} = 1,6 \cdot 10^{-4} \text{mSv/m}^2 \text{hGBq} \). Die Ordnungszahlen der Abschirmungsmaterialien \(Z_{eff} \) sind \(Z_{eff} = 13 \) für Aluminium und \(Z_{eff} = 4,75 \) für Polyethylen. Die Aktivität \(A \) wird in GBq eingesetzt.

\[
\dot{H}_{\text{Bremsstrahlung}} = \Gamma \frac{Z}{Z} \cdot Z_{eff} \frac{A}{r^2} \tag{5}
\]

Gemäß Formel 6 ergibt sich hinter einer Abschirmung mit der Dicke \(x \) die Dosisleistung im Abstand \(r \).

\[
\dot{H}_{\text{hinter}}(r, x) = \dot{H}_{\text{Abschirmung}}(r, x) + \dot{H}_{\text{Bremsstrahlung}}(r) \tag{6}
\]

3.2.4 Beschreibung von Gammastrahlung

Es wird von einer Punktquelle als Gammastrahler ausgegangen, die in alle Richtungen strahlt. Als Präparat wird Cobalt-60 mit einer Aktivität von 41,8 kBq genutzt, siehe Tabelle 4.

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Aktivität (A) in kBq</th>
<th>(\Gamma \gamma) in (\text{mSv/m}^2 \text{hGBq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt-60</td>
<td>41,8</td>
<td>0,354</td>
</tr>
</tbody>
</table>

Die Dosisleistung nimmt näherungsweise antiproportional zum Abstandsquadrat ab. Mit Formel 7 kann die Dosisleistung ohne Abschirmung \(\dot{H}_0 \) in Abhängigkeit vom Abstand \(r \) zwischen Quelle und Detektor berechnet werden [Vogt und Schultz, 2011]. Die Dosisleistungskonstante \(\Gamma \gamma \) für das Präparat ist Tabelle 4 zu entnehmen.

\[
\dot{H}_0(r) = \Gamma \gamma \frac{A}{r^2} \tag{7}
\]

Mit Abschirmung ergibt sich für die Dosisleistung hinter der Abschirmung \(\dot{H} \) der Zusammenhang 8 mit \(\frac{1}{S}(x) \), dem reziproken Schwächungskoeffizienten für Breitstrahlgeometrie, in Abhängigkeit von der Schichtdicke \(x \) [Vogt und Schultz, 2011]. Im Unterschied zur Schmalstrahlgeometrie wird die Streustrahlung, die in der Abschirmwand entsteht, in
der Breitstrahlgeometrie am Detektor berücksichtigt und nicht kollimiert. Der reziproke Schwächungskoeffizient kann abhängig vom Abschirmmaterial und der Schichtdicke angegeben werden, Tabelle 5.

\[\hat{H}(r, x) = \frac{1}{S}(x) \hat{H}_0(r) \] (8)

Tabelle 5: Reziproke Schwächungskoeffizienten \(1/S(x)\) [Vogt und Schultz, 2011] für Gammastrahlung von Cobalt-60 für verschiedene Abschirmungsmaterialien

<table>
<thead>
<tr>
<th>Schichtdicke (x) in cm</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/(S(x)) für Beton</td>
<td>0,85</td>
<td>0,65</td>
<td>0,45</td>
<td>0,30</td>
<td>0,19</td>
<td>0,12</td>
<td>0,08</td>
<td>0,05</td>
<td>-</td>
</tr>
<tr>
<td>Schichtdicke (x) in cm</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1/(S(x)) für Eisen</td>
<td>0,86</td>
<td>0,70</td>
<td>0,60</td>
<td>0,48</td>
<td>0,38</td>
<td>0,28</td>
<td>0,21</td>
<td>0,16</td>
<td>0,12</td>
</tr>
<tr>
<td>1/(S(x)) für Blei</td>
<td>0,65</td>
<td>0,40</td>
<td>0,26</td>
<td>0,15</td>
<td>0,09</td>
<td>0,05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2.5 Die Visualisierung

3.3 Die entwickelte App

In diesem Abschnitt wird die App vorgestellt, die im Rahmen dieser Arbeit konzipiert wurde. Bei der Benutzung der App sind einige wichtige Aspekte zu beachten, die in diesem Abschnitt mit Beispielen aufgezeigt werden. Die entsprechenden Abbildungen befinden sich im Anhang in Abschnitt A.2.
3.3.1 Einschalten der App

Wird die App geöffnet, erscheint zuerst das Logo von Euratom, die die Programmierung der App unterstützt haben. Wird der Bildschirm berührt, so verschwindet das Logo. Es bleibt der Tisch oder was sich gerade vor der Kamera des Tablets befindet zu sehen. Oben rechts sind drei Punkte abgebildet, die zu einem Auswahlmenü führen, siehe Abbildung 10. In dem Auswahlmenü sind verschiedene Einstellungsmöglichkeiten für die Visualisierung möglich: Es können entweder die Teilchen, also zum Beispiel die Helium-Kerne, angezeigt werden, die sich von der Quelle zum Detektor bewegen. Oder es kann die Ausbreitung der Strahlung betrachtet werden, die farblich unterlegt ist. Alternativ kann beides zusammen oder nichts von beidem angezeigt werden. Ganz oben in dem Menü können außerdem die Namen der Präparate ausgeschaltet werden. Worin der Unterschied besteht, wird im nächsten Abschnitt erläutert.

3.3.2 Experimentieren mit der App

3.4 Physikalisches Vorwissen der Schüler*innen

Bei der geplanten Einheit handelt es sich um eine Doppelstunde, in der die Versuche durchgeführt und ausgewertet werden sollen. Für einen reibungslosen Ablauf brauchen die Schüler*innen einige Grundlagen, die vorausgesetzt werden, und auf denen aufgebaut werden kann.

3.4.1 Nuklidkarte

Ein Grundwissen über den Atombau unterstützt das Verständnis zum radioaktiven Zerfall und ist daher wünschenswert. Die Definition von Isotopen, als Elemente mit gleicher Kernladungszahl Z mit verschiedenen Neutronenzahlen N, wird als Wissen vorausgesetzt, ebenso die Ordnung der Isotope auf der Nuklidkarte nach Protonenzahl Z und Neutronenzahl N. Die Definition eines Nuklids als ein Atom, welches durch die Anzahl der Nukleonen und der Protonen im Kern charakterisiert wird, wäre ebenfalls wünschenswert. Weiter werden die folgenden zwei Schreibweisen genutzt: \[\frac{A}{Z}X \] oder \[X - A \], wobei X für das jeweilige Elementsymbol steht. Zum Beispiel für Strontium-90 \(^{90}_{38}\)Sr oder Sr-90.

3.4.2 Strahlung radioaktiver Stoffe

Um die Visualisierung der Strahlung in der AR Umgebung zu verstehen, müssen die Schüler*innen über die Natur von Alpha-, Beta- und Gammastrahlung Bescheid wissen. Dies sollte auf Grund der großen Bedeutung für das Verständnis der Visualisierung am Stundenbeginn wiederholt werden.

3.4.3 Detektoren und Maßeinheiten

3.4.4 Methoden zur Versuchsauswertung

Für die Versuchsauswertung wird auf das Zeichnen von Ausgleichsfunktionen zurückgegriffen, dies sollte den Schüler*innen bereits vorher bekannt sein.
4 Entwicklung des Unterrichtskonzepts

4.1 Didaktische Analyse

4.1.1 Festlegen einer Zieldimension

4.1.2 Grobziele formulieren

![Diagramm](image)

Abbildung 2: Schwerpunkte zur experimentellen Kompetenzentwicklung für die Versuche in einer AR Umgebung aus Kapitel 3.1 nach Nawrath et al. (2011)

Neben dem Experimentieren steht somit das Erarbeiten der Unterschiede von Alpha-, Beta- und Gammastrahlung durch ihre Reichweite und ihr Durchdringungsvermögen im Vordergrund der Stunde. Die Tablets übernehmen den Zweck der Wissensvermittlung und Veranschaulichung. Daher wird der Schwerpunkt auf inhaltbezogene Kompetenzen gelegt und es werden die folgenden Grobziele formuliert:

G1 Die Schüler*innen können mithilfe der Daten aus den Experimenten zu der Reichweite von Alpha-, Beta- und Gammastrahlung die Reichweiten der untersuchten ionisierenden Strahlung in Luft vergleichen.
Die Schüler*innen sind in der Lage auf Grundlage der experimentellen Daten zum Durchdringungsvermögen zu bewerten, welche Materialien besser zur Schwächung bzw. Abschirmung von ionisierender Strahlung geeignet sind.

4.1.3 Sachstrukturdiagramm

Abbildung 3: Sachstrukturdiagramm für die Versuche zur Radioaktivität in AR
4.2 Methodische Ausgestaltung

Tabelle 6: Ausarbeitung der Unterrichtphasen mit dem Modell zum forschend entdeckenden Unterricht, Abb. 1

<table>
<thead>
<tr>
<th>Phase</th>
<th>Lernziel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientieren</td>
<td>• Die Schüler*innen erkunden die AR Umgebung und beschreiben die QR-Codes</td>
</tr>
<tr>
<td></td>
<td>• Beobachtungen werden gesammelt.</td>
</tr>
<tr>
<td></td>
<td>• Material in der App wird festgehalten.</td>
</tr>
<tr>
<td></td>
<td>• Visualisierung wird besprochen und die Zusammensetzung der Strahlungsarten wird wiederholt.</td>
</tr>
<tr>
<td></td>
<td>• Die Einheit der Zählerate wird wiederholt.</td>
</tr>
<tr>
<td>Forschungsziel festlegen</td>
<td>• Es wird ein übergeordnetes Forschungsziel festgelegt, also das, was mit der App untersucht werden kann.</td>
</tr>
<tr>
<td></td>
<td>• Ein mögliches Ziel wäre: „Wir untersuchen die Eigenschaften von 4 radioaktiven Präparaten in der AR Umgebung und treffen Aussagen über ihre Reichweite und ihr Durchdringungsvermögen“</td>
</tr>
</tbody>
</table>

23
Fortsetzung von Tabelle 6: Ausarbeitung der Unterrichtphasen mit dem Modell zum forschend entdeckenden Unterricht, Abb. 1

<table>
<thead>
<tr>
<th>Phase</th>
<th>Lernziel</th>
<th>Inhalt</th>
</tr>
</thead>
</table>
| **Untersuchung planen** | Reichweite | • Es werden drei Versuchsprotokolle angelegt, die Vorlage befindet sich bei den Druckvorlagen im Anhang A.4.2.
• Im Plenum wird die Durchführung besprochen.
• Es wird der Aufbau besprochen. |
| Hypothese aufstellen | Reichweite von \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung | • Im Plenum werden Hypothesen geäußert, welches Verhalten der Strahlung die Schüler*innen erwarten. |
| Hypothese prüfen | | • Es wird eine Nulleffektmessung durchgeführt.
• Die Schüler*innen arbeiten mit der AR Umgebung eigenständig und nehmen Messwerte auf.
• Die Messdaten werden entsprechend Kapitel 3.1 ausgewertet. |
| Ergebnisse festhalten | | • Die Ergebnisse der Auswertung werden als qualitative Aussagen im Plenum besprochen und festgehalten. |
| Ergebnisse auf den ersten Teil des Forschungsziels zurückbeziehen | | • Die Ergebnisse der einzelnen Versuche werden miteinander verglichen und qualitative Aussagen getroffen. |
| **Untersuchung planen** | Durchdringungsvermögen | • Es werden weitere Versuchsprotokolle angelegt.
• Im Plenum wird die Durchführung besprochen.
• Es wird eine Aufbauskizze gezeigt. |
| Hypothese aufstellen | Abschirmung von \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung | • Im Plenum werden Hypothesen geäußert, welches Verhalten der Strahlung die Schüler*innen erwarten. |
| Hypothese prüfen | | • Die Schüler*innen arbeiten mit der AR Umgebung eigenständig und nehmen Messwerte auf.
• Die Messdaten werden entsprechend Kapitel 3.1 ausgewertet. |
| Ergebnisse festhalten | | • Die Ergebnisse der Auswertung werden als qualitative Aussagen im Plenum besprochen und festgehalten. |
Fortsetzung 2 von Tabelle 6: Ausarbeitung der Unterrichtphasen mit dem Modell zum forschend entdeckenden Unterricht, Abb. 1

<table>
<thead>
<tr>
<th>Phase</th>
<th>Lernziel</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnisse auf den zweiten Teil des Forschungsziels zurückbeziehen</td>
<td>f4 Die Schüler*innen können mithilfe der Daten aus den Experimenten zum Durchdringungsvermögen von Alpha-, Beta- und Gammastrahlung das Durchdringungsvermögen der untersuchten ionisierenden Strahlung in Luft vergleichen.</td>
<td>• Die Ergebnisse der einzelnen Versuche werden miteinander verglichen und qualitative Aussagen getroffen.</td>
</tr>
<tr>
<td>Ergebnisse reflektieren</td>
<td>G2 Die Schüler*innen sind in der Lage auf Grundlage der experimentellen Daten zum Durchdringungsvermögen zu bewerten, welche Materialien besser zur Schwächung bzw. Abschirmung von ionisierender Strahlung geeignet sind.</td>
<td>• Es wird besprochen, was die verschiedenen Reichweiten und Durchdringungsvermögen in der Umwelt und im praktischen Umgang mit radioaktiven Materialien bedeuten.</td>
</tr>
</tbody>
</table>

4.2.1 Unterrichtsskizze

Unterrichtsskizze zur Untersuchung der Reichweite

Tabelle 7: Unterrichtsskizze zum Thema Reichweite von Strahlung radioaktiver Stoffe

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/Sozialform/Medien</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>Didaktischer Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Begrüßung/ Vorsstellung</td>
<td>• begrüßt die Klasse</td>
<td>• stellen gegebenenfalls Rückfragen</td>
<td>Die Schüler*innen werden über den Grund informiert, warum eine Gastlehrkraft anwesend ist. Weiter erhalten sie einen Überblick über die Arbeit mit den Tablets. Außerdem muss an die letzte Stunde kurz angeknüpft werden, um die Experimente zu den theoretischen Grundlagen zu ordnen zu können.</td>
</tr>
<tr>
<td></td>
<td>Frontalunterricht</td>
<td>• stellt sich vor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ordnet das StundentHEMA in die Unterrichtseinheit Radiaktivität ein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• stellt die Verhaltensregeln für den Umgang mit Tablets vor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• informiert über das StundentHEMA: Eigenschaften von Strahlung radioaktiver Stoffe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Abfrage des Vorwissens</td>
<td>• verteilt die Fragebögen</td>
<td>• beantworten die Fragen</td>
<td>Mit der Abfrage des Vorwissens wird der Lernstand zu Beginn der Stunde festgehalten. So kann der Wissensstand am Stundenende mit dem am -anfang verglichen werden und im besten Fall ein Lernfortschritt verzeichnet werden.</td>
</tr>
<tr>
<td></td>
<td>Multiple Choice Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fragebögen (siehe Abb. 26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Orientieren Einzelarbeit</td>
<td>• verteilt das Material</td>
<td>• erkunden die AR Umgebung</td>
<td>In dieser Phase sollen die Schüler*innen die App erkunden und sich eigenständig damit auseinandersetzen. Bei Problemen kann die Lehrkraft individuell eingreifen.</td>
</tr>
<tr>
<td></td>
<td>QR-Codes</td>
<td>• stellt Aufgabe: Wir wollen mit der App die Reichweite und das Durchdringungsvermögen von der Strahlung radioaktiver Stoffe untersuchen. Dazu werden Messgeräte benötigt. Diese sind durch QR-Codes gegeben. Scannet diese ein und findet heraus, welcher QR-Code welches Gerät darstellt. Beschriftet dann die QR-Codes.</td>
<td>• beschriften die QR-Codes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tablets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Erkenntnisse zusammentragen Klassengespräch</td>
<td>• hält Stichpunkte an der Tafel fest</td>
<td>• sammeln Eigenschaften der App</td>
<td>Es werden alle Erkenntnisse zusammengehalten, um den Schüler*innen die Möglichkeit zu geben, ihre Ergebnisse zu ordnen. Weiter ist es wichtig, da hier festgestellt wird, ob die Visualisierungen, die Messgeräte und die Einheiten bekannt sind. Die Verbindung zwischen dem theoretischen Wissen und der Anwendung wird so hergestellt und kann gegebenenfalls durch Wiederholungen zusätzlich beleuchtet werden.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• weist auf wichtige Aspekte der App hin, siehe Abschnitt 3.3</td>
<td>• geben die Zusammensetzung der Strahlungsarten wieder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• lässt die Visualisierungen erklären</td>
<td>• erklären den Begriff Zählrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung von Tabelle 7: Unterrichtsskizze zum Thema Reichweite von Strahlung radioaktiver Stoffe

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/ Sozialform/ Medien</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>Didaktischer Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Durchführung besprechen</td>
<td>Klassengespräch</td>
<td>• erklärt, dass zuerst nur die Reichweite untersucht werden soll</td>
<td>• stellen Rückfragen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• stellt die Arbeitsblätter vor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• stellt die Durchführung vor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimente</td>
<td>(Ablauf nach Tabelle 6: Reichweite)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• gibt Hilfestellung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• setzen Hypothesen zum Versuchs- ausgang auf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• führen die Versuche mit der App durch und dokumentieren ihre Ergebnisse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• werten die Messdaten aus</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ergebnisse zusammen-</td>
<td>Schülers*innen-Kette</td>
<td>• fordert die Klasse auf, die Ergebnisse vorzustellen</td>
<td>• stellen die Ergebnisse der Versuche vor</td>
</tr>
<tr>
<td></td>
<td>tragen</td>
<td></td>
<td>• notiert die genannten Punkte an der Tafel</td>
<td>• vergleichen die Ergebnisse der einzelnen Versuche</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• formulieren qualitative Aussagen zu den Versuchsergebnissen</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Verabschiedung</td>
<td>Fronfallunterricht</td>
<td>• fasst die Ergebnisse der Stunde kurz zusammen</td>
<td>Die Lehrkraft fasst die Stundenergebnisse kurz zusammen und schließt so das Thema ab. Weiter wird eine Verbindung zur nächsten Stunde gezogen, in dem ein Ausblick auf die kommenden Versuche gegeben wird.</td>
</tr>
</tbody>
</table>
Unterrichtsskizze zur Untersuchung des Durchdringungsvermögens

Tabelle 8: Unterrichtsskizze zum Thema Durchdringungsvermögen von Strahlung radioaktiver Stoffe

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/Sozialform/Medien</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>Didaktischer Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Begrüßung Frontalunterricht</td>
<td>● begrüßt die Klasse</td>
<td>● fassen die Erkenntnisse zur Reichweite der untersuchten Strahlung aus der letzten Stunde zusammen</td>
<td>Die Schülerinnen sollen durch die kurze Wiederholung wieder in das Thema finden. Es werden auch die wichtigsten Eigenschaften der App wiederholt. So können sich die Schülerinnen an die Arbeit mit der App von letzter Stunde erinnern.</td>
</tr>
<tr>
<td>10</td>
<td>Wiederholung Frontalunterricht</td>
<td>● fordert die Schüler*innen auf, kurz die Ergebnisse der letzten Stunde zu wiederholen</td>
<td>● stellen Rückfragen</td>
<td>Nach der kurzen Wiederholung wird die Durchführung besprochen. Die Schüler*innen können sich auf den Arbeitsblättern die Aufgaben durchlesen. Die Lehrkraft kann auf wichtige Punkte hinweisen.</td>
</tr>
<tr>
<td>35</td>
<td>Experimente (Ablauf nach Tabelle 6: Durchdringungsvermögen) Gruppenarbeit</td>
<td>● gibt Hilfestellung zum Versuchsauflauf</td>
<td>● stellen Hypothesen zum Versuchsauflauf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● weist auf abgestufte Lernhilfen hin</td>
<td>● führen die Versuche mit der App durch und dokumentieren ihre Ergebnisse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● stellt die Arbeitsblätter vor</td>
<td>● werten die Messdaten aus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● stellt die Durchführung vor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● gibt Versuchsprotokoll 3 und 5 (siehe Anhang A.4.2)</td>
<td>● stellen die Ergebnisse der Versuche vor</td>
<td>Diese Phase ist wichtig, um die Ergebnisse vorzustellen, die den genannten Punkten an der Tafel entsprechen. Diese Phase ist wichtig, um die Ergebnisse vorzustellen, die den genannten Punkten an der Tafel entsprechen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● abgestufte Lernhilfen (siehe Abschnitt 4.3.3)</td>
<td>● formulieren qualitative Aussagen zu den Versuchsergebnissen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● nutzen die kleine Halbwertschichtdicke von Blei als Argument für Blei als beste Abschwächung von Gammastrahlung</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ergebnisse zusammentragen Schüler*innen-Kette</td>
<td>● fordert die Klasse auf, die Ergebnisse vorzustellen</td>
<td>● stellen die Ergebnisse der Versuche vor</td>
<td>Diese Phase ist wichtig, um die Ergebnisse zu sichern. Die Lehrkraft muss strukturiert die Ergebnisse festhalten, um den Lernprozess der Schülerinnen zu unterstützen. Hier werden Ergebnisse in einem Klassengespräch gesammelt. Die Schülerinnen stellen ihre Auswertungen vor und erklären, wie sie zu ihren Deutungen gekommen sind. Fehlerhafte Aussagen können von Mitschüler*innen aufgegriffen und berichtigt werden.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● notiert die genannten Punkte an der Tafel</td>
<td>● vergleichen die Ergebnisse der einzelnen Versuche</td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung von Tabelle 8: Unterrichtsskizze zum Thema Durchdringungsvermögen von Strahlung radioaktiver Stoffe

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/Sozialform/Medien</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>Didaktischer Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Arbeit mit der AR Umgebung evaluieren Einzel- oder Partnerarbeit • Evaluationsbogen (siehe Anhang Abb. 27) • Lernzielkontrolle (siehe Anhang Abb. 26)</td>
<td>• verteilte die Evaluationsbögen • verteilte die Lernzielkontrollen</td>
<td>• beantworten die Fragen • besprechen sich gegebenenfalls mit ihrem Sitznachbarn</td>
<td>Die Evaluation der Stunde gilt allem voran der Bewertung der AR Umgebung. Weiter wird eine Lernzielkontrolle durchgeführt. Diese dient dazu, den Lernzuwachs durch die AR Experimente festzuhalten.</td>
</tr>
<tr>
<td>5</td>
<td>Verabschiedung Frontalunterricht</td>
<td>• verabschiedete sich • bedankte sich für die Mitarbeit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Material

Bei der Erstellung der Materialien muss deren jeweilige Funktion berücksichtigt werden, vergleiche Kapitel 2.2.2. In der Unterrichtsskizze wurde bereits auf die entsprechenden Arbeitsblätter und Tafelbilder hingewiesen, diese befinden sich im Anhang A.4.

4.3.1 Tafelbilder

4.3.2 Arbeitsblätter

4.3.3 Abgestufte Lernhilfen

Abbildung 4: Vier abgestufte Lernhilfen zur Unterstützung der Bestimmung der Halbwertsschichtdicke

Tipp 1: Definition
Die Halbwertsschichtdicke ist die Schichtdicke, die die Zählrate auf die Hälfte schwächt.

Tipp 2: Bestimmung der Halbwertsschichtdicke
1. Träge deine Messwerte in einen Graphen ein und zeichne eine Ausgleichsfunktion.
4. Die Differenz der x-Werte ist die Halbwertsschichtdicke.

Abbildung 5: Lernhilfe zur Unterstützung der Umrechnung von Impulse pro 30 Sekunden in Impulse pro Sekunde

Tipp 3: Aussagekraft der Halbwertsschichtdicke
Mit der Halbwertsschichtdicke ist eine Kriterium gegeben, um das Abschwächungsvermögen von γ-Strahlung verschiedener Materialien zu charakterisieren. Je kleiner die Halbwertsschichtdicke, desto schneller sinkt die Zählrate mit zunehmender Dicke.

Abbildung 6: Abgestufte Lernhilfen zur Unterstützung des Zeichnens einer Ausgleichsfunktion

Tipp 4: Lösung
Es folgt: Je kleiner die Halbwertsschichtdicke eines Materials, desto besser schirmt dieses γ-Strahlung ab.

Tipp: Umrechnung von Imp/30s zu Imp/s
Beispiel: 170 Imp₃₀s = 6 Imp₅ₘₖ

1 Imp₃₀s = 1 Imp₅ₘₖ

Abbildung 6: Abgestufte Lernhilfen zur Unterstützung des Zeichnens einer Ausgleichsfunktion
4.4 Versuche in der AR Umgebung als Wiederholung von Eigenschaften von Alpha-, Beta- und Gammastrahlung

Tabelle 9: Unterrichtsskizze zur Untersuchung von emittierter Strahlung von vier Präparaten

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/ Sozialform/ Medien</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>didaktischer Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Begrüßung/ Vorstellung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frontalunterricht</td>
<td>● begrüßt die Klasse</td>
<td>● stellen gegebenfalls Rückfragen</td>
<td>Die Schüler*innen sollen über die neue Unterrichtssituation der Gastlehrkraft aufgeklärt werden und informativ in das Thema eingeleitet werden. So wird ihnen der Zweck der Stunde offengelegt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● stellt sich vor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● ordnet das StundentHEMA in die Unterrichtseinheit Radioaktivität ein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● informiert die Klasse über die geplante Stunde</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● stellt die Verhaltensregeln für den Umgang mit Tablets vor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abfrage des Vorwissens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple Choice Test</td>
<td>● verteilt die Fragebogen</td>
<td>● beantworten die Fragen</td>
<td>An dieser Stelle ist das Abfragen des Vorwissens wichtig, um festzustellen, ob mit der Unterrichtseinheit über die Versuche in AR Wissenslücken aus dem vorangegangenen Unterricht gefüllt werden können.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● verteilt das Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● stellt die Aufgabe vor: scannen die QR-Codes mit der App ein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● erkunden die AR-Umgebung</td>
<td>In dieser Phase sollen die Schülerinnen die AR-Umgebung kennenlernen und eigenständig erkunden. So erhalten sie einen guten Überblick und haben ausreichend Zeit sich in ihr zurecht zu finden. Mögliche Probleme können in Einzelgesprächen geklärt werden, ohne dass die Mitschülerinnen aufgehalten werden.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● beschriften die QR-Codes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orientieren Einzelarbeit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● QR-Codes</td>
<td>● fordert die Schüler*innen dazu auf, Eigenschaften der App zu benennen</td>
<td>● sammeln Eigenschaften der App</td>
<td>In der Besprechung im Plenum werden alle Erkenntnisse der Schülerinnen präsentiert und können durch Anmerkungen der Lehrkraft wenn notwendig ergänzt werden. Diese Diskussion ist wichtig, um die visuellen Informationen auditiv zu unterstützen, siehe Kapitel 2.2. Mit der Wiederholung der Zusammensetzung der Strahlungsarten wird die Grundlage der Visualisierung beprochen und so sichergestellt, dass alle Schülerinnen diese verstehen. Weiter wird auf diese Art direkt an das Vorwissen der Schüler*innen angeknüpft und so die Strukturierung des neuen Wissens erleichtert. Außerdem wird so eine Verbindung von Repräsentation in der App, der Praxis und der Theorie hergestellt.</td>
</tr>
<tr>
<td></td>
<td>● Tablets</td>
<td>● hält Erkenntnisse an der Tafel fest</td>
<td>● erklären den Begriff Zählrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● weist auf einige wichtige Aspekte der App hin, siehe Abschnitt 3.3</td>
<td>● stellen Vermutungen auf, welche Versuche mit der App durchgeführt werden können z.B. „Mit der App kann die Reichweite und das Durchdringungsvermögen untersucht werden“</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eggenschaften der App sammeln Klassengespräch (Schüler*innen-Kette)</td>
<td>● fordert die Schüler*innen dazu auf, Eigenschaften der App zu benennen</td>
<td>● sammeln Eigenschaften der App</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(siehe Abb. 24)</td>
<td>● hält Erkenntnisse an der Tafel fest</td>
<td>● erklären den Begriff Zählrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● weist auf einige wichtige Aspekte der App hin, siehe Abschnitt 3.3</td>
<td>● stellen Vermutungen auf, welche Versuche mit der App durchgeführt werden können z.B. „Mit der App kann die Reichweite und das Durchdringungsvermögen untersucht werden“</td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung von Tabelle 9: Unterrichtsskizze zur Untersuchung von emittierter Strahlung von vier Präparaten

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/Sozialform/Medien</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>didaktischer Kommentar</th>
</tr>
</thead>
</table>
| 5 | Aufgabe vorsehalten
• Frontalunterricht
• Tafelbild (siehe Abb. 25) | • teilt die Klasse in zwei Hälften
• erklärt die Aufgabe:
Gruppe 1 nimmt Werte für verschiedene Abstände zwischen Detektor und Quelle für die Präparate 1 und 3 auf.
Gruppe 2 nimmt Werte für verschiedene Abstände für die Präparate 2 und 4 auf. Überlegt euch, welche Strahlung von den Präparaten emittiert wird | • übernehmen die Tabelle | Da nur eine Doppelstunde zur Verfügung steht, bleibt nur Zeit, dass jeder zwei Präparate vermessen kann. Die einzelnen Gruppen haben so ausreichend Zeit, um sich Gedanken darüber zu machen, welche Strahlungsart emittiert wird. |
| 3 | Vermutungen aufstellen
• Klassengespräch | • fordert die Schüler*innen dazu auf, über die möglichen Ausgänge der Versuche nachzudenken
• hält die Vermutungen an der Tafel fest | • benennen die Reichweite von Alpha-, Beta- und Gammastrahlung
• ordnen ihr Wissen über die Reichweite der Strahlungsarten möglichen Versuchsergebnisse zu: „Da Alphastrahlung eine Reichweite von wenigen Zentimetern hat, wird vermutlich in einem Abstand von 10 cm nur noch der Nulleffekt gemessen, wenn das Präparat Alphastrahlung emittiert.“ | Mit den Vermutungen entwickeln die Schüler*innen eine Erwartungshaltung die auch mit ihrem theoretischen Wissen verknüpft wird. |
| 7 | Experimente
• freies Arbeiten
• Tablets
• QR-Codes | • unterstützt | • nehmen Messwerte für verschiedene Abstände auf
• dokumentieren ihre Messwerte | Hier findet freies Arbeiten statt. Die Schüler*innen können in ihrem eigenen Tempo arbeiten. Die Lehrkraft kann dort unterstützen, wo Hilfe benötigt wird. |
Fortsetzung 2 von Tabelle 9: Unterrichtsskizze zur Untersuchung von emittierter Strahlung von vier Präparaten

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/Sozialform/Medien</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>didaktischer Kommentar</th>
</tr>
</thead>
</table>
| 5 | Experimente auswerten | • ergänzt Tabelle durch Messwerte von Schüler*innen
■ Tafelbild (siehe Abb. 25) \(\ldots\)
■ fordert die Schüler*innen auf begründet den Präparaten eine Strahlungsart zuzuordnen | • ordnen die Präparate 1 und 2 Alphastrahlung zu, da die Zählrate bereits bei 10 cm auf die Nullrate ab gefallen ist
■ ordnen Betastrahlung dem Präparat 3 zu, da die Abnahme der Zählrate bei 60 cm nahe der Nullrate ist
■ ordnen Gammastrahlung dem Präparat 4 zu, da die Zählrate bei 60 cm deutlich größer als die Zählrate im gleichen Abstand von Präparat 3 ist
| 2 | Aufgabe vorstellen | • verteilt die Arbeitsblätter
■ versuchsprüft das Versuchsprotokoll 3 und 5 (siehe Anhang A.4.2) \(\ldots\)
■ erklärt die Aufgabe:
Gruppe 1 nimmt Werte für verschiedene Dicken der Abschirmungsmaterialien Polyethylene für das Strontium-90 Präparat und Blei für das Cobalt-60 Präparat.
Gruppe 2 nimmt Werte für verschiedene Dicken der Abschirmungsmaterialien Aluminium für das Strontium-90 Präparat und Eisen für das Cobalt-60 Präparat. | • übernehmen die Tabelle | Hier steht wieder der Zeitfaktor im Mittelpunkt, wodurch jeder Schüler*in nur zwei von fünf Messreihen aufnehmen kann. Schnelle Schüler*innen können die fehlende Messreihe zur Abschirmung mit Eisen aufnehmen und müssen sich so nicht langweilen. Ansonsten muss die Lehrkraft sicherstellen, dass alle Schüler*innen wissen, was zu tun ist. Da zu gehört auch sicherzustellen, dass alle den Aufbau verstehen. |

35
Fortsetzung 3 von Tabelle 9: Unterrichtsskizze zur Untersuchung von emittierter Strahlung von vier Präparaten

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/Sozialform/Medien</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>didaktischer Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Experimente Gruppenarbeit</td>
<td>• unterstützt</td>
<td>• nehmen Messwerte für verschiedene Dicken der Abschirmungsmaterialien auf</td>
<td>Durch die vorgegebenen Versuchsprotokolle und die abgestuften Lernhilfen hat die Lehrkraft wieder Freiraum, um auf Fragen individuell einzugehen.</td>
</tr>
<tr>
<td></td>
<td>Versuchsprotokolle 3 und 5 (siehe Anhang A.1.2)</td>
<td>• weist auf abgestufte Lernhilfen hin</td>
<td>• dokumentieren ihre Messwerte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abgestufte Lernhilfen (siehe Abschnitt 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Experimente auswerten Frontalunterricht</td>
<td>• notiert Messwerte</td>
<td>• stellen ihre Messwerte vor</td>
<td>Hier wird das Thema der Stunde abgeschlossen. Wichtig ist die allgemeine Erklärung, wie die Halbwertsschichtdicke bestimmt wird. Die Schülerinnen konnten mit den abgestuften Lernhilfen bereits eine Wiederholung zur Halbwertsschichtdicke erhalten. Für alle weiteren Schülerinnen müssen diese Inhalte kurz angesprochen werden.</td>
</tr>
<tr>
<td></td>
<td>Tafelbild (siehe Abb. 23)</td>
<td></td>
<td>• folgern aus den Messwerten und den bestimmten Halbwertsschichtdicken, welches Material am besten die jeweilige Strahlung abschirmt</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Arbeit mit der AR Umgebung evaluieren Einzel- oder Partnerarbeit</td>
<td>• verteilt die Evaluationsbögen</td>
<td>• beantworten die Fragen</td>
<td>Mit der Evaluation soll die Arbeit mit der App und die App an sich bewertet werden, um diese gegebenenfalls zu verbessern. Mit der Lernzielkontrolle können im Vergleich zur Abfrage des Vorwissens wichtige Aussagen getroffen werden, ob die Arbeit mit der App die theoretischen Inhalte ergänzt und die Vernetzung von Wissen ermöglicht hat.</td>
</tr>
<tr>
<td></td>
<td>Evaluationsbögen (siehe Anhang Abb. 27)</td>
<td>• verteilt die Lernzielkontrollen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lernzielkontrolle (siehe Anhang Abb. 26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Verabschiedung Frontalunterricht</td>
<td>• verabschiedet sich</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• bedankt sich für die Mitarbeit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

36
5 Wie kann Unterricht analysiert werden?

5.1 Abfrage des Vorwissens und Lernzielkontrolle

Es wurden sieben Fragen entwickelt. In Frage 1 werden Reichweite, Abschirmung und Zusammensetzung von Alphastrahlung thematisiert. Hier wird die Fehlvorstellung aufgegriffen, dass Alphastrahlung weiter als nur ein paar Zentimeter eindringt. In Frage 2 wird sowohl wieder die Reichweite behandelt, als auch die Natur der ausgesandten Teilchen. Die Fehlvorstellung, dass Protonen ausgesendet werden, wird angesprochen. In Frage 3 muss einerseits zwischen Teilchenstrahlung und elektromagnetischer Strahlung unterschieden werden. Andererseits wird thematisiert, dass Gammastrahlung keine endliche Reichweite hat und durch dicke Schichten abgeschwächt werden kann. Als nächstes werden in den Fragen 4, 5 und 6 die Vorstellungen zum Durchdringungsvermögen abge-
fragt und welche Materialien am besten für die Abschirmung geeignet sind. Zur Auswahl stehen die Materialien, die in der App ausgewählt werden können, also Aluminium und Polyethylen für Betastrahlung und Beton, Blei und Eisen für Gammastrahlung. Als letzte Frage werden Vorstellungen zum Begriff Halbwertsschichtdicke abgefragt. Es werden zwei Fehlvorstellungen aufgegriffen. Eine besteht in dem Glauben, dass die Halbwertsschichtdicke eine Schichtdicke von 0,5 cm ist. Die andere besagt, dass es sich um ein Material handelt, welches doppelt so viel schwächt wie Blei.

5.2 Evaluation der App

Die Evaluation der App zielt auf die Empfindungen der Schüler*innen in Bezug auf die App, die Experimente und die Visualisierungen ab. Im oberen Teil des Bogens können Angaben zu Geschlecht, Alter, Sehschwäche und Vorerfahrungen mit AR gemacht werden. Später können so die einzelnen Bögen eingeordnet und auf Grundlage der Angaben gedeutet werden. Im nächsten Teil werden die Einstellungen und Wahrnehmungen zur Arbeit mit der App und den Experimenten abgefragt. Es sollen die folgenden Aussagen nach „Trifft zu“ und „Trifft nicht zu“ bewerten:

- Die Arbeit mit der App hat Spaß gemacht.
- Die Arbeit mit der App war abwechslungsreich und spannend.
- Die App ist einfach verständlich.
- Das Aufnehmen der Messwerte war einfach.
- Die Experimente in AR können reale Experimente ersetzen.

Durch fünf verschiedene Abstufungen der möglichen Antworten können die Bögen differenziert ausgewertet werden. Durch das Feld mit freien Antwortmöglichkeiten wird den Schüler*innen darüber hinaus die Option gegeben, ihre Meinung zu sagen. Der dritte Teil besteht aus einer Bewertung der Visualisierungen. Wieder gibt es durch fünf Abstufungen eine Differenzierungsmöglichkeit, welche Visualisierung am ansprechendsten war oder das Verständnis von Strahlung am meisten verbessert hat. Ganz unten auf dem Bewertungsbogen besteht wieder die Option, frei seine Meinung zu äußern, was gut war und was an der App verbessert werden könnte. Die Druckvorlage befindet sich im Anhang A.5.1 in Abbildung 27. Die Auswertung der Evaluationen der App befindet sich in Abschnitt 7.2.
6 Durchführung der Unterrichtsstunden

6.1 Anpassung der Stunden an die Klassen

Für eine reibungslose Durchführung musste die Planung an die jeweiligen Klassen angepasst werden. Im weiteren Verlauf werden die Klassen folgendermaßen benannt: Die 10a ist die Klasse der Helene-Lange-Schule, die 10b und 10c sind die zwei Klassen der Bismarckschule und die 11a ist die Klasse der Wilhelm-Raabe-Schule. Die Stunde in der Helene-Lange-Schule mit voller Klassenstärke beschäftigte sich nur mit dem Durchdringungsvermögen der Strahlung radioaktiver Stoffe. Die Reichweite hatten die Schüler*innen der 10a bereits in der vorherigen Stunde mit Realexperimenten untersucht. Auf diese Ergebnisse konnte daher aufgebaut werden. Anders als

6.2 Reflexion: Differenz von antizipiertem und realisiertem Unterricht

Unabhängig von der App hat die Experimentierphase meist gut funktioniert. Die Schüler*innen konnten die Aufgabenstellungen gut umsetzen. Eine Analyse der Experimentierphase mit dem Modell von Nawrath et al. (2011) hat die folgenden Schwerpunkte der Stunden offengelegt: Wie erwartet, werden allem voran die Kompetenzen des Beobachtens, Messens, Dokumentierens und Diskutierens gefördert, siehe Abbildung im

7 Auswertung der Unterrichtsanalyse

7.1 Auswertung der Multiple Choice Tests

Werden die Tests der Klasse 11a vom Stundenanfang mit denen am Stundenende verglichen, so können die folgenden Trends festgehalten werden: Bei Frage 1 bezüglich der Aussagen über Alphastrahlung hat sich die Mehrheit für die richtigen Antworten A: Der zerfallende Atomkern sendet Helium-Kerne aus; und C: Alphastrahlung wird durch dünne Schichten der meisten Materialien abgeschirmt; entschieden. Die Reichweite von Alphastrahlung von wenigen Zentimetern hat die Mehrheit nach der Stunde ebenfalls richtig mit B beantwortet. Der Abstieg von 25% auf 13% bei der falschen Antwort D: Die Reichweite in Luft beträgt wenige Meter; ist erfreulich. Bei Frage 2, die sich

Bei den Fragen 4 und 5 zu den Materialien, die am besten Beta- oder Gammastrahlung abschirmen beziehungsweise abschwächen, haben sich jeweils mehr als die Hälfte für die richtigen Antworten entschieden. Der Anstieg an Antworten A: Beton und B: Eisen bei Frage 5 geht zurück auf Unsicherheiten mit der Halbwertsschichtdicke. Eine Fehlvorstellung ist, dass je größer die Halbwertsschichtdicke, desto besser das Abschwächungsverhalten. Der richtige Zusammenhang muss von der Lehrkraft mit viel Zeit besprochen werden. Frage 6 zur Strahlung mit dem größten Durchdringungsvermögen und Frage 7 zur Halbwertsschichtdicke hat die Mehrheit der Schüler*innen schon vor der Stunde richtig beantwortet. Trotzdem ist nochmal ein Anstieg richtiger Antworten zum Stundenende zu verzeichnen.

Insgesamt haben sich 63% verbessert, plus 6%, die bereits am Anfang der Stunde die Note 1 hatten, sich aber nicht verbessert haben. Die Schüler*innen scheinen über den Verlauf der Stunde Inhalte gefestigt und erarbeitet zu haben. Dieser Trend ist ebenfalls am Notendurchschnitt zu sehen, dieser hat sich von 2,4 auf 2,1 verbessert.

Insgesamt haben sich 44% der Schüler*innen verbessert. Zusätzlich hatten 20% bereits am Stundenanfang eine 1. Auch am Notendurchschnitt ist eine leichte Steigerung von 2,0 auf 1,9 zu sehen. Die geringe Verbesserung des Notenspiegels, trotz der 44%, die sich verbessert haben, lässt sich darauf zurückführen, dass nicht die Verbesserung der Note, sondern die Differenz der erreichten Punkte betrachtet wurde. Eine höhere Punktzahl
hat allerdings nicht immer eine bessere Note zur Folge. Nichtsdestotrotz kann für die Schüler*innen der 10a gefolgt werden, dass durch die Stunde ihr vorhandenes Wissen gefestigt oder erweitert wurde.

Insgesamt haben sich 48% verbessert. Dazu kommen 10% der Schüler*innen, die bereits am Stundenanfang eine 1 hatten. Der Notendurchschnitt hat sich in dieser Klasse von 2,1 auf 1,8 verbessert.

Als letztes werden die Tests der Klasse 10c vom Stundenanfang mit denen am Stundendende verglichen. Bei Frage 1 zu den Aussagen zur Alphastrahlung ist eine klare Verbesserung am Stundendende zum Stundenanfang bei B: Die Reichweite in Luft beträgt wenige Zentimeter; und C: Wird durch düne Schichten der meisten Materialien

Insgesamt haben sich nur 32% verbessert und 39% verschlechtert. Der Notendurchschnitt hat sich nicht verändert und liegt sowohl am Anfang als auch am Ende bei 2,1. Dies kann daran liegen, dass es Freitag die letzten zwei Stunden der Schüler*innen gewesen sind und sie schnell ins Wochenende wollten. Eine weitere Erklärung ist das Durcheinander durch verschiedene Aufgaben in der zweiten Stunde, da aufgrund des Corona bedingten Szenarios zwei verschiedene Gruppen parallel betreut werden mussten.

Als letztes sollte ausreichend Zeit für die Besprechung der Halbwertsschichtdicke eingeplant werden. Obwohl die Auswertungen immer sehr schnell gingen, haben viele Schüler*innen eine falsche Vorstellung davon, was diese Schichtdicke aussagt. Die Definition, die in Frage 7 abgefragt wurde, ist dem Großteil am Ende der Stunde bekannt gewesen. Allerdings haben viele nicht verstanden, dass das Material mit der kleinsten Halbwertsschichtdicke Gammastrahlung am besten abschwächt und daher fälschlicherweise Beton oder Eisen bei Frage 5 ausgewählt, wo die Frage war, ob Blei, Eisen oder Beton Gammastrahlung am besten abschwächt. Eisen wurde gewählt, da aus Zeitgründen nicht immer Messreihen zu Beton aufgenommen werden konnten und so nur Messreihen von Eisen und Blei zur Auswertung zur Verfügung standen.

Werden die angesprochenen Punkte weiter überarbeitet oder bei der nächsten Nutzung der App berücksichtigt, hat die App durchaus gutes Potential, Schüler*innen Wissen zu vermitteln. In weiteren Untersuchungen der Anwendung der App in der Schule müsste die Nachhaltigkeit dieses erlangten Wissens untersucht werden.

7.2 Auswertung der Evaluation der App

Für die Auswertung der Evaluationsbögen wurden die Bewertungen der einzelnen Aussagen am Anfang des Bogens zuerst betrachtet. Die Tabelle mit den entsprechenden Zahlen, auf die sich im Folgenden bezogen wird, befindet sich im Anhang A.7.2.

Das Aufnehmen der Messwerte fanden nur 14% einfach. 30% stehen der Aussage neutral gegenüber. 45% fanden das Messen mit der App schwierig. Viele haben ihre Probleme in den Kommentarfeldern erläutert. Im nächsten Abschnitt werden diese vorgestellt und mögliche Verbesserungsvorschläge diskutiert. Der Aussage, ob die Experimente in AR reale Experimente ersetzen können, würden 39% zustimmen. 22% stehen der Aussage neutral gegenüber. Weitere 35% denken nicht, dass die Experimente reale Experimente ersetzen können. Der Mehrheit von ihnen hat die Idee der App, die Darstellung der Geräte oder die Visualisierung der Strahlung an sich gut gefallen. Sie sehen aber alle noch einige Probleme in der Umsetzung.

Neben den Bewertungen der vorgegebenen Aussagen sollen auch kurz die Einträge der Kommentarfelder diskutiert werden. 38% haben angemerkt, dass die Geräte sehr sprunghaft in der App versetzt werden, ohne dass die QR-Codes bewegt wurden. Weiter ist es zu Problemen beim Verschieben oder Drehen der Marker gekommen. Hier wurden die Geräte nicht an die richtige Stelle in der App verschoben, obwohl die QR-Codes richtig positioniert wurden. Dies führte dazu, dass Experimente abgebrochen werden mussten, weil sich die Abstände der Geräte verändert haben. An manchen Stellen konnten Messungen gar nicht erst gestartet werden, da sich die Geräte auf keiner Position fixieren ließen. Dadurch dass die QR-Codes gerade bei der Untersuchung der Reichweite der verschiedenen Strahlungsarten ständig verschoben werden müssen, handelt es sich hierbei um ein wiederholt auftretendes Problem, welches kaum umgangen werden kann. In der App müsste es möglich sein, die Geräte an einer Stelle zu fixieren, sodass das Aufnehmen von Messwerten vereinfacht wird.

Zusätzlich kam es bei 16% zu Schwierigkeiten beim Einscannen der QR-Codes. Ein Schüler schreibt dies auf die schlechten Kameras der Tablets. Die gleichen Probleme, dass das Gerät zum Einscannen nah an die QR-Codes geführt werden muss, ist auch bei anderen Geräten mit besseren Kameras aufgetreten. Schätzungsweise wäre das einzelne Scannen jedes Markers ein geringeres Hindernis, wenn die Geräte anschließend an Ort und Stelle fixiert blieben und sich nicht unvorhersehbar verschoben würden. Das würde voraussichtlich zu einer Halbierung der Einscannvorgänge führen.

Visualisierungen müssten gegebenfalls vereinfacht werden, um ein flüssiges Arbeiten mit der App zu garantieren.

Ein weiteres Problem sind die Messungenaigkeiten. Erstens können die Abstände nicht exakt eingestellt werden und zweitens garantiert die richtige Ausrichtung der Marker leider noch keine korrekte Messung. Durch den ersten Punkt erhalten die Schüler*innen für dieselben Abstände sehr unterschiedliche Werte, die zwar grob in der gleichen Größenordnung liegen, allerdings nicht direkt vergleichbar sind. Zum Beispiel wurde im Abstand von 10 cm eine Zählrate des Cobalt-60 Präparats von 21 400 Imp/30s gemessen, sowie 10 300 Imp/30s. Die Tatsache, dass die Werte weit auseinander liegen, kann durch die Schwankungen der Abstände und die Differenz zwischen der Position der QR-Codes und der Position der Geräte auf dem Display begründet werden. Der zweite Punkt führt allerdings dazu, dass teilweise gar keine Messwerte für die Auswertung vorhanden waren. Besonders schwierig ist dies, wenn nicht mal der Versuchsaufbau verschoben aussieht. Beispielsweise sind in Abbildung 7 zwei Bilder zu sehen, die den Versuch zur Abschirmung von Betastrahlung zeigen. Im linken Bild konnten korrekte Messwerte aufgenommen werden, die eine Abschirmung durch Aluminium widerspiegeln. Im rechten Bild wurden die QR-Codes nicht verändert und der Aufbau sieht nahezu identisch aus, allerdings läuft der Strahl ganz knapp an der Abschirmung vorbei. Im Bild ist eine klare Farbänderung zu sehen, die darauf zurückzuführen ist, dass für das Bild nicht die dünnst mögliche Abschirmung gewählt wurde. Vor der Messung mit einer Abschirmung von 0,6 cm Dicke ist die Farbänderung für geringere Dicken weniger offensichtlich. Daher hat der Hinweis, dass die Schüler*innen bei der Ausrichtung der QR-Codes auf die Visualisierung achten können, nicht immer ausgereicht, damit die Messungen einwandfrei aufgenommen werden konnten. Eine Ausrichtung mit einer dickeren Abschirmung, um dann die Dicke vor der Messung zu verringern, war aufgrund der Sprunghaftigkeit der Geräte ebenfalls nur vereinzelt möglich. So konnten nur wenige Schüler*innen Messwerte durch die Abschirmung aufnehmen. Die meisten Messreihen haben jedes Mal den gleichen Wert ergeben. Diese Probleme in der App müssen in der nächsten Version behoben werden.

Trotz der Kritikpunkte hat den meisten Schüler*innen, wie bereits erwähnt, die Idee der App gefallen. Sie haben die App als „moderne Alternative zum trockenen Unterricht“ beschrieben. Weiter wurde festgehalten, dass „man versteht, wie das mit der Strahlung funktioniert, also wie und wohin sie sich ausbreitet“. Außerdem fanden sie gut, dass die Geräte realistisch aussahen und so die Experimente anschaulich waren. Zu guter Letzt haben einige der Schüler*innen angemerkt, dass sie die Betrachtung eines solchen Vorgehens aus dieser „anderen Perspektive“ gut fanden.
Abbildung 7: Identische Versuchsaufbauten für die Abschirmung von Betastrahlung zur Veranschaulichung der aufgetretenen Probleme. Links hat eine korrekte Messung stattfinden können. Rechts läuft der Strahl an der Abschirmung vorbei, wodurch die Messreihen unbrauchbar sind.

Die Schüler*innen haben die folgenden Verbesserungsvorschläge für die Umsetzung der App geäußert. Erstens ist ein besserer Überblick gewünscht, gerade das Überlappen der Drop Down Menüs macht die Experimente unübersichtlich. Zweitens ist der Vorschlag gefallen, dass es bereits helfen könnte, die Geräte in der App zu drehen. Dadurch könnte die Ausrichtung des Aufbaus vereinfacht werden. Drittens wurde sich ein integriertes Lineal in der App gewünscht, um die Abstände genauer messen zu können. Dies hätte den Vorteil, dass nicht mehr der Abstand der QR-Codes, sondern der tatsächliche Abstand zwischen Detektor und Strahlungsquelle gemessen werden könnte. Da die Geräte über die Kanten der QR-Codes hinaus reichen, würde dies einen Unterschied machen. Weiter kam auch die Anmerkung, dass eine AR Anwendung nicht notwendig sei, sondern eine Simulation ohne Kamera ausreichen würde. Im direkten Bezug dazu hat ein*e Schüler*in ausgeführt, dass die Umsetzung mit AR einfach noch nicht ausgereift genug sei.

8 Fazit

macht. Es handelt sich lediglich um ein Weglegen des Smartgerätes, wie zum Beispiel eines Tablets, und der Marker.
9 Ausblick: Erweiterungsmöglichkeiten der App

In der App könnte die Aufteilung der Menüs verbessert werden, damit die Experimente übersichtlicher werden. Weiter sollte das Ausrichten der Geräte vereinfacht werden. Welche Möglichkeiten sich hier am besten anbieten, muss zusammen mit den Software Entwicklern ausprobiert werden. Weiter wird es nötig sein, über die Visualisierung zu diskutieren, um diese gegebenenfalls anzupassen.

10 Literaturverzeichnis

[e-teaching.org, 2016] e-teaching.org (2016). Was ist ein Experiment?

A Anhang

A.1 Exkurs: Lernpsychologische Grundlagen

A.2 Bilder der App

Abbildung 8: Foto der beschrifteten QR-Codes, die für die Experimente mit der App eingescannt werden können

Abbildung 9: Foto der bildlichen Marker, die für die Experimente mit der App eingescannt werden können
Abbildung 10: Screenshot des App Menüs mit den verschiedenen Einstellungen für die Visualisierung und der Möglichkeit, die Namen der Präparate auszuschalten

Abbildung 11: Screenshot der Quelle mit einem Präparat ausgewählt
Abbildung 12: Screenshot der Quelle mit dem Drop Down Menü und den verschiedenen Möglichkeiten

Abbildung 13: Screenshot des Auswahlmenüs der Quelle mit ausgeschalteten Namen der Präparate
Abbildung 14: Screenshot der Quelle mit einem ausgewählten Präparat. Der Name wird nicht angezeigt nur die Aktivität

Abbildung 15: Screenshot des Detektormenus mit den verschiedenen Auswahlmöglichkeiten
Abbildung 16: Screenshot des Detektors, der die Zählrate in Impulsen pro Sekunde anzeigt

Abbildung 17: Screenshot des Detektors, der die Zählrate in Impulsen pro eingestelltem Zeitintervall misst
Abbildung 18: Screenshot der Abschirmung mit einigen der verschiedenen Möglichkeiten

Abbildung 19: Screenshot der Abschirmung, wenn ein Material ausgewählt ist. Mit dem Schiebezeiger kann die Dicke erhöht werden
A.3 Analyse mit dem Modell von Nawrath et al.

Abbildung 20: Analyse der Schwerpunkte zur experimentellen Kompetenzentwicklung für die Versuche in einer AR Umgebung aus Kapitel 3.1 nach Nawrath et al. (2011)

A.4 Druckvorlagen

A.4.1 Verhaltensregeln für den Umgang mit Tablets

Verhaltensregeln für die Nutzung der Tablets

1. Ich desinfiziere meine Hände vor der Nutzung der Tablets.

2. Ich halte das Tablet immer mit beiden Händen.

3. Ich verwende das Tablet nur zum Experimentieren.

4. Ich benutze keine Flüssigkeiten in der Nähe des Tablets.
A.4.2 Vorlage für die Versuchsprotokolle

Versuchsprotokoll 1

<table>
<thead>
<tr>
<th>Versuchsprotokoll:</th>
<th>Datum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Strahlung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forschungsziel:</th>
<th>Wir untersuchen α-Strahlung auf Reichweite und Durchdringungsvermögen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>Detektor, Am-241-Präparat und Ra-226-Präparat</td>
</tr>
<tr>
<td>Durchführung:</td>
<td>1) Führe eine Messung der Hintergrundstrahlung durch: Miss dafür die Zählrate ohne Präparat für 2 min.</td>
</tr>
<tr>
<td></td>
<td>2) Bringe den α-Strahler an das Glimmfenster des Detektors. Bestimme möglichst genau die Reichweite der α-Strahlung. Miss dazu die Zählrate in verschiedenen Abständen über 30 sec. Stelle die Impulse pro 30 sec. in einer Tabelle in Abhängigkeit vom Abstand dar und rechne diese in Impulse pro Sekunde um.</td>
</tr>
<tr>
<td></td>
<td>3) Stelle verschiedene Abschirmungsmaterialien zwischen Detektor und Präparat.</td>
</tr>
</tbody>
</table>

| Skizze: | |
|--------------------| |

| Hypothese: | |
|--------------------| |

| Messwerte:/ Beobachtungen: | |
|-----------------------------| |

| Deutung: | |
|-----------------------------| |
| 1) Ziehe die Nullrate in den folgenden Versuchen von den gemessenen Zählraten ab. |
| 2) Welche Reichweite hat α-Strahlung? |
| 3) Welche Materialien schirmen α-Strahlung ab? |
Versuchsprotokoll 2

Forschungsziel: Wir untersuchen β-Strahlung auf ihre Reichweite.

Material: Detektor, Sr-90-Präparat

Durchführung: Bring den β-Strahler an das Glimmfenster des Detektors. Miss die Zählrate über 30 sec. Starte die Messreihe im Abstand von 5 cm. Erhöhe den Abstand immer um 5 cm. Die Messreihe endet bei 55 cm. Stelle die Impulse pro 30 sec. in einer Tabelle in Abhängigkeit vom Abstand dar und rechne diese in Impulse pro Sekunde um.

Messwerte:

<table>
<thead>
<tr>
<th>Abstand in cm</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zählrate in Imp/30s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstand in cm</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auswertung: Für die Bestimmung der Reichweite trage die Messwerte in Impulsen pro Sekunde gegen den Abstand in ein Koordinatensystem ein. Zeichne die Nullrate als konstante Gerade ein. Zeichne eine Ausgleichsfunktion.

Deutung: Beschreibe den Verlauf der Punkte. Der Schnittpunkt mit der Nullrate ist die maximale Reichweite der β-Strahlung. Halte die maximale Reichweite in Luft fest.

![Diagramm](image-url)
Versuchsprotokoll 3

<table>
<thead>
<tr>
<th>Forschungsziel:</th>
<th>Wir untersuchen β-Strahlung auf ihr Durchdringungsvermögen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>Detektor, Sr-90-Präparat, Aluminium- und Polyethylen-Scheiben</td>
</tr>
</tbody>
</table>
| Skizze: | ![Skizze](image)

<table>
<thead>
<tr>
<th>Hypothese:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Messwerte:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylen</td>
<td></td>
</tr>
<tr>
<td>Dicke in cm</td>
<td>0,2</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
</tr>
<tr>
<td>Dicke in cm</td>
<td>0,05</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td></td>
</tr>
</tbody>
</table>

| | ![Auswertung](image)

|----------------|---|
Versuchsprotokoll 4

<table>
<thead>
<tr>
<th>Forschungsziel:</th>
<th>Wir untersuchen γ-Strahlung auf ihre Reichweite.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>Detektor, Co-60-Präparat</td>
</tr>
<tr>
<td>Durchführung:</td>
<td>Stelle den γ-Strahler an das Glimmfenster des Detektors. Miss die Zählrate über 30 sec. Starte die Messreihe im Abstand von 10 cm. Erhöhe den Abstand immer um 10 cm. Die Messreihe endet bei 1 m. Trage die Impulse pro 30 sec. in einer Tabelle in Abhängigkeit vom Abstand ein und rechne diese in Impulse pro Sekunde um.</td>
</tr>
<tr>
<td>Skizze:</td>
<td></td>
</tr>
<tr>
<td>Hypothese:</td>
<td></td>
</tr>
<tr>
<td>Messwerte:</td>
<td>Abstand in cm</td>
</tr>
<tr>
<td></td>
<td>Zählrate in Imp/30s</td>
</tr>
<tr>
<td></td>
<td>Zählrate in Imp/s</td>
</tr>
<tr>
<td></td>
<td>Abstand in cm</td>
</tr>
<tr>
<td></td>
<td>Zählrate in Imp/30s</td>
</tr>
<tr>
<td></td>
<td>Zählrate in Imp/s</td>
</tr>
<tr>
<td>Deutung:</td>
<td>Beschreibe den Verlauf der Punkte. Was kann über die Reichweite von γ-Strahlung mithilfe des Graphen festgehalten werden?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstand in cm</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zählrate in Imp/30s</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstand in cm</td>
<td>70</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Versuchsprotokoll 5

Versuchsprotokoll: γ-Strahlung

Datum:

Forschungsziel: Wir untersuchen γ-Strahlung auf ihr Durchdringungsvermögen.

Material: Detektor, Co-60-Präparat, Blei-, Beton- und Eisen-Scheiben

Messwerte:

<table>
<thead>
<tr>
<th>Material</th>
<th>Dicke in cm</th>
<th>5</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blei</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eisen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

2) Bestimme die Halbwertsschichtdicke.

Skizze:

![Diagramm zur Auswertung]

Hypothese:

<table>
<thead>
<tr>
<th>Dick in cm</th>
<th>Imp/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

A.4.3 Musterlösungen für die Versuchsprotokolle

Musterlösung von Versuchsprotokoll 1

<table>
<thead>
<tr>
<th>Versuchsprotokoll:</th>
<th>Datum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forschungsziel:</td>
<td>Wir untersuchen α-Strahlung auf Reichweite und Durchdringungsvermögen.</td>
</tr>
<tr>
<td>Material:</td>
<td>Detektor, Am-241-Präparat und Ra-226-Präparat</td>
</tr>
</tbody>
</table>
| **Durchführung:** | 1) Führe eine Messung der Hintergrundstrahlung durch: Miss dafür die Zählrate ohne Präparat für 2 min.
2) Bringe den α-Strahler an das Glimmfenster des Detektors. Bestimme möglichst genau die Reichweite der α-Strahlung. Miss dazu die Zählrate in verschiedenen Abständen über 30 sec. Stelle die Impulse pro 30 sec. in einer Tabelle in Abhängigkeit vom Abstand dar und rechne diese in Impulse pro Sekunde um.
3) Stelle verschiedene Abschirmungsmaterialien zwischen Detektor und Präparat. |
| **Skizze:** | ![Skizze](image) |
| **Hypothese:** | Alphastrahlung hat eine kurze Reichweite. |
| **Messwerte / Beobachtungen:** | 1) Nulleffekt: 58 Impulse in 2 min => 0,4 Imp/s
Am-241:
Impulsrate: 1 781 Imp/30sec. => 59 Imp/s
Ra-226:
Impulsrate: 216 223 Imp/30sec. => 7 207 Imp/s
Reichweite:
Die Reichweite der Alphastrahlung von Americium liegt bei etwas weniger als 5 cm.
Abgeschirmt durch: Blei, Beton, Eisen, Polyethylen und Aluminium |
| **Deutung:** | 1) Ziehe die Nullrate in den folgenden Versuchen von den gemessenen Zählraten ab.
2) Welche Reichweite hat α-Strahlung?
3) Welche Materialien schirmen α-Strahlung ab?
Die Reichweite beträgt weniger als 5 cm. Die Alphastrahlung vom Radium Präparat hat eine geringere Reichweite als die Strahlung von Americium.
Alphastrahlung wird von allen vorhandenen Materialien mit geringen Schichtdicken abgeschirmt. |

Hypothese:

Alphastrahlung hat eine kurze Reichweite.

Messwerte / Beobachtungen:

1) Nulleffekt: 58 Impulse in 2 min => 0,4 Imp/s

- **Am-241:**
 - Impulsrate: 1 781 Imp/30sec. => 59 Imp/s

- **Ra-226:**
 - Impulsrate: 216 223 Imp/30sec. => 7 207 Imp/s

Reichweite:

Die Reichweite der Alphastrahlung von Americium liegt bei etwas weniger als 5 cm.

Abgeschirmt durch: Blei, Beton, Eisen, Polyethylen und Aluminium

Deutung:

1) Ziehe die Nullrate in den folgenden Versuchen von den gemessenen Zählraten ab.
2) Welche Reichweite hat α-Strahlung?
3) Welche Materialien schirmen α-Strahlung ab?

Die Reichweite beträgt weniger als 5 cm. Die Alphastrahlung vom Radium Präparat hat eine geringere Reichweite als die Strahlung von Americium.

Alphastrahlung wird von allen vorhandenen Materialien mit geringen Schichtdicken abgeschirmt.
Skizze des Versuchsaufbaus für Protokoll 1:
Musterlösung von Versuchsprotokoll 2

Versuchsprotokoll: β-Strahlung

Datum:

<table>
<thead>
<tr>
<th>Forschungsziel:</th>
<th>Wir untersuchen β-Strahlung auf ihre Reichweite.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>Detektor, Sr-90-Präparat</td>
</tr>
<tr>
<td>Durchführung:</td>
<td>Bring den β-Strahler an das Glimmfenster des Detektors. Miss die Zählrate über 30 sec. Starte die Messreihe im Abstand von 5 cm. Erhöhe den Abstand immer um 5 cm. Die Messreihe endet bei 55 cm. Stelle die Impulse pro 30 sec. in einer Tabelle in Abhängigkeit vom Abstand dar und rechne diese in Impulse pro Sekunde um.</td>
</tr>
<tr>
<td>Skizze:</td>
<td></td>
</tr>
<tr>
<td>Hypothese:</td>
<td>Betastrahlung hat eine längere Reichweite als Alphastrahlung. Die Zählrate der Betastrahlung bleibt wie bei der Alphastrahlung konstant/ nimmt ab.</td>
</tr>
<tr>
<td>Messwerte:</td>
<td></td>
</tr>
<tr>
<td>Abstand in cm</td>
<td>5</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>13700</td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td>456.7</td>
</tr>
<tr>
<td>Abstand in cm</td>
<td>35</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>274</td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td>9.1</td>
</tr>
</tbody>
</table>
Skizze des Versuchsaufbaus für Protokoll 2:
Forschungsziel: Wir untersuchen β-Strahlung auf ihr Durchdringungsvermögen.

Material: Detektor, Sr-90-Präparat, Aluminium- und Polyethylen-Scheiben

Durchführung:

Hypothese: Aluminium schirmt Betastrahlung besser oder schlechter ab als Polyethylen.

Messwerte:

<table>
<thead>
<tr>
<th>Material</th>
<th>Dicke in cm</th>
<th>Zählrate in Imp/30s</th>
<th>Zählrate in Imp/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylen</td>
<td>0,2</td>
<td>355</td>
<td>11,8</td>
</tr>
<tr>
<td></td>
<td>0,4</td>
<td>177</td>
<td>5,9</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td>94</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td>0,8</td>
<td>55</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>36</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>1,2</td>
<td>25</td>
<td>0,8</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0,05</td>
<td>4,12</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>284</td>
<td>9,5</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>161</td>
<td>5,4</td>
</tr>
<tr>
<td></td>
<td>0,2</td>
<td>100</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>0,25</td>
<td>64</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>25</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Auswertung:

Deutung:

Die Zählrate nimmt mit zunehmender Dicke ab. Eine ungefähr 0,4 cm dicke Schicht aus Aluminium schirmt β-Strahlung ab. Eine Schicht aus Polyethylen muss mindestens 1,2 cm dick sein, um β-Strahlung abzuschirmen. Aluminium schirmt also β-Strahlung besser ab.
Skizze des Versuchsaufbaus für Protokoll 3:
Versuchsprotokoll: γ-Strahlung

<table>
<thead>
<tr>
<th>Forschungsziel:</th>
<th>Wir untersuchen γ-Strahlung auf ihre Reichweite.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>Detektor, Co-60-Präparat</td>
</tr>
<tr>
<td>Durchführung:</td>
<td>Stelle den γ-Strahler an das Glimmfenster des Detektors. Miss die Zählrate über 30 sec. Starte die Messreihe im Abstand von 10 cm. Erhöhe den Abstand immer um 10 cm. Die Messreihe endet bei 80 cm. Trage die Impulse pro 30 sec. in einer Tabelle in Abhängigkeit vom Abstand ein und rechne diese in Impulse pro Sekunde um.</td>
</tr>
</tbody>
</table>

Skizze:

Hypothese: Gammastrahlung hat eine längere Reichweite als Alphastrahlung und Betastrahlung.

Messwerte:

<table>
<thead>
<tr>
<th>Abstand in cm</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zählrate in Imp/30s</td>
<td>21400</td>
<td>7477</td>
<td>3911</td>
<td>2287</td>
<td>1492</td>
<td>1096</td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td>713,3</td>
<td>249,2</td>
<td>130,4</td>
<td>76,2</td>
<td>49,7</td>
<td>36,5</td>
</tr>
<tr>
<td>Abstand in cm</td>
<td>70</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>775</td>
<td>617</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td>25,8</td>
<td>20,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deutung: Beschreibe den Verlauf der Punkte. Was kann über die Reichweite von γ-Strahlung mithilfe des Graphen festgehalten werden?

Skizze des Versuchsaufbaus für Protokoll 4:
Musterlösung von Versuchsprotokoll 5

Versuchsprotokoll: γ-Strahlung

<table>
<thead>
<tr>
<th>Forschungsziel:</th>
<th>Wir untersuchen γ-Strahlung auf ihr Durchdringungsvermögen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>Detektor, Co-60-Präparat, Blei-, Beton- und Eisen-Scheiben</td>
</tr>
<tr>
<td>Hypothese:</td>
<td>Gammastrahlung wird durch dicke Schichten abgeschirmt/ nicht abgeschirmt.</td>
</tr>
<tr>
<td>Skizze:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messwerte:</th>
<th>Dick in cm</th>
<th>5</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton</td>
<td>Zählrate in Imp/s</td>
<td>107,8</td>
<td>57,3</td>
<td>38,3</td>
<td>24,5</td>
<td>15,6</td>
<td>9,9</td>
<td>6,1</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>3235</td>
<td>1720</td>
<td>1149</td>
<td>735</td>
<td>470</td>
<td>298</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Blei</td>
<td>Zählrate in Imp/s</td>
<td>82,5</td>
<td>51,1</td>
<td>33,2</td>
<td>19,5</td>
<td>11,9</td>
<td>7,1</td>
<td>3,6</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>2475</td>
<td>1532</td>
<td>997</td>
<td>584</td>
<td>336</td>
<td>242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eisen</td>
<td>Zählrate in Imp/s</td>
<td>108,5</td>
<td>88,3</td>
<td>76,0</td>
<td>48,2</td>
<td>26,7</td>
<td>20,6</td>
<td>11,2</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>3255</td>
<td>2650</td>
<td>2279</td>
<td>1446</td>
<td>802</td>
<td>618</td>
<td>336</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswertung:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Bestimme die Halbwertsdicke.</td>
<td></td>
</tr>
</tbody>
</table>

Die Zählrate nimmt mit zunehmender Dicke ab. Blei schwächt γ-Strahlung am besten ab, da die Halbwertschichtdicke am kleinsten ist.
Skizze des Versuchsaufbaus für Protokoll 5:
A.5 Tafelbilder

Abbildung 21: Tafelbild: Festhalten wichtiger Eigenschaften der AR Umgebung und Wiederholung der Zusammensetzung der Strahlungsarten

Reichweite von α-, β- und γ-Strahlung

Messwerte

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Abstand in cm</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>Zählrate in Imp/s</td>
<td>713,3</td>
<td>249,7</td>
<td>130,4</td>
<td>76,2</td>
<td>49,7</td>
<td>36,5</td>
<td>25,8</td>
<td>20,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zählrate in Imp/30s</td>
<td>21400</td>
<td>7477</td>
<td>3911</td>
<td>2287</td>
<td>1492</td>
<td>1096</td>
<td>775</td>
<td>617</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

81
Durchdringung von β- und γ-Strahlung

Messwerte: β-Strahlung

<table>
<thead>
<tr>
<th>Polyethylen</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicke in cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>251</td>
<td>188</td>
<td>103</td>
<td>71</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td>8.4</td>
<td>6.3</td>
<td>3.4</td>
<td>2.4</td>
<td>1.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aluminium</th>
<th>0.05</th>
<th>0.1</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicke in cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>412</td>
<td>284</td>
<td>161</td>
<td>100</td>
<td>64</td>
<td>46</td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td>13.7</td>
<td>9.5</td>
<td>5.4</td>
<td>3.3</td>
<td>2.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Ergebnisse

- Die Zählrate nimmt mit zunehmender Dicke ab.
- Eine 0,2 dicke Aluminiumschicht schirmt β-Strahlung besser ab, als eine gleich dicke Schicht aus Polyethylen
- Aluminium schirmt also β-Strahlung besser ab.

Messwerte: γ-Strahlung

<table>
<thead>
<tr>
<th>Beton</th>
<th>5</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicke in cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>2980</td>
<td>1447</td>
<td>969</td>
<td>621</td>
<td>398</td>
<td>277</td>
<td>176</td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td>99.3</td>
<td>48.2</td>
<td>32.3</td>
<td>20.7</td>
<td>13.3</td>
<td>9.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Dicke in cm</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blei</th>
<th>2482</th>
<th>1531</th>
<th>1004</th>
<th>583</th>
<th>356</th>
<th>211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicke in cm</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>82.7</td>
<td>51.0</td>
<td>33.5</td>
<td>19.4</td>
<td>11.9</td>
<td>7.0</td>
</tr>
<tr>
<td>Zählrate in Imp/s</td>
<td>5.1</td>
<td>3.3</td>
<td>2.0</td>
<td>1.2</td>
<td>0.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eisen</th>
<th>2654</th>
<th>2168</th>
<th>1855</th>
<th>1333</th>
<th>743</th>
<th>575</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicke in cm</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Zählrate in Imp/30s</td>
<td>88.5</td>
<td>72.3</td>
<td>61.8</td>
<td>44.4</td>
<td>24.8</td>
<td>19.2</td>
</tr>
</tbody>
</table>

Ergebnisse

- Die Zählrate nimmt mit zunehmender Dicke ab.
- Halbwertsschichtdicke von Blei: 1,4 cm
- Halbwertsschichtdicke von Eisen: 3 cm
- Halbwertsschichtdicke von Beton: 8,6 cm
- Die Halbwertsschichtdicke von Blei ist am kleinsten. Blei schwächt γ-Strahlung am besten ab.

Abbildung 23: Tafelbild: Tabellen zur Untersuchung des Durchdringungsvermögens. In blau: Messwerte der Versuchsreihen aus Klasse 10b

1Eine 10. Klasse der Bismarckschule
Abbildung 24: Tafelbild: Festhalten wichtiger Eigenschaften der AR Umgebung und Besprechung der möglichen Versuche zur Untersuchung der 4 Präparate

<table>
<thead>
<tr>
<th>Abstand in cm</th>
<th>Zählrate in Imp/s Präparat 1</th>
<th>Zählrate in Imp/s Präparat 2</th>
<th>Zählrate in Imp/s Präparat 3</th>
<th>Zählrate in Imp/s Präparat 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>59</td>
<td>7200</td>
<td>1300</td>
<td>6000</td>
</tr>
<tr>
<td>10</td>
<td>0,6</td>
<td>0,5</td>
<td>90</td>
<td>650</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>10</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>5</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>3</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

| Strahlungsart | Alphastrahlung | Alphastrahlung | Betastrahlung | Gammastrahlung |

²Eine 10. Klasse der Bismarckschule
A.5.1 Analyse vom Unterricht

Multiple Choice Test

Abbildung 26: Multiple Choice Tests für den Stundenanfang als Abfrage des Vorwissens und am Stundenende als Lernzielkontrolle
Evaluationsbögen

Evaluation der Augmented Reality App

Nummer: Alter: Geschlecht:

Liegt eine Sehschwäche vor?

Hast du schon mal mit AR gearbeitet, wenn ja wo?

<table>
<thead>
<tr>
<th>Bewertete Aussagen</th>
<th>Trifft voll zu</th>
<th>Trifft nicht zu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Arbeit mit der App...</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>... hat Spaß gemacht.</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>... war abwechslungsreich.</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>... war spannend.</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>Die App ist einfach verständlich.</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>Das Aufnehmen der Messwerte war einfach.</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>Die Experimente in AR können reale Experimente ersetzen.</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐ ☐</td>
</tr>
</tbody>
</table>

War die App einfach zu bedienen? Wenn nein, warum nicht?

Beantworte die folgenden Fragen auf einer Skala von 1 – 5, wobei 5 am besten ist:

<table>
<thead>
<tr>
<th>Nur die Teilchen</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wie visuell ansprechend war die Visualisierung?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Haben die Visualisierungen geholfen, dein Verständnis von Strahlung zu verbessern?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nur Ausbreitung</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wie visuell ansprechend war die Visualisierung?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Haben die Visualisierungen geholfen, dein Verständnis von Strahlung zu verbessern?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alles zusammen</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wie visuell ansprechend war die Visualisierung?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Haben die Visualisierungen geholfen, dein Verständnis von Strahlung zu verbessern?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

| Das fand ich gut: | ☐ | ☐ | ☐ | ☐ | ☐ |

| Das könnte man besser machen: | ☐ | ☐ | ☐ | ☐ | ☐ |

Abbildung 27: Evaluation für die Bewertung der AR App
A.6 Unterrichtsskizze zur Untersuchung des Durchdringungsvermögens an der Helene-Lange-Schule

Tabelle 10: Unterrichtsskizze zur Untersuchung des Durchdringungsvermögens in der 10a an der Helene-Lange-Schule

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/Sozialform</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>Medien</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Begrüßung/Vorstellung</td>
<td>• begrüßt die Klasse • stellt sich vor • ordnet das Stundenthema in die Unterrichtseinheit Radioaktivität ein • stellt die Verhaltensregeln für den Umgang mit Tablets vor • informiert über das Stundenthema: Eigenschaften von Strahlung radioaktiver Stoffe</td>
<td>• stellen gegebenenfalls Rückfragen</td>
<td>• Plakat: Verhaltensregeln (siehe Anhang A.4.1)</td>
</tr>
<tr>
<td>10</td>
<td>Abfrage des Vorwissens</td>
<td>• verteilt die Fragebögen</td>
<td>• beantworten die Fragen</td>
<td>• Fragebögen (siehe 26)</td>
</tr>
<tr>
<td>5</td>
<td>Orientieren</td>
<td>• verteilt das Material • stellt Aufgabe Wir wollen mit der App die Reichweite und das Durchdringungsvermögen von der Strahlung radioaktiver Stoffe untersuchen. Dazu werden Messgeräte benötigt. Diese sind durch QR-Codes gegeben. Scannen diese ein und findet heraus, welcher QR-Code welches Gerät darstellt. Beschrif tet dann die QR-Codes.</td>
<td>• erkunden die AR Umgebung • beschriften die QR-Codes</td>
<td>• QR-Codes • Tablets</td>
</tr>
<tr>
<td>10</td>
<td>Erkenntnisse zusammenfassen</td>
<td>• hält Stichpunkte an der Tafel fest • weist auf wichtige Aspekte der App hin, siehe Abschnitt 3.3 • lässt die Visualisierungen erklären</td>
<td>• sammeln Eigenschaften der App • geben die Zusammensetzung und die Reichweite der Strahlungsarten wieder und erklären damit die Visualisierungen • erklären den Begriff Zählrate</td>
<td>• Tafelbild (siehe Abb. 21)</td>
</tr>
<tr>
<td>3</td>
<td>Durchführung besprechen</td>
<td>• erklärt, dass das Durchdringungsvermögen untersucht werden soll • stellt die Arbeitsblätter vor • stellt die Durchführung vor</td>
<td>• stellen Rückfragen</td>
<td>• Versuchsprotokoll 3 und 5 (siehe Anhang A.4.2)</td>
</tr>
</tbody>
</table>
Fortsetzung von Tabelle 10: Unterrichtsskizze zur Untersuchung des Durchdringungsvermögens in der 10a an der Helene-Lange-Schule

<table>
<thead>
<tr>
<th>Zeit in min.</th>
<th>Phase/Sozialform</th>
<th>Verhalten der Lehrkraft</th>
<th>Erwartetes Verhalten der Schüler*innen</th>
<th>Medien</th>
</tr>
</thead>
</table>
| 35 | Experimente (Ablauf nach Tabelle 6: Durchdringungsvermögen) | • gibt Hilfestellung
• weist auf abgestufte Lernhilfen hin | • stellen Hypothesen zum Versuchsaußgang auf
• führen die Versuche mit dem App durch und dokumentieren ihre Ergebnisse
• werten die Messdaten aus | Tablets
QR-Codes
Versuchsprotokoll 3 und 5 (siehe Anhang A.4.2)
abgestufte Lernhilfen (siehe Abschnitt 4.3.3) |
| 20 | Ergebnisse zusammentragen Schüler*innen-Kette | • fordert die Klasse auf, die Ergebnisse vorzustellen
• notiert die genannten Punkte an der Tafel | • stellen die Ergebnisse der Versuche vor
• vergleichen die Ergebnisse der einzelnen Versuche
• formulieren qualitative Aussagen zu den Versuchsergebnissen
• nutzen die kleine Halbwertschichtdicke von Blei als Argument für Blei als beste Abschwächung von Gammastrahlung | Tafelbild (siehe Abb. 23) |
| 15 | Arbeit mit der AR Umgebung evaluieren Einzel- oder Partnerarbeit | • verteilt die Evaluationsbögen
• verteilt die Lernzielkontrollen | • beantworten die Fragen
• besprechen sich gegebenenfalls mit ihrem Sitznachbarn | Evaluationsbogen (siehe Anhang Abb. 27)
Lernzielkontrolle (siehe Anhang Abb. 26) |
| 5 | Verabschiedung Frontalunterricht | • verabschiedet sich
• bedankt sich für die Mitarbeit | |
A.7 Statistiken der Multiple Choice Tests

A.7.1 Notenschlüssel

<table>
<thead>
<tr>
<th>Punkte</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>6</td>
</tr>
<tr>
<td>2-4</td>
<td>5</td>
</tr>
<tr>
<td>5-7</td>
<td>4</td>
</tr>
<tr>
<td>8-10</td>
<td>3</td>
</tr>
<tr>
<td>11-13</td>
<td>2</td>
</tr>
<tr>
<td>14-16</td>
<td>1</td>
</tr>
</tbody>
</table>

Statistik Klasse 10a

Notenspiegel

<table>
<thead>
<tr>
<th>Noten</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>∅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorher</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2,0</td>
</tr>
<tr>
<td>Nachher</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Fragenstatistik

<table>
<thead>
<tr>
<th>Frage 1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>4</td>
<td>18</td>
<td>21</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>7</td>
<td>21</td>
<td>20</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>16</td>
<td>72</td>
<td>84</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>28</td>
<td>84</td>
<td>80</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 2</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>20</td>
<td>15</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>18</td>
<td>18</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>80</td>
<td>60</td>
<td>16</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>72</td>
<td>72</td>
<td>8</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Die richtigen Antworten sind fett gedruckt.
Frage 3

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>nachher</td>
<td>21</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>in Prozent vorher</th>
<th>in Prozent nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>64 8 8 60 24</td>
<td>84 12 16 76 4</td>
</tr>
<tr>
<td>nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frage 4

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>20</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>nachher</td>
<td>22</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>in Prozent vorher</th>
<th>in Prozent nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>80 8 12</td>
<td>88 8 4</td>
</tr>
<tr>
<td>nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frage 5

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>3</td>
<td>0</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>nachher</td>
<td>0</td>
<td>1</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>in Prozent vorher</th>
<th>in Prozent nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>12 0 76 20</td>
<td>0 4 96 0</td>
</tr>
<tr>
<td>nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frage 6

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>nachher</td>
<td>1</td>
<td>0</td>
<td>22</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>in Prozent vorher</th>
<th>in Prozent nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>0 0 84 0 16</td>
<td>4 0 88 8 0</td>
</tr>
<tr>
<td>nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frage 7

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>nachher</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>in Prozent vorher</th>
<th>in Prozent nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>vorher</td>
<td>16 0 0 8 76</td>
<td>24 24 4 8 40</td>
</tr>
<tr>
<td>nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Statistik Klasse 10b

Notenspiegel

<table>
<thead>
<tr>
<th>Noten</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>∅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorher</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2,1</td>
</tr>
<tr>
<td>Nachher</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Fragenstatistik

<table>
<thead>
<tr>
<th>Frage 1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>23</td>
<td>21</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>79</td>
<td>72</td>
<td>69</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>86</td>
<td>86</td>
<td>79</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 2</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>14</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>16</td>
<td>24</td>
<td>2</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>48</td>
<td>69</td>
<td>17</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>55</td>
<td>83</td>
<td>7</td>
<td>28</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 3</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>19</td>
<td>8</td>
<td>13</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>25</td>
<td>8</td>
<td>15</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>66</td>
<td>28</td>
<td>45</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>86</td>
<td>28</td>
<td>51</td>
<td>38</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 4</th>
<th>A</th>
<th>B</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>27</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>26</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>93</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>90</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Frage 5</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Anzahl vorher</td>
<td>10</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>7</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>34</td>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>24</td>
<td>0</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 6</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>2</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>7</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 7</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>23</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>80</td>
<td>0</td>
<td>7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>97</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Statistik Klasse 10c

Notenspiegel

<table>
<thead>
<tr>
<th>Noten</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorher</td>
<td>1</td>
<td>20</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,2</td>
</tr>
<tr>
<td>Nachher</td>
<td>1</td>
<td>21</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Fragenstatistik

<table>
<thead>
<tr>
<th>Frage 1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>10</td>
<td>25</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>13</td>
<td>26</td>
<td>23</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>36</td>
<td>89</td>
<td>75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>46</td>
<td>93</td>
<td>82</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Frage 2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>nicht geantwortet</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------------------</td>
</tr>
<tr>
<td>Anzahl vorher</td>
<td>19</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>19</td>
<td>9</td>
<td>13</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>68</td>
<td>36</td>
<td>29</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>68</td>
<td>32</td>
<td>46</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 3</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>22</td>
<td>12</td>
<td>7</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>16</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>79</td>
<td>43</td>
<td>25</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>57</td>
<td>39</td>
<td>39</td>
<td>18</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 4</th>
<th>A</th>
<th>B</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>27</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>96</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 5</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>4</td>
<td>1</td>
<td>23</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>4</td>
<td>4</td>
<td>19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>14</td>
<td>4</td>
<td>82</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>14</td>
<td>14</td>
<td>68</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 6</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>0</td>
<td>1</td>
<td>27</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>1</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>0</td>
<td>4</td>
<td>96</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>4</td>
<td>7</td>
<td>89</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 7</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>21</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>18</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>75</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>64</td>
<td>4</td>
<td>11</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>
Statistik Klasse 11a

Notenspiegel

<table>
<thead>
<tr>
<th>Noten</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>∅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorher</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2,4</td>
</tr>
<tr>
<td>Nachher</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Fragenstatistik

<table>
<thead>
<tr>
<th>Frage 1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>11</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>56</td>
<td>44</td>
<td>75</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>69</td>
<td>50</td>
<td>63</td>
<td>13</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 2</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>7</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>50</td>
<td>44</td>
<td>50</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>44</td>
<td>94</td>
<td>6</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 3</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>11</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>15</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>69</td>
<td>6</td>
<td>25</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>94</td>
<td>13</td>
<td>50</td>
<td>44</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 4</th>
<th>A</th>
<th>B</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>12</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>88</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>75</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Frage 5</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Anzahl vorher</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>4</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>19</td>
<td>13</td>
<td>69</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>25</td>
<td>19</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 6</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>2</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>13</td>
<td>6</td>
<td>81</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>0</td>
<td>6</td>
<td>94</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frage 7</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>nicht geantwortet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl vorher</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl nachher</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent vorher</td>
<td>56</td>
<td>13</td>
<td>6</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>in Prozent nachher</td>
<td>75</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A.7.2 Statistik für die Evaluationsbögen

<table>
<thead>
<tr>
<th>Rubrik</th>
<th>Bejahende Stimmen in %</th>
<th>Neutrale Stimmen in %</th>
<th>Ablehnende Stimmen in %</th>
<th>Enthaltungen in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Arbeit mit der App hat Spaß gemacht.</td>
<td>56</td>
<td>78</td>
<td>51</td>
<td>70</td>
</tr>
<tr>
<td>Die Arbeit mit der App war abwechslungsreich.</td>
<td>18</td>
<td>19</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Die Arbeit mit der App war spannend.</td>
<td>22</td>
<td>3</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Die App ist einfach verständlich.</td>
<td>18</td>
<td>19</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Das Aufnehmen der Messwerte war einfach.</td>
<td>22</td>
<td>3</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Die Experimente in AR können reale Experimente ersetzten.</td>
<td>18</td>
<td>19</td>
<td>27</td>
<td>18</td>
</tr>
</tbody>
</table>
B Eigenständigkeitserklärung

„Ich versichere, dass ich die Arbeit selbständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen oder anderen Quellen entnommen sind, sind als solche kenntlich gemacht. Die schriftliche und die elektronische Form der Arbeit stimmen überein. Ich stimme der Überprüfung der Arbeit durch eine Plagiatsoftware zu.“

__________________________ _______________________
Ort, Datum Unterschrift