Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002 - Verlagerungen natürlicher Radionuklide

Dem Fachbereich Physik der Universität Hannover vorgelegte

Diplomarbeit

von Carsten Wanke geboren am 15. Februar 1977 in Stadthagen

Inhaltsverzeichnis

1	Ein	leitung	3
	1.1	Bergbau im Erzgebirge	3
	1.2	Frühere Untersuchungen	4
	1.3	Die Verdachtsfläche Lengenfeld	6
	1.4	Das Muldesystem	$\overline{7}$
	1.5	Das Hochwasser im August 2002	8
2	Auf	gabenstellung	9
3	Gru	ındlagen	11
	3.1	Radionuklide in der Umwelt	11
	3.2	Radioaktiver Zerfall und radioaktive Gleichgewichte	14
	3.3	Radioaktive Ungleichgewichte	17
		3.3.1 Ungleichgewichte zwischen U-238 und Ra-226	18
		3.3.2 Das Verhältnis der Aktivitäten von Ra-226 und Ra-224.	18
	3.4	Korngrößeneffekte	19
	3.5	Wechselwirkung von Gammastrahlung mit Materie	19
	3.6	Gammaspektrometrie mit Germanium-Detektoren	22
4	Exp	perimentelles	30
	4.1	Vorbereitung der Probenahme	30
	4.2	Probenahme	33
	4.3	Probenaufbereitung	35
	4.4	Kalibrierung	37
		4.4.1 Energiekalibrierung	37
		4.4.2 Halbwertbreitenkalibrierung	38
		4.4.3 Kalibrierung der Nachweiswahrscheinlichkeit	38
		4.4.4 Selbstabsorption	41
		4.4.5 Kalibrierstandards	42
	4.5	Auswertung	46
		4.5.1 Methode	46
		4.5.2 Messunsicherheiten	47

		4.5.3	Erkennungs-, Nachweis- und Vertrauensgrenzen bei Kern-	
			strahlungsmessungen	48
	4.6	Qualit	ätssicherung	52
		4.6.1	Ringvergleiche	52
		4.6.2	Parallelbestimmungen einzelner Proben	53
		4.6.3	Kalibrierung der ODL-Messgeräte	53
	4.7	Statist	sische Auswertung der Ergebnisse	56
5	Erg	ebnisse	e und Diskussion	59
	5.1	Ortsdo	osisleistung	59
	5.2	Mulde	system	63
		5.2.1	Freiberger Mulde	64
		5.2.2	Zwickauer Mulde	70
		5.2.3	Vereinigte Mulde	75
	5.3	Geoge	ne Punkte in den Verdachtsflächen	77
	5.4	Lenger	nfeld	79
6	Zus	ammei	nfassung und Ausblick	90
A	Kar	ten		92
в	Ver	wende	tes Excel-Blatt	99
\mathbf{C}	Tab	ellen		101
D	Lite	raturv	rerzeichnis	132
\mathbf{E}	Abk	ürzun	gsverzeichnis	138

Kapitel 1

Einleitung

Im Bereich der Elbe und der Mulde trat im August 2002 ein extremes Hochwasser mit Überflutungen großer Flächen auf, das in den Medien als "Jahrhunderthochwasser" bekannt wurde. Im Erzgebirge führten auch sonst kleine Bäche enorme Wassermassen. Betroffen waren dabei Gebiete, die hohe Belastungen mit Schwermetallen oder mit natürlichen Radionukliden aufweisen. Bereits in den neunziger Jahren des vergangenen Jahrhunderts gab es Untersuchungen zur Beurteilung der Schwermetall-, der Schadstoff- und der Radionuklidsituation im Erzgebirge und im Muldegebiet. Mit der Frage nach der heutigen Situation und den – insbesondere durch das Hochwasser verursachten – Veränderungen beschäftigt sich das Ad-Hoc-Projekt "Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002", in dessen Rahmen diese Arbeit durchgeführt wurde.

1.1 Bergbau im Erzgebirge

Bergbau wurde im Erzgebirge bereits im Mittelalter betrieben. So begann im Raum Freiberg im 12. Jahrhundert die Gewinnung von Silbererzen. Für viele Orte im Erzgebirge ist der Silberbergbau im 16. Jahrhundert belegt. Auch Kupfer, Zinn, Kobalt, Nickel und andere Buntmetalle wurden bis ins 20. Jahrhundert gefördert. Pechblende war in dieser Zeit schon bekannt. Sie wurde als Unglück bringend angesehen und häufig auf Abraumhalden abgelagert. Nach der wissenschaftlichen Entdeckung des Urans 1789 und der Untersuchung seiner Eigenschaften begann im Erzgebirge 1853 die Produktion von Uranfarben und der dazu notwendige Bergbau auf Uran. Nach der Entdeckung der Radioaktivität durch H. Bequerel 1896 und des Radiums durch M. Curie 1898 nahm die Gewinnung von Uranerzen zur Radiumproduktion zu [Sie96].

In der Folge der von O. Hahn und L. Meitner entdeckten Kernspaltung des

Urans entwickelte sich der moderne Uranbergbau. Dazu führte die Sowjetunion 1945 Such- und Erkundungsarbeiten in den nach dem Zweiten Weltkrieg besetzten Gebieten in Mitteleuropa durch, da die Urangewinnung aus sowjetischen Bergwerken nicht den Bedarf für die Entwicklung von Kernwaffen decken konnte. Besonders im Erzgebirge waren diese Erkundungen erfolgreich, so dass 1946 die "Sowjetische Aktiengesellschaft der Buntmetallindustrie – Wismut" (SAG Wismut) gegründet wurde, die 1954 in die "Sowjetisch-Deutsche Aktiengesellschaft Wismut" (SDAG Wismut) überging. Diese verwaltete die gesamte Erzförderung und -aufbereitung und alle daran beteiligten Betriebe. In der Zeit von 1946 bis 1990 wurden etwa 231 000 t Uran gewonnen [Wis02a]. Damit besaß die DDR in diesem Zeitraum die viertgrößte¹ Uranproduktion der Welt [Sie96]. Nach dem Beitritt der DDR zur Bundesrepublik Deutschland wurde 1991 die Einstellung der Uranproduktion beschlossen. Die SDAG Wismut ging in die Wismut GmbH über, die bis heute Sanierungmaßnahmen in den Objekten der Wismut durchführt, die zu Sanierungsbetrieben gehören. Diese Sanierungsbetriebe wurden bei Gründung der Wismut GmbH definiert, die übrigen Objekte der SDAG Wismut gingen in den Besitz von Land oder Kommunen über.

Insbesondere in der Zeit von 1946 bis etwa 1960 war die Produktion auf schnelle Gewinnung von Uran ausgerichtet und ohne Rücksicht auf Strahlenexposition der Beschäftigten oder Schädigung der Umwelt durchgeführt. Dieser Zeitraum wird auch als "Wilde Phase der Wismut" [Sie96] bezeichnet. Eine Vielzahl von Gebäuden, Anlagen, Halden und Flächen wurden in dieser Zeit ohne ausreichende Sanierungsmaßnahmen stillgelegt. Diese Objekte waren bereits Gegenstand früherer Untersuchungen (siehe Kapitel 1.2). Ob die Hochwasserereignisse durch diese Objekte bedingte Veränderungen in der Radionuklidsituation im Untersuchungsgebiet bewirkt haben, ist im Rahmen des Ad-hoc-Projektes zu untersuchen.

1.2 Frühere Untersuchungen

Untersuchungen zur Radionuklidsituation im System der Mulde und im Erzgebirge, die für diese Arbeit relevant sind, fanden bereits im Zeitraum von 1991 bis 1999 statt. Es handelt sich dabei um:

- Das Projekt "Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten – Altlastenkataster",
- das Projekt "Die Schwermetallsituation im Muldesystem" und
- das Projekt "Radionuklidbelastung von Sedimenten und Auenböden Datenerfassung, Erstauswertung, Ergebnisdarstellung"

¹nach den USA, der Sowjetunion und Kanada

Deren Ergebnisse bilden den Kenntnisstand über die Situation vor der Flut.

Das Projekt "Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten – Altlastenkataster" [Ett01] wurde von 1991 bis 1998 vom Bundesamt für Strahlenschutz (BfS) durchgeführt. Hauptziel des Projektes war die Identifikation von bergbaulichen Objekten und bergbaulich beeinflussten Flächen in Sachsen, Sachsen-Anhalt und Thüringen, für die radioaktive Kontaminationen nicht auszuschließen und Sanierungsmaßnahmen oder Nutzungsbeschränkungen in Erwägung zu ziehen waren. Sanierungsbetriebe der Wismut GmbH wurden nicht in die Untersuchungen einbezogen.

Nach Auswertung von Informationen über Uranerzbergbau und Altbergbau, bei dem Uran in signifikanten Konzentrationen vorkam, sowie Aero-Gamma-Messungen (Messungen bei Überfliegungen) wurden dazu 34 Verdachtsflächen (VF) definiert, bei denen radiologisch relevante Objekte erwartet werden konnten. Nach Durchführung von ODL-Messungen und Inspektionen der VF vor Ort konnten die Objekte bestimmt werden, die im Detail zu untersuchen waren. Schließlich wurden diese Untersuchungen durchgeführt, wobei flächendeckende ODL-Messungen, Untersuchungen von Boden-, Wasser- und Sedimentproben, Bohrungen, Biomedien sowie Messungen von Radon in der Luft vorgenommen wurden. Die Ergebnisse sind den Abschlussberichten zu den einzelnen VF, [Wic01a], [Küm02], [Dus01a], [Wic01b], [Dus03], [Dus02a], [Dus02b], [Dus01b], [Dus01d], [Dus01c], [Dus01e] und [Wic02], zu entnehmen.

Die Untersuchungen zum Projekt "Die Schwermetallsituation im Muldesystem⁴² wurden von 1991 bis 1994 von der Universität Hamburg und der TU Bergakademie Freiberg vorgenommen und 1999 veröffentlicht [Beu99]. Aufgaben war eine systematische Beurteilung der Belastung des gesamten Muldesystems mit anorganischen Schadstoffen. Hierzu wurden Wasser, Schwebstoff und Sediment beprobt und unter Anderem auf Radionuklide untersucht. Dabei konnte eine im Vergleich zur Freiberger Mulde deutlich höhere Uranfracht der Zwickauer Mulde und die Hauptquellen für diese Belastung festgestellt werden. Die Ergebnisse des Muldeprojektes bilden die Grundlage für die Beurteilung der Veränderungen der Radionuklidsituation in der Freiberger, Zwickauer und Vereinigten Mulde in dieser Arbeit.

Der Bericht "Radionuklidbelastung von Sedimenten und Auenböden – Datenerfassung, Erstauswertung, Ergebnisdarstellung" [Ges96] der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH und Beak Consultants GmbH fasst Untersuchungen über die Radionuklidsituation in Elbe, Muldesystem, Saale und Elster sowie deren Vorflutern zusammen. Die Untersuchungen wurden 1995 bis 1996 durchgeführt. Ziel war neben der Darstellung der Konzentrationen auch die Ableitung von Gesetzmäßigkeiten zum Verhalten der Radionuklide im Untersuchungsgebiet und deren Verteilungen.

 $^{^{2}}$ im Folgenden Muldeprojekt

1.3 Die Verdachtsfläche Lengenfeld

Die im Altlastenkataster definierte VF Lengenfeld liegt im Vogtlandkreis in Sachsen und gehört zum Regierungsbezirk Chemnitz. Die Verdachtsfläche wird durch die Göltzsch und deren Zuflüsse Plohnbach und Waldkirchener Bach entwässert. Die Göltzsch mündet in die Weiße Elster, die wiederum einen Zufluss zur Saale bildet, somit liegt die VF nicht im Einzugsgebiet der Mulde. Sie ist dennoch Gegenstand des Projektes, da aufgrund vorhandener Altlasten Untersuchungsbedarf besteht.

Lengenfeld war Standort einer von 1947 bis 1961 von der SAG/SDAG Wismut betriebenen Uranerz-Aufbereitungsanlage. Hier erfolgte die Verarbeitung von Uranerzen aus den Bergbaugebieten im Vogtland und im Raum Ronneburg. Die Aufbereitungsrückstände wurden auf verschiedene Halden verbracht oder in der Zeit um 1950 in ein Absetzbecken eingeleitet. Bei einem Starkregenereignis 1954 brach der Damm des Absetzbeckens, und Aufbereitungsrückstände (sog. Tailings) wurden durch den Plohnbach bis in den Lenkteich, einen Stauteich in Lengenfeld, transportiert. Dieser ist heute verlandet, die Tailingmassen liegen im Untergrund.

Abbildung 1.1: Blick auf den Lenkteich

Das Bett des Plohnbaches, das sich inzwischen in den verlandeten Lenkteich eingeschnitten hat, hat diese Tailingmassen freigelegt. Daher ist die Verlagerung von Tailings aus dem Lenkteich möglich.

Abbildung 1.2: Stauwehr des Lenkteiches

1.4 Das Muldesystem

Die Vereinigte Mulde mit ihren Quellflüssen Freiberger Mulde und Zwickauer Mulde ist ein linksseitiger Nebenfluss der Elbe. Das System aus Freiberger, Zwickauer und Vereinigter Mulde bildet das wichtigste Abflusssystem für das mittlere und westliche Erzgebirge in Richtung Norden. Es setzt sich in der südlichen Hälfte aus den zwei Teilsystemen Freiberger Mulde und Zwickauer Mulde zusammen. Die nördliche Hälfte bildet die Vereinigte Mulde, die aus dem Zusammenfluss von Freiberger und Zwickauer Mulde bei der Ortschaft Sermuth südlich von Grimma entsteht.

Das Muldesystem entwässert ein Gebiet von etwa 7600 km². Dieses wird im Süden begrenzt durch das Erzgebirge, im Osten durch die Wasserscheide zur Weißeritz und anderen linksseitigen Nebenflüssen der Elbe, im Westen durch die Wasserscheide zur Weißen Elster und zur Saale und im Norden bei Dessau durch den Elbelauf [Beu99].

Aufgrund der bergbaulichen Vergangenheit der Gebiete im Erzgebirge trägt die Mulde eine große Schwermetallfracht und gilt als der größte Einträger in die Elbe und in die Nordsee [Beu99].

1.5 Das Hochwasser im August 2002

Im August 2002 kam es zu einer besonderen meteorologischen Situation, die zu extremen Niederschlägen und schließlich zum Hochwasser im Gebiet der Mulde und der Elbe. Es traten Tiefdruckwirbel, sogenannte Fünf-B-Zyklone, auf, die große Mengen an Niederschlägen vom Mittelmeerraum nach Mitteleuropa transportierten. Von diesen Tiefdruckwirbeln, die im Normalfall nur im Winter auftreten, waren im Vorfeld der Flutereignisse bereits vier aufgetreten, die dazu führten, dass im Bereich des Erzgebirges die Böden derart mit Wasser angereichert waren, dass kein Bindungsvermögen für weitere Niederschläge bestand. Nun kam es zu einem fünften Tiefdruckgebiet, das zu flächendeckenden Starkregen mit Maxima von 300 mm vom 11. bis 13. August 2002 im Erzgebirge führte [Arb03], [Säc02].

In der Folge kam es in den Vorflutern und schließlich in der Mulde zum Hochwasser, in dessen Verlauf große Gebiete überschwemmt wurden. Hierzu gehörten auch Gebiete, die – wie zum Beispiel der Raum Bitterfeld – wegen der industriellen Vergangenheit ein hohes Potential an organischen Schadstoffen aufweisen oder Gebiete, die Schwermetalle oder natürliche Radionuklide freisetzen können. Für die Radionuklide ist insbesondere das Einzugsgebiet der Zwickauer Mulde, in dem ein Großteil der Uranförderung der SAG/SDAG Wismut stattfand, von Bedeutung.

Da sich in der Schadstoffsituation durch das Hochwasser Veränderungen ergeben haben können, die durch vorhandene Daten und Kenntnisse nicht abschätzen lassen, wurde vom Bundesministerium für Bildung und Forschung das Ad-Hoc-Projekt "Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002", Förderkennziffer 0330492, Laufzeit vom 01. September 2002 bis zum 31. März 2004, initiiert, um die durch das Hochwasser veränderte Situation zu erfassen und zu bewerten. Die Organisation des Projektes wurde dem Umweltforschungszentrum Leipzig-Halle (UFZ) übertragen. Mit dem Teilprojekt 3.9 – Verlagerungen natürlicher Radionuklide, in dessen Rahmen diese Arbeit angefertigt wurde, wurde die Universität Hamburg beauftragt. Diese führte die Bearbeitung in Zusammenarbeit mit dem Zentrum für Strahlenschutz und Radioökologie der Universität Hannover durch.

Kapitel 2

Aufgabenstellung

Die in dieser Diplomarbeit durchgeführten Untersuchungen sind Teil des Adhoc-Projektes "Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002" und gehören zum Teilprojekt 3.9 – Verlagerungen natürlicher Radionuklide.

Gegenstand des Projektes ist es, die durch die Flutereignisse verursachten Verlagerungen natürlicher Radionuklide im Gesamtsystem der Mulde zu erfassen und aus radiologischer Sicht zu bewerten. Dazu sollen an ausgewählten, bereits früher untersuchten Probenahmeorten im Bereich der Mulde Wasser, Schwebstoffe und Sedimente beprobt werden. Zusätzlich sollen Proben aus anliegenden Tailing-Becken und Halden untersucht werden. Die messtechnische Erfassung der natürlichen Radionuklide soll gammaspektrometrisch erfolgen. Die Beurteilung der Flutfolgen wird auf der Grundlage von früher im Bereich der Mulde gemessenen Daten zum Vorkommen natürlicher Radionuklide erfolgen.

Ziele des Projektes sind:

- Erfassung und Bewertung der Tailingabspülungen aus dem Lenkteich in Lengenfeld einschließlich der Erfassung und Bewertung ihrer Reichweite anhand der Radionuklidverteilungen in den Tailings.
- Erfassung und Bewertung der aktuellen Nuklidverteilung in den großen Vorflutern des Muldesystems.
- Untersuchung und Bewertung eventueller radioaktiver Ungleichgewichte der eingetragenen Materialien.
- Retrospektive Bewertung der Hochwasserwirkung unter Heranziehung von Fremddaten.

Im Rahmen dieser Diplomarbeit sollen das System aus Freiberger, Zwickauer und Vereinigter Mulde sowie die Verdachtsfläche Lengenfeld im Detail behan-

delt werden. Dazu soll in Zusammenarbeit mit einem weiteren Mitarbeiter des ZSR, der die übrigen in Kapitel 4.1 genannten Verdachtsflächen bearbeiten wird, und Mitarbeitern der Universität Hamburg eine Probenahme in den genannten Gebieten durchgeführt werden, die die Erfüllung der Zielsetzungen des Projektes ermöglicht. Die Proben sollen gammaspektrometrisch untersucht werden. Anhand der gemessenen Daten soll die aktuelle Radionuklidsituation im Bereich der Mulde und der Verdachtsfläche Lengenfeld dargestellt werden. Veränderungen im Vergleich zu früheren Untersuchungen sind aufzuzeigen und zu bewerten.

Kapitel 3

Grundlagen

3.1 Radionuklide in der Umwelt

Es gibt etwa 80 Radionuklide [Sie96], die in der Natur in messbaren Konzentrationen vorkommen. Dabei wird zwischen *kosmogenen* und *primordialen* sowie *radiogenen* Radionukliden unterschieden.

Die etwa 15 kosmogenen Radionuklide, die in der Natur in messbaren Konzentrationen vorkommen, werden in der Atmosphäre durch die Wechselwirkung der kosmischen Strahlung mit den Atomen der Luft gebildet. Die hochenergetische kosmische Strahlung verursacht dabei die sogenannte Sekundärstrahlung, die bis auf die Erdoberfläche vordringen kann. Diese Sekundärstrahlung kann zu Kernreaktionen führen, bei denen Radionuklide direkt als Spallationsprodukte, wie ³H, oder indirekt durch Reaktion mit sekundären Neutronen entstehen. Ein Beispiel hierfür ist ¹⁴N(n,p)¹⁴C. Die kosmogenen Nuklide haben im Vergleich zu primordialen kurze Halbwertszeiten.

Die primordialen Radionuklide wurden während der Nukleosynthese gebildet und besitzen so lange Halbwertszeiten, dass sie bis heute nicht vollständig zerfallen sind. Hierzu gehören Nuklide wie 238 U, 235 U und 232 Th, die den Anfang einer Zerfallsreihe bilden, und solche, deren Zerfall sofort zu einem stabilen Kern führt. Dies ist zum Beispiel bei 40 K der Fall.

Etwa 45 der natürlich vorkommenden Radionuklide gehören zu einer der Zerfallsreihen. Bei diesen sind die entstehenden Tochternuklide selbst wieder instabil. Die innerhalb einer Zerfallsreihe gebildeten Radionuklide heißen auch radiogen. In der Natur kommen drei Zerfallsreihen vor, die von ²³⁸U, ²³⁵U und ²³²Th ausgehen. ²³⁸U ist das Mutternuklid der sogenannten Uran-Radium-Reihe, die beim stabilen ²⁰⁶Pb endet. Diese wird auch (4n + 2)-Reihe genannt, da die Massenzahlen aller zur Zerfallsreihe gehörenden Nuklide durch 4n + 2 mit einer natürlichen Zahl n beschrieben werden können. Analog dazu wird

die von ²³⁵U ausgehende und beim ²⁰⁷Pb endende Uran-Actinium-Reihe auch (4n+3)-Reihe, die von ²³²Th ausgehende Thoriumreihe, die beim ²⁰⁸Pb endet, auch 4n-Reihe genannt. Die (4n+1)-Reihe enthält im Vergleich zu den anderen Zerfallsreihen nur relativ kurzlebige Nuklide und ist aufgrund der Halbwertszeit des Mutternuklids ²³⁷Np, die $2 \cdot 10^6$ Jahre beträgt, bereits ausgestorben.

Uran

Natürliches Uran besteht zu 99,27 % aus ²³⁸U und zu 0,72 % aus ²³⁵U sowie zu 0,0056 % aus ²³⁴U, das als Zwischenprodukt in der Uran-Radium-Reihe entsteht. Das Verhältnis ²³⁸U/²³⁵U≈137 in der Natur, das einem Aktivitätsverhältnis $A(^{238}U)/A(^{235}U)\approx 21$,7 entspricht, ist – mit Ausnahme fossiler Kernreaktoren wie Oklo – als konstant anzusehen. Die Halbwertszeit von ²³⁸U beträgt 4,468 · 10⁹ Jahre, die von ²³⁵U 7,038 · 10⁸ Jahre und die von ²³⁴U 2,455 · 10⁵ Jahre.

Uran kommt in der Erdkruste mit einem durchschnittlichen Gehalt von 3 ppm vor. Besonders hohe Gehalte von bis zu 20 ppm weist in Deutschland der Kirchberger Granit in Sachsen auf. Wie auch Thorium ist Uran wegen seines großen Ionenradius ein geochemisch inkompatibles Element. Der Ionenradius beträgt als U(IV) 10,5 nm und als U(VI) 8,0 nm, somit ist er deutlich größer als der der meisten gesteinsbildenden Elemente.

Uran tritt in der Natur im Wesentlichen in den Oxidationsstufen +IV und +VI auf. In Gesteinen ist es hauptsächlich in der vierwertigen Form vorhanden, die eine sehr geringe Löslichkeit aufweist. Bei der Oxidation entsteht zunächst Uran in der Oxidationsstufe +V als UO_2^+ , das nur bei sehr niedrigem Redoxpotential stabil ist und sonst zu U(VI) weiter oxidiert wird. Als Uranyl UO_2^{2+} bildet es leicht Komplexe, wobei als Liganden häufig Carbonat, Hydroxid, Phosphat und Sulfat vorkommen [Sie96]. Das Tricarbonatouranylat $(UO_2(CO_3)_3)^{4-}$ ist in praktisch allen Gewässern in Konzentrationen der Größenordnung 10^{-6} bis 10^{-5} g 1^{-1} vorhanden [Lie95]. Aus den äußeren Lagen von Gesteinen oder löslichen Mineralen kann Uran in Komplexform entfernt werden. Uran-Anreicherungen sind meistens durch chemische Ausfällung und Adsorption bedingt. Ursache hierfür ist ein Übergang zu reduzierenderem Milieu, pH-Wert oder Temperaturänderungen, wobei U(IV) aus U(VI) gebildet wird [Sie96].

Radium

Radium gehört zur Gruppe der Erdalkalimetalle, wobei es in seinen chemischen Eigenschaften dem Barium ähnelt. In der Th-Reihe treten die Isotope ²²⁴Ra mit einer Halbwertszeit $(t_{1/2})$ von 3,7 Tagen und ²²⁸Ra mit einer Halbwertszeit von 5,8 Jahren auf, in der U-Ra-Reihe das Isotop ²²⁶Ra $(t_{1/2}=1600 \text{ a})$,

und in der U-Ac-Reihe kommt das Isotop ²²³Ra mit einer Halbwertszeit von 11,4 Tagen vor. Für geologische Prozesse ist wegen seiner Halbwertszeit nur ²²⁶Ra von Interesse. In Gesteinen liegt Radium meist im Gleichgewicht mit seinen Mutternukliden vor, in Böden oder Sedimenten können geochemisch bedingte Ungleichgewichte auftreten. Radium ist als Chlorid gut löslich, als Sulfat und Carbonat dagegen nur sehr schwer. Deswegen wird es in der Natur meist nicht in gelöster Form transportiert, sondern mit schwerlöslichem (Ba, Ra)SO₄ mitgefällt. Die Tendenz zur Komplexbildung ist im Vergleich zu anderen Erdalkali-Metallen gering [Sie96].

Aus radiologischer Sicht von Bedeutung ist ²²⁶Ra, da es das Mutternuklid für das Edelgas ²²²Rn ist, das für einen großen Teil der natürlichen Strahlenbelastung verantwortlich ist.

Thorium

Thorium kommt in der Natur in allen drei Zerfallsreihen vor. Das Mutternuklid der Thorium-Reihe ²³²Th hat mit $1, 4 \cdot 10^{10}$ Jahren die längste Halbwertszeit. In dieser Zerfallsreihe tritt außerdem ²²⁸Th ($t_{1/2} = 1, 9$ a) auf. In der U-Ra-Reihe kommen ²³⁴Th ($t_{1/2} = 24, 1$ d) und ²³⁰Th ($t_{1/2} = 7, 5 \cdot 10^4$ a) vor, in der U-Ac-Reihe ²³¹Th und ²²⁷Th. Thorium zeigt einen stark lithophilen Charakter. Wie auch Uran kommt es in den Hauptmineralen nur mit wenigen ppm vor. Thorium ist ein geochemisch immobiles Element, da seine Verbindungen nur eine sehr geringe Löslichkeit zeigen. Der wichtigste Vorgang zur Verlagerung ist der Transport in Suspension durch feinkörnigen Gesteinsdetritus [Sie96].

K-40

Natürliches Kalium enthält neben den stabilen Isotopen 39 K und 41 K auch zu 0,0117 % das Radionuklid 40 K, das eine Halbwertszeit von 1,28 · 10⁹ Jahren besitzt. 40 K kann sich durch β^- -Zerfall in 40 Ca und durch Elektroneneinfang in 40 Ar umwandeln. Es besitzt eine charakteristische Gammalinie bei 1460,8 keV. Der Anteil des 40 K am natürlichen Kalium ist in der Natur als konstant anzusehen.

In der Natur ist Kalium ein weit verbreitetes Element. Es stellt ein wichtiges Kation bei der Bildung von Gesteinen dar, in Graniten und Tonsteinen kann der K-Gehalt bis zu 5 % betragen [Sie96]. Es nimmt sehr intensiv am biologischen Kreislauf teil und wird bevorzugt in Pflanzen eingebaut.

Cs-137

 $^{137}\mathrm{Cs}$ ist kein natürliches Radionuklid. Es ist heute jedoch durch die Freisetzungen aus oberirdischen Kernwaffentests in den 50er und 60er Jahren und

dem Reaktorunfall in Chernobyl 1986 praktisch überall in messbaren Konzentrationen vorhanden. ¹³⁷Cs ist ein reiner β^- -Strahler mit einer Halbwertszeit von 30,17 Jahren, der mit einer Wahrscheinlichkeit von 94,6 % in das kurzlebige ^{137m}Ba zerfällt, das wiederum mit einer Halbwertszeit von 2,5 Minuten unter Aussendung eines Gammaquants mit einer Energie von 661,7 keV in den Grundzustand übergeht. Mit einer Wahrscheinlichkeit von 5,4 % zerfällt ¹³⁷Cs direkt in ^{137g}Ba.

3.2 Radioaktiver Zerfall und radioaktive Gleichgewichte

Zerfallsgesetz

Radioaktiver Zerfall ist ein Prozess, der den Gesetzen der Statistik gehorcht. Betrachtet man genügend viele Atome für einen längeren Zeitraum, so findet man den Zusammenhang

$$-\frac{\mathrm{d}N}{\mathrm{d}t} = \lambda N,\tag{3.1}$$

wobei N die Anzahl der Atome darstellt. Die Zerfallsrate $-\frac{dN}{dt}$ ist die Aktivität, λ heißt Zerfallskonstante. Integriert man Gleichung (3.1), so ergibt sich

$$N(t) = N_0 \cdot \mathrm{e}^{-\lambda t}.\tag{3.2}$$

Mit der Definition $t_{1/2} = \frac{\ln(2)}{\lambda}$ ergibt sich die Halbwertszeit $t_{1/2}$. Dies ist die Zeit, nach der die Hälfte der zum Zeitpunkt t = 0 vorhandenen Kerne des betrachteten Nuklids zerfallen sind. Damit wird Gleichung (3.2) zu

$$N(t) = N_0 \cdot e^{-\frac{\ln(2)}{t_{1/2}} \cdot t}$$

= $N_0 \cdot \left(\frac{1}{2}\right)^{t/t_{1/2}}$ (3.3)

Radioaktive Gleichgewichte

Betrachtet man eine Zerfallskette

Nuklid 1 \rightarrow Nuklid 2 \rightarrow Nuklid 3,

so gilt für die Nettobildungsrate von Nuklid 2 (Tochternuklid):

$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = -\frac{\mathrm{d}N_1}{\mathrm{d}t} - \lambda_2 N_2 = \lambda_1 N_1 - \lambda_2 N_2. \tag{3.4}$$

Die Nettobildungsrate setzt sich also zusammen aus dem Zerfall von Nuklid 1 (Mutternuklid) abzüglich dem Zerfall des Tochternuklids. Diese Differentialgleichung hat die Lösung [Lie91]

$$N_2(t) = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1;0} (e^{-\lambda_1 t} - e^{-\lambda_2 t}) + N_{2;0} e^{-\lambda_2 t}, \qquad (3.5)$$

wobei $N_{1;0}$ und $N_{2;0}$ die Zahl der zur Zeit t = 0 vorhandenen Kerne des Mutterbzw. Tochternuklides sind. Unter der Annahme einer Trennung von Mutterund Tochternuklid zum Zeitpunkt t = 0 gilt $N_2(t = 0) = 0$. Damit wird Gleichung (3.5) zu

$$N_{2}(t) = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{1;0}(e^{-\lambda_{1}t} - e^{-\lambda_{2}t})$$
(3.6)

$$= \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1;0} \cdot e^{-\lambda_1 t} (1 - e^{-(\lambda_2 - \lambda_1)t})$$
(3.7)

$$= \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1(t) \cdot (1 - e^{-(\lambda_2 - \lambda_1)t}).$$
(3.8)

Wenn $N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1$ ist, so ist das Verhältnis N_2/N_1 konstant. Man spricht dann von einem radioaktiven Gleichgewicht.

Säkulares Gleichgewicht

Ist die Halbwertszeit des Mutternuklids viel größer als die des Tochternuklids, so stellt sich ein säkulares Gleichgewicht ein. Es ist dann $\lambda_1 \ll \lambda_2$, so dass $\lambda_2 - \lambda_1 \approx \lambda_2$ und $N_1(t) = N_1(0)$ praktisch konstant ist. Mit Gleichung (3.8) folgt dann

$$N_2(t) = \frac{\lambda_1}{\lambda_2} N_1 \left(1 - e^{-\lambda_2 t} \right).$$
(3.9)

Die Aktivität des Tochternuklids steigt also mit $1 - e^{-\lambda_2 t}$ an, bis sie nach genügend langer Zeit t gleich der (praktisch konstanten) Aktivität des Mutternuklids ist:

$$A_2 = \lambda_2 N_2 = \lambda_1 N_1 = A_1. \tag{3.10}$$

Mit $\lambda = \ln(2)/t_{1/2}$ ergibt sich

$$1 - e^{-\lambda_2 t} = 1 - e^{-\ln(2)\frac{t}{t_{1/2;2}}} = \nu.$$
(3.11)

Nach etwa 6 Halbwertszeiten beträgt ν etwa 97 % und liegt damit im Bereich der Messunsicherheiten. Daher kann nach dieser Zeit die Aktivität des Mutternuklids über die Aktivität des Tochternuklids bestimmt werden.

Transientes Gleichgewicht

Ist die Halbwertszeit des Mutternuklids zwar größer als die des Tochternuklids und somit $\lambda_1 < \lambda_2$, die Zerfallskonstante λ_1 aber gegenüber λ_2 nicht mehr vernachlässigbar klein, so gilt die Näherung $\lambda_2 - \lambda_1 \approx \lambda_2$ nicht mehr, und $N_1(t)$ kann nicht mehr als konstant angesehen werden. In diesem Fall stellt sich ein transientes Gleichgewicht ein. Es gilt dann Gleichung (3.8) mit $\lambda_2 - \lambda_1 > 0$, so dass nach genügend langer Zeit

$$N_2(t) = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1(t) \tag{3.12}$$

ist. Bei eingestelltem transienten Gleichgewicht nimmt also die Gesamtaktivität mit der Halbwertszeit des Mutternuklids ab, und das Verhältnis der Anzahl der Atome des Tochternuklids und der Anzahl der Atome des Mutternuklids ist (zu jeder Zeit t)

$$\frac{N_2}{N_1} = \frac{\lambda_1}{\lambda_2 - \lambda_1}.\tag{3.13}$$

Kein Gleichgewicht

Wenn $\lambda_1 > \lambda_2$ ist, so stellt sich kein radiaktives Gleichgewicht ein. Aus Gleichung (3.8) folgt, dass

$$\frac{N_2(t)}{N_1(t)} = \frac{\lambda_1}{\lambda_2 - \lambda_1} \left(1 - e^{-(\lambda_2 - \lambda_1)t} \right).$$
(3.14)

Das Verhältnis N_2/N_1 ist also nicht mehr konstant, da $\lambda_2 - \lambda_1 < 0$ ist und daher $1 - e^{-(\lambda_2 - \lambda_1)t}$ divergiert:

$$\lim_{t \to \infty} 1 - e^{-(\lambda_2 - \lambda_1)t} = \lim_{t \to \infty} 1 - e^{(\lambda_1 - \lambda_2)t} = -\infty.$$
 (3.15)

Mehrere aufeinander folgende Umwandlungen

Analog zu Gleichung (3.1) findet man für eine Zerfallskette

Nuklid 1 \rightarrow Nuklid 2 $\rightarrow \cdots \rightarrow$ Nuklid n

einen Satz von Differentalgleichungen:

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$

$$\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$$

$$\frac{dN_3}{dt} = \lambda_2 N_2 - \lambda_3 N$$

$$\vdots$$

$$\frac{dN_n}{dt} = \lambda_{n-1} N_{n-1} - \lambda_n N_n$$
(3.16)

Die Lösungen dieser Gleichungen finden sich in [Lie91]. Wenn die Halbwertszeit des Mutternuklids sehr viel größer ist als die der Tochternuklide, stellt sich (bei Abtrennung aller Tochternuklide zum Zeitpunkt t = 0) nach genügend langer Zeit t wiederum ein säkulares Gleichgewicht ein. Man findet dann

$$\frac{N_n}{N_1} = \frac{\lambda_1}{\lambda_n} \tag{3.17}$$

und somit

$$A_n = A_1. \tag{3.18}$$

Im radioaktiven Gleichgewicht kann damit die Aktivität des langlebigen Mutternuklids über die kurzlebigen Tochternuklide bestimmt werden.

Anwendungen

Eine Aktivitätsbestimmung unter Ausnutzung des säkularen Gleichgewichtes ist immer dann notwendig, wenn das interessierende Nuklid keine auswertbare Gammastrahlung aussendet oder die zur Auswertung vorgesehene Gammalinie durch ein anderes Nuklid gestört ist. Der erste Fall trifft auf die Nuklide ²³⁸U, ²²⁸Ra und ²²⁴Ra zu. Daher wird das langlebige ²³⁸U über ²³⁴Th und ^{234m}Pa bestimmt, ²²⁸Ra über ²²⁸Ac und ²²⁴Ra über ²¹²Pb und ²⁰⁸Tl.

Der zweite Fall trifft auf den Photopeak von ²²⁶Ra bei 186,1 keV zu, der von der ²³⁵U-Gammalinie bei 185,7 keV gestört ist. Da der Abstand beider Linien unterhalb des Auflösungsvermögens des Detektors liegt, können die Peaks nicht unterschieden werden. Daher wird die Aktivität des ²²⁶Ra in dieser Arbeit über die Tochternuklide ²¹⁴Pb und ²¹⁴Bi bestimmt.

3.3 Radioaktive Ungleichgewichte

Radioaktive Ungleichgewichte innerhalb einer Zerfallsreihe treten auf, wenn einzelne Nuklide durch geochemische oder technische Prozesse an- oder abgereichert werden. Für diese Arbeit von Bedeutung ist das (Un-)Gleichgewicht zwischen ²³⁸U und ²²⁶Ra, da dies Rückschlüsse auf vorherrschende Transportmechanismen zulässt. Weiterhin ist das Verhältnis zwischen ²²⁶Ra und ²²⁴Ra, das kein radioaktives Gleichgewicht im eigentlichen Sinne darstellt, für die Interpretation von Messdaten nötig.

3.3.1 Ungleichgewichte zwischen U-238 und Ra-226

Ungleichgewichte zwischen ²³⁸U und ²²⁶Ra im Bereich des geogenen Untergrundes sind bedingt durch das unterschiedliche Transportverhalten der beiden Nuklide. Während Uran in der sechswertigen Form gut löslich ist (siehe Kapitel 3.1), ist Radium als Sulfat ähnlich dem Bariumsulfat nur sehr schwer löslich. Eine Anreicherung von Uran deutet daher auf sekundäre Ausfällung hin, eine Abreicherung auf einen Austrag in gelöster Form. In Gesteinen ist ein radioaktives Gleichgewicht zu erwarten, da die Nuklide in die Matrix eingebaut und somit für längere Zeiträume nicht mobil sind.

Für Sedimente, die Nuklidgehalte oberhalb des geogenen Niveaus aufweisen, sind drei Fälle von Bedeutung.

Wenn ein radioaktives Gleichgewicht zwischen ²³⁸U und ²²⁶Ra herrscht, so ist dies auf das Vorhandensein von Erzresten aus dem Uranbergbau zurückzuführen. In diesen unbehandelten Erzen ist ein radioaktives Gleichgewicht zu erwarten (s.o.). Für solche Erzreste ist der Transport in partikulärer Form dominierend.

Es kann – wie im Bereich der Zwickauer Mulde vielfach beobachtet – die Aktivität von 238 U deutlich über der von 226 Ra liegen. Dies ist auf den Eintrag von Uran in gelöster Form zurückzuführen. Das Uran geht dabei unter oxidierenden Bedingungen in Lösung und wird unter reduzierenden Bedingungen ausgefällt (s.o.). Dies war häufig bei Einleitungen aus uranbergbaulichen Anlagen der Fall, ist nach dem Bau von Wasseraufbereitungsanlagen aber deutlich zurückgegangen.

Die dritte Möglichkeit ist das Vorkommen einer stark erhöhten Aktivität von ²²⁶Ra, die deutlich über der von ²³⁸U liegt. Dies deutet auf Tailingmaterialien, also Überreste aus der Uranerzaufbereitung hin. In diesem Fall wurde das Uran technisch aus dem Material abgetrennt. Diese Beobachtung ist bei Absetzanlagen zu beobachten. Hierbei ist ebenfalls partikulärer Transport vorherrschend.

3.3.2 Das Verhältnis der Aktivitäten von Ra-226 und Ra-224

Das Nuklid 224 Ra stammt aus der Zerfallsreihe des 232 Th und steht somit nicht im Zusammenhang mit der Zerfallsreihe des 238 U. Nach [Beu99] kann das Verhältnis der Aktivitäten beider Nuklide als Indikator für uranbergbaulichen Einfluss dienen. Es gibt keine Literaturhinweise darauf, dass Uran und

Thorium in den Gesteinen des Erzgebirges vergesellschaftet sind. Das natürliche Verhältnis zwischen ²²⁶Ra und ²²⁴Ra bleibt mit etwa 1,4 konstant (siehe Kapitel 5), solange kein weiteres ²²⁶Ra oder ²²⁴Ra verfügbar ist. Zusätzliches ²²⁶Ra deutet daher auf Uranerze hin. Anreicherungen von Thorium, die das ²²⁶Ra/²²⁴Ra Verhältnis beeinflussen könnten, sind für das Erzgebirge nicht bekannt [Ges96]. Daher deutet ein gegenüber dem natürlichen Verhältnis erhöhter Wert auf uranbergbaulich beeinflusste Sedimente hin.

3.4 Korngrößeneffekte

Untersuchungen im Rahmen des Projektes "Sedimente und Auenböden" belegen, dass die Korngröße des Sediments einen Einfluss auf die Radionuklidgehalte hat. So sind für den Vergleich zwischen "schluffig-schlammigen" Sedimenten $(<2 \,\mu\text{m})$ und "steinig-sandigen" Sedimenten (2 mm bis 63 μm) Unterschiede beobachtet worden, die eine Anreicherung im feinkörnigen Sediment bis zu einem Faktor 3 ausmachen. Für die in dieser Arbeit durchgeführten Untersuchungen wurde nur das Gesamtsediment $<2 \,\text{mm}$ untersucht. Daher kann nicht nach der Korngröße unterschieden werden. Proben mit einem höheren Anteil an Feinkorn können daher erhöhte Nuklidgehalte aufweisen. Dies ist insbesondere bei den später beschriebenen Proben in Petrischalen der Fall, da an diesen Probenahmestellen nur wenig Sediment vorgefunden wurde, das im Wesentlichen aus Schwebstoff bestand und daher sehr feinkörnig war.

3.5 Wechselwirkung von Gammastrahlung mit Materie

Die Gammaspektrometrie stellt eine schnelle, zerstörungsfreie Methode zur Untersuchung von Radionuklidgehalten in Proben dar. Im Gegensatz zur α und β -Spektrometrie ist keine aufwendige chemische Probenaufbereitung notwendig. Für die in dieser Arbeit durchgeführten Untersuchungen wurden ausschließlich Reinstgermanium-Halbleiterdetektoren eingesetzt, auf die in Kapitel 3.6 eingegangen wird. In diesem Kapitel werden die Effekte der Wechselwirkung von Gammastrahlung mit Materie dargestellt, die auch für den Nachweis der Gamma-Photonen mit Halbleiterdetektoren verwendet werden. Von Bedeutung sind dabei drei Effekte: der *Photoeffekt*, der *Compton-Effekt* und der *Paarbildungseffekt*. Dabei hängt es von der Energie des Photons ab, welcher der drei Effekte dominiert.

Abbildung 3.1: Relative Bedeutung der Wechselwirkungseffekte von Gammastrahlung mit Materie. Für die beiden Linien haben die benachbarten Effekte die gleiche Wahrscheinlichkeit. Die Abbildung stammt aus [Kno99].

Photoeffekt

Beim Photoeffekt wird die komplette Energie des Photons auf ein Elektron in der Hülle eines Atoms übertragen, das aus der Elektronenhülle herausgeschlagen wird. Der Photoeffekt stellt also einen Ionisierungsprozess dar. Die Energie E_e des sogenannten Photoelektrons ergibt sich zu

$$E_e = E_\gamma - E_B, \tag{3.19}$$

wobe
i E_B die Bindungsenergie des Photoelektrons ist. Das Photoelektron
stammt meist aus der K- oder L-Schale der Elektronenhülle des Atoms. Diese kann durch Elektronen aus höheren Schalen wieder aufgefüllt werden, hierbei entsteht charakteristische Röntgenstrahlung. Die Wahrscheinlichkeit τ für den Photoeffekt lässt sich empirisch angeben als

$$au \propto \frac{Z^{4...5}}{E_{\gamma}^{3.5}}.$$
 (3.20)

Die Wahrscheinlichkeit für den Photoeffekt nimmt also mit steigender Energie ab und mit höherer Kernladungszahl stark zu. Der Massenschwächungskoeffizient für den Photoeffekt zeigt dieselbe Abhängigkeit von Z und E_{γ} . Dies ist der Grund für die schwierige Selbstabsorptionskorrektur für niedrige Gammaenergien wie im Falle von ²¹⁰Pb, auf die in Kapitel 4.4.4 eingegangen wird.

Compton-Effekt

Der Compton-Effekt ist ebenfalls ein Wechselwirkungseffekt des Gammaquants mit einem Elektron der Hülle. Die Energie des Photons wird dabei aber nicht vollständig an das Elektron abgegeben, und das Photon gestreut. Das Elektron bezeichnet man dann als Compton- oder Rückstoß-Elektron, das gestreute Photon als Compton-Photon. Da Energie- und Impulserhaltung gelten, erhält man für die Energie E' des unter dem Winkel θ gestreuten Photons

$$E' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos(\theta))},$$
(3.21)

wobei E_{γ} die Energie des einfallenden Photons und $m_e c^2 = 511$ keV die Ruheenergie des Elektrons ist. Das Photon erfährt also nicht nur eine Richtungsänderung, sondern bedingt durch den Energieverlust auch eine Änderung der Wellenlänge. Für die Energie E_e des Compton-Elektrons ergibt sich

$$E_e = E_\gamma - E', \tag{3.22}$$

die maximale Energie $E_{e,\max}$ erhält es bei einem Streuwinkel $\theta = \pi$:

$$E_{e,\max} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos(\pi))}$$
$$= \frac{E_{\gamma}}{1 + 2\frac{E_{\gamma}}{m_e c^2}}.$$
(3.23)

Die Wahrscheinlichkeit σ für den Comptoneffekt hängt von der Anzahl der Elektronen in der Atomhülle und somit linear von der Kernladungszahl Z ab. Sie wird beschrieben durch

$$\sigma \propto \frac{Z}{E_{\gamma}}.\tag{3.24}$$

Paarbildungseffekt

Wenn die Energie des Photons die doppelte Ruhemasse des Elektrons $2m_ec^2 = 1022$ keV übersteigt, wird der Paarbildungseffekt energetisch möglich. Hierbei wird im Coulomb-Feld eines Atomkerns ein Elektron-Positron-Paar gebildet. Die über die Ruhemasse hinausgehende Energie des Photons wird dabei in kinetische Energie des Elektron-Positron-Paares umgewandelt. Das Positron zerstrahlt durch Kombination mit einem Elektron aus der Atomhülle unter Aussendung von 2 Photonen, die jeweils die Energie 511 keV besitzen. Diese sind im Gammaspektrum in Photopeaks bei 511 keV oder beim Nachweis beider Photonen bei 1022 keV zu sehen. Die Wahrscheinlichkeit für das Auftreten von Paarbildung ist bei Energien bis zu einigen MeV sehr gering, bei Energien $E_{\gamma}>10$ MeV ist Paarbildung der dominierende Wechselwirkungseffekt. Für die Wahrscheinlichkeit κ gilt, dass sie ungefähr proportional zum Quadrat der Kernladungszahl des Absorbers ist:

$$\kappa \propto Z^2$$
 (3.25)

3.6 Gammaspektrometrie mit Germanium-Detektoren

Für die durchgeführten gammaspektrometrischen Untersuchungen wurden ausschließlich Messsysteme mit Reinstgermanium-Detektoren eingesetzt. Diese mussten zum Teil am Standort "Am Kleinen Felde" ab- und am Standort "Herrenhausen" wieder aufgebaut und eingerichtet werden. Den prinzipiellen Aufbau eines solchen Messsystems zeigt Abbildung 3.2.

Abbildung 3.2: Aufbau eines Gammaspektrometrischen Messsystems

Alle Messsysteme bestehen aus folgenden Komponenten:

- Hochspannungsquelle (engl. high voltage, HV)
- Reinstgermanium-Halbleiter-Detektor (Det) mit Vorverstärker (VV)
- Linearverstärker (LV)
- Vielkanalanalysator mit Pufferspeicher (engl. *multi channel buffer*, MCB) und Analog-Digital-Wandler
- PC.

Das Kernstück aller Messsysteme bildet der Detektor. Dieser enthält einen Kristall aus hochreinem Germanium (engl. *high purity germanium*, HPGe), der ungefähr ein Fremdatom pro 10^{12} Germanium-Atome enthält. Das hochreine Germanium heißt p-Type- (oder π -type)Germanium, wenn die verbleibenden Fremdatome Elektronenakzeptoren sind, bei verbleibenden Donatoren spricht

man von n-type- bzw. ν -type-Germanium. Der Detektor wird wie eine Diode in Sperrichtung betrieben, so dass sich die an Ladungsträgern verarmte Zone praktisch über das gesamte Kristallvolumen ausbildet. Die am äußeren Kontakt entstehende Schicht, die nicht zur verarmten Zone gehört, nennt man auch Totschicht, die verarmte Zone aktives Volumen. Dringt ein Photon in den Detektor ein, so werden durch die bekannten Wechselwirkungseffekte (Photo- und Comptoneffekt sowie Paarbildung, siehe Kapitel 3.5) Elektron-Loch-Paare erzeugt, da Elektronen aus dem Valenz- in das Leitungsband angehoben werden. Für die Bildung eines Elektron-Loch-Paares ist bei der Betriebstemperatur von 77 K eine Energie von 2,96 eV notwendig, so dass ein Photon der Energie 1 MeV ungefähr 10⁵ Ladungsträger-Paare erzeugt. Dies ist ein Grund für die hervorragende Energieauflösung. Das im Kristall herrschende elektrische Feld sorgt für eine schnelle Trennung der Ladungsträger und somit für einen Impuls im Vorverstärker, der an seinem Ausgang dann einen Spannungsimpuls liefert. Zur Minimierung der Leckströme durch Ladungsträger, die aus thermischen Effekten stammen, wird der Detektor bei der Temperatur von flüssigem Stickstoff betrieben. Die Notwendigkeit für eine solche Kühlung stellt den gravierendsten Nachteil von Germanium-Detektoren dar. Eine Übersicht über die verwendeten Detektoren gibt Tabelle 3.1.

Der Linearverstärker führt nicht nur eine Verstärkung des vom Vorverstärker gelieferten Spannungsimpulses, sondern auch eine Impulsformung durch. Das Ergebnis ist ein nahezu gaußförmiger Impuls, dessen Pulshöhe proportional zur Energie des auslösenden Photons ist. Die Qualität des erhaltenen Gammaspektrums hängt wesentlich von der optimalen Einstellung des Linearverstärkers ab. Die Impulse des Linearverstärkers werden im MCB bezüglich ihrer Impulshöhe diskriminiert, hier wird somit eine analog-digital-Wandlung vorgenommen. Abhängig von der Impulshöhe wird dann ein Kanal zwischen 1 und 4096 zugeteilt, in dem der Zähler um eins erhöht wird. Die Zahlen in den einzelnen Kanälen bilden das Gammaspektrum, das über einen PC aus dem MCB ausgelesen und weiterverarbeitet werden kann. Der MCB vereinigt also die Bausteine Analog-Digital-Wandler, Vielkanalanalysator und Pufferspeicher.

Bei den durchgeführten Untersuchungen wurden Detektoren mit zwei unterschiedlichen Kristall-Geometrien verwendet: planar und koaxial. Diese besitzen unterschiedliche Charakteristika.

Planare Detektoren

Detektor Jenö ist ein planarer n-type Detektor. Der Kristall hat die Form einer flachen Scheibe, auf deren flachen Seiten die elektrischen Kontakte angebracht sind. Eine schematische Darstellung zeigt Abbildung 3.3. Der n⁺-Kontakt¹

 $^{{}^{1}}n^{+}$ bedeutet eine besonders stark n-dotierte Schicht, analoges gilt für p ${}^{+}$

Typ Hersteller Modell		\mathbf{Benno}	$\mathbf{J}\mathbf{osef}$	Jenö	K1	$\mathbf{K2}$	K3
Hersteller Modell 		n-Type, koaxial	p-Type, koaxial	n-Type, planar	p-Type, koaxial	n-Type, koaxial	n-Type, koaxial
Modell 		Ortec	Canberra	Canberra	Ortec	Canberra	Canberra
		GMX-30200-P	GX3018	GL2820R	GEM-40200-P	7229N	GR2818
Seriennummer		34-TN20508A	b 99154	b 97611	29-TP20009B	b 85559	b 95691
\mathbf{Bias}		-2500 V	+4500 V	-3000 V	+4000 V	-3500 V	-5000 V
Relative Efficiency		30%	30%		40%		28%
Länge des Kristall		$53,5 \mathrm{mm}$	$53,5 \mathrm{mm}$	$20 \mathrm{~mm}$			$59,5 \mathrm{mm}$
Durchmesser des 1	Cristalls	$59,9 \mathrm{mm}$	60 mm	60 mm			$53 \mathrm{mm}$
Fenster		$\operatorname{Beryllium}$	$\operatorname{Beryllium}$	Carbon-Epoxy	Aluminium	$\operatorname{Beryllium}$	Carbon-Epoxy
Totschicht		$0,3 \ \mu m$					
FWHM (1332 keV	-	1,8 keV	1,8 keV		$1,8 \mathrm{keV}$		$1,8 \mathrm{keV}$
FWHM (122 keV)			875 eV	750 eV	870 eV		920 eV
FWHM (59,5 keV)				660 eV			
Peak/Compton (1	32 keV)	48	58		62		60
		-					
Bias: am	Kristall and	liegende Hochspan	nung				
Relative Efficiency: Na	chweiswahrs	cheinlichkeit für di	ie 1332-keV-Linie v	von ⁶⁰ Co			
rel	tiv zu einer	$m 3$ " $\times 3$ "-NaI-Detek	ctor				
Totschicht: Scl	ichtdicke $d\epsilon$	ss inaktiven Germa	ums				
FWHM: Ha	bwertbreite	eines Peaks bei de	er angegebenen En	iergie			
Peak/Compton: Ve	hältnis der	Höhe des Photope.	aks zu der des Cor	mptonuntergrunde	s bei der angegebe	nen Energie	

Tabelle 3.1: Verwendete HPGe-Detektoren

Abbildung 3.3: Aufbau eines planaren Detektorkristalls. Die Abbildung stammt aus [Kno99]

wird durch Lithium-Diffusion oder Implantation von Donoratomen mit Hilfe eines Beschleunigers hergestellt. Der p⁺-Kontakt wird durch Implantation von Akzeptoratomen oder durch eine aufgebrachte Metallschicht realisiert. Während die Herstellung von p⁺-Kontakten durch Ionenimplantation technisch leicht durchzuführen ist, können bei der Herstellung von n⁺-Kontakten mit diesem Prozess durch Strahlungsschäden Akzeptoren entstehen. Daher wird für die Herstellung von n⁺-Kontakten meist Lithium-Diffusion verwendet. Durch die Ionenimplantation können sehr dünne Kontaktflächen erzeugt werden, die zu sehr geringen Totschichten führen. Diese kann von niederenergetischer Gammastrahlung sehr gut durchdrungen werden. Solche Detektoren sind daher besonders gut für den Nachweis niederenergetischer Photonen geeignet. Durch Lithium-Diffusion erzeugte Totschichten sind bedeutend größer. Aufgrund des geringen Kristallvolumens von etwa 10 bis 30 cm³ [Kno99] eignen sie sich jedoch nicht zum Nachweis von Gammastrahlung mit höherer Energie.

Koaxiale Detektoren

Um größere Kristallvolumina herzustellen, geht man zu einer koaxialen Geometrie über. Hierbei wird in einen zylindrischen Germaniumkristall eine Bohrung eingebracht. Die elektrischen Kontakte werden auf der äußeren Fläche sowie in der Bohrung im Inneren angebracht. Den schematischen Aufbau zeigt Abbildung 3.4. Da der Kristall in axialer Richtung auf diese Weise sehr lang gemacht werden können, sind größere aktive Volumina von bis zu 750 cm³ [Kno99] realisierbar. Als koaxiale Detektoren sind n-type- und p-type-Detektoren erhältlich, die sich in ihren Eigenschaften unterscheiden. Für die Herstellung von p-type-Detektoren wird π -type-Germanium verwendet und der n⁺-Kontakt auf der Außenseite aufgebracht. Für n-type-Detektoren nimmt man ν -type-Germanium und bringt den p⁺-Kontakt auf der Außenseite an. Dies führt dazu, dass n-type-Detektoren im Allgemeinen besser für den Nachweis niederenergetischer Gammastrahlung geeignet sind, da die äußere Totschicht eines

Abbildung 3.4: Schnitt durch einen koaxialen p-type- bzw. n-type-Detektor. Die Abbildung stammt aus [Kno99]

p⁺-Kontakts wesentlich geringer ist als die eines durch Lithium-Diffusion erzeugten n⁺-Kontakts. Zusätzlich besitzen die Detektoren K2 und Benno Eintrittsfenster in der Detektorkappe aus Beryllium, die Detektoren K3 und Josef solche aus Kunststoff. Diese sind wegen der niedrigen Kernladungszahlen des verwendeten Materials für Gammastrahlung niedriger Energie gut zu durchdringen.

Nulleffekt

Der Nulleffekt des Detektors ist von Bedeutung für die Bestimmung der vergleichsweise niedrigen Aktivitäten der in dieser Arbeit untersuchten Proben sowie für die Berechnung der charakteristischen Grenzen (siehe Kapitel 4.5.3). Nach [Kno99] setzt sich die Untergrundstrahlung aus fünf Quellen zusammen:

- 1. Radioaktives Material in den Detektorkomponenten
- 2. Natürliche Radioaktivität in der Detektorabschirmung und der Umgebung des Detektors
- 3. Terrestrische Strahlung, Strahlung aus den Baumaterialien
- 4. Radioaktive Stoffe in der Luft
- 5. Primäre und sekundäre kosmische Strahlung

Sämtliche Detektoren sind zur Verringerung des Nulleffektes in Bleiburgen eingebaut. Hierbei wird für den Detektor Benno eine im ZSR hergestellte Bleiburg verwendet, alle anderen Detektoren sind in kommerzielle Bleiburgen aus speziellem low-level-Blei eingebaut. Sämtliche Bleiburgen umfassen jeweils den Detektorkopf, nicht aber das Dewar-Gefäß für den flüssigen Stickstoff. Der Nulleffekt wurde regelmäßig bestimmt, um mögliche Kontaminationen des Detektors zu erkennen. Die Zählraten des Nulleffektes sind relativ konstant [Vah04]. Es sind alle in dieser Arbeit bestimmten natürlichen Radionuklide auch im Nulleffektspektrum vorhanden, so dass die Nulleffekt-Zählraten bei der Aktivitätsberechnung zu berücksichtigen sind. Ein typisches Nulleffektspektrum zeigt Abbildung 3.5.

Abbildung 3.5: Nulleffektspektrum für Detektor Benno, Messzeit 10 Tage.

Auswertung von Gammaspektren

Die aus dem MCB erhaltenen Gammaspektren setzen sich zusammen aus einem Kontinuum, dem Peaks überlagert sind. Das Kontinuum besteht aus dem Compton-Untergrund sowie im niederenergetischen Bereich aus der Bremsstrahlung der β -zerfallenden Nuklide. Der Compton-Untergrund enthält alle Ereignisse aus den im Detektor stattfindenden Compton-Streuungen. Diesem Untergrund sind verschiedene Peaks überlagert. Hierzu gehören neben den Photopeaks der Gammalinien auch so genannte Single-Escape- und Double-Escape-Peaks, die Annihilationslinie bei 511 keV und der Rückstreupeak sowie im niederenergetischen Bereich charakteristische Röntgenlinien. Ein Single-Escape-Peak kann beim Prozess der Paarerzeugung entstehen, wenn eines der beiden Photonen, die durch die Vernichtung des Positrons entstehen, den Detektor verlässt. Ein Double-Escape-Peak entsteht, wenn beide Photonen den Detektor verlassen. Single- und Double-Escape-Peaks sind bei Energien zu finden, die 511 keV bzw. 1022 keV unter der Energie der ursprünglichen Gammalinie liegen. Die Annihilationslinie bei 511 keV entsteht ebenfalls durch die Vernichtung eines Positrons. Hierbei wird ein außerhalb des Detektors entstehendes Photon nachgewiesen. Ein Rückstreu-Peak tritt auf, wenn Photonen den Detektor verlassen und von Außen zurückgestreut werden. Hierbei handelt es sich nicht um einen scharfen Peak, sondern um eine breitere Verteilung.

Abbildung 3.6 zeigt ein Kalibrierspektrum für den Detektor Benno. In der Abbildung deutlich zu erkennen sind die Compton-Kanten, die den maximalen Energieübertrag beim Compton-Effekt markieren (CK markiert die Compton-Kante der 1836,1-keV-Linie), der Double-Escape-Peak der 1836,1-keV-Linie von ⁸⁸Y (DE), der bei etwa 814 keV liegt und der Single-Escape-Peak derselben Linie (SE), der bei etwa 1325 keV liegt.

Abbildung 3.6: Kalibrierspektrum für Detektor Benno. Verwendet wurde die Multinuklidmischung QCY48 in Quarzsand, Marinelli-Geometrie. Messzeit 12 Stunden.

Für die Auswertung der Gammaspektren wurde das Analyseprogramm GAMMAW der Firma Dr. Westmeier Gesellschaft für Kernspektrometrie mbH,

Ebsdorfergrund-Mölln verwendet. Es ermöglicht die Auswertung von Gammaspektren durch Anpassung mathematischer Funktionen an die gemessenen Peaks und analytische Berechnung des Untergrundes. Das erlaubt die Entfaltung sich überlappender Peaks. Die halbautomatische Auswertung von Spektren ist mit diesem Programm ebenfalls möglich. Das Programm liefert sowohl die Peakfläche und den Untergrund als auch die zugehörige $1-\sigma$ -Unsicherheit. Weiterhin wurde gelegentlich das im ZSR entwickelte Programm SPEKANA für eine schnelle Übersicht über die Spektren benutzt. Peakentfaltung und -anpassung sind mit diesem Programm nicht möglich.

Kapitel 4

Experimentelles

4.1 Vorbereitung der Probenahme

Die durchgeführten Untersuchungen fanden im Rahmen des Teilprojektes 3.9 "Verlagerung natürlicher Radionuklide" des Ad-hoc-Projektes "Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002" ("Flutfolgenprojekt") statt. Gegenstand des Teilprojektes ist die Erfassung und Bewertung der durch die Flut verursachten Verlagerungen natürlicher Radionuklide. Hierzu sollten an ausgewählten, bereits im Rahmen der Untersuchungen zum Altlastenkataster [Ett01] und zum Muldeprojekt [Beu99] beprobten Stellen im Bereich der Freiberger, Zwickauer und Vereinigten Mulde sowie der Verdachtsflächen, die die Quellen der Kontaminationen des Muldesystems darstellen, Wasser, Schwebstoffe und Sedimente beprobt werden. Eine erste Besprechung zur Vorbereitung des Projektes wurde am 31. Januar 2003 im Bundesamt für Strahlenschutz (BfS) in Berlin durchgeführt. Hier wurden folgende 14 Verdachtsflächen vom BfS vorgeschlagen:

- 1. Annaberg-Buchholz (VF 18^1)
- 2. Bärenstein (VF 18A)
- 3. Filzteich (VF 14)
- 4. Freiberg (VF 20A)
- 5. Freital (VF 21)
- 6. Gottesberg-Schneckenstein (VF 13)
- 7. Lengenfeld (VF 9)
- 8. Marienberg (VF 19)

¹Die Bezeichungen der Verdachtsflächen sind dem Altlastenkataster entnommen

- 9. Mühlbach-Maxen (VF 27)
- 10. Oberrothenbach (VF 12)
- 11. Pobershau (VF 20)
- 12. Pöhla (VF 17)
- 13. Schneeberg-Aue (VF 15)
- 14. Zwickau (VF 11)

Die Lage der Verdachtsflächen in Sachsen zeigt Abbildung 4.1.

Abbildung 4.1: Lage der Verdachtsflächen in Sachsen. Die Karte wurde [Dus02b] entnommen.

In diesen Verdachtsflächen sollten repräsentativen Stellen in den Vorflutern der VF im An- und Abstrom beprobt werden. Desweiteren war an jedem Probenahmeort die Photonen-Äquivalentdosisleistung (ODL, Ortsdosisleistung) zu ermitteln. Grundsätzlich sollte, insbesondere im Bereich der Mulde, so beprobt werden, dass sich eine möglichst große Übereinstimmung mit den früheren Probenahmen des Muldeprojektes und des Altlastenkatasters ergibt.

Am 24. und 25. Februar 2003 fanden die nächsten Vorbesprechungen im Landesamt für Umwelt und Geologie Sachsen (LfUG) in Dresden und in der TU Bergakademie Freiberg, AK Prof. Klemm statt.

Beim LfUG wurde als Schwerpunkt der Untersuchungen die VF Lengenfeld benannt, was die im BfS getroffene Festlegung bestätigt; auf Wunsch des LfUG wurde die Verdachtsfläche Mechelgrün-Zobes ebenfalls in die Liste der zu beprobenden Gebiete aufgenommen. Auf die Beurteilung des geogenen Hintergrundes natürlicher Radionuklide soll ebenfalls Wert gelegt werden. Am 26. Februar fand mit einem Mitarbeiter des LfUG eine Ortsbegehung ausgewählter bergbaulicher Altlasten in den Verdachtsflächen Lengenfeld, Mechelgrün-Zobes, Gottesberg-Schneckenstein und Freital statt.

Auf der Besprechung in der TU Bergakademie Freiberg wurde die Probenahmetechnik diskutiert. Man beschloss, nur Oberflächensediment zu verwenden, zu dessen Gewinnung eine verlängerte Schöpfkelle verwendet werden sollte. Das geschöpfte Sediment wird dann, um nur die Anteile <2 mm zu erhalten, gesiebt und in 2-1-Weithalsflaschen abgefüllt. Da in einem anderen Teilprojekt von der Bergakademie Freiberg regelmäßig Wasser, Schwebstoff und Sedimente beprobt werden, wurde die Teilnahme an einer solchen Probenahme zum Erlernen der Techniken angeboten.

Diese gemeinsame Probenahme fand am 27. März 2003 statt. Bereits am 26. März wurden einige Verdachtsflächen in der Nähe von Freiberg angefahren. Hierbei wurde die Tauglichkeit der Navigation mit Hilfe von einem tragbaren GPS-Empfänger gekoppelt mit einem Notebook und der digitalen topographischen Karte TOP50 [Lan01b] getestet. Es zeigte sich, dass die Punkte auf diese Art und Weise gut aufzufinden waren. Die digitalen Karten erlauben dabei die Markierung der Probenahmepunkte durch Eingabe der Koordinaten aus dem Altlastenkataster und dem Muldeprojekt. Alle angefahrenen Punkte ließen sich mit dem PKW gut erreichen.

Die gemeinsame Probenahme am 27. März 2003 umfasste die Punkte ZM5AU², ZM81HS, ZM12ZP und ZM16GC. An jedem Probenahmepunkt wurden Wasser und Sediment beprobt. Die Wasserproben wurden dabei vor Ort über ein Glasfaserfilter und ein Zellulosefilter, Porengröße jeweils 0,45 µm, filtriert. Es zeigte sich, dass dies einen erheblichen Zeitaufwand darstellt. An allen vier Probenahmepunkten wurden von der TU Bergakademie Freiberg Sedimentfallen ausgebracht, die die Untersuchung des frischen, schwebstoffbürtigen Sediments erlauben. Die Anlage solcher Sedimentfallen im Rahmen der Untersuchungen in unserem Teilprojekt erwies sich aber aufgrund der geringen Sedimentausbeute nicht als lohnenswert, und Untersuchungen solchen Sedimentes können

 $^{^2 {\}rm Die}$ Bezeichnungen der Probenahmepunkte entstammen dem Muldeprojekt [Beu
99]. Zur Lage der Punkte siehe Karte A.3

unsere Untersuchungen allenfalls ergänzen. Hierzu ist jedoch die Überlassung von Probenmaterial durch die TU Bergakademie Freiberg notwendig.

4.2 Probenahme

Die Probenahme fand vom 05. Mai 2003 bis zum 04. Juni 2003 statt. Während dieser Zeit wurden 220 Punkte aufgesucht,

- die in früheren Untersuchungen als repräsentativ für den geogenen Untergrund benannt wurden,
- die im An- oder Abstrom möglicher Kontaminationsquellen liegen oder
- für die Auffälligkeiten oder Veränderungen zu erwarten waren.

Insgesamt wurden 183 Sedimentproben mit einem Gesamtvolumen von 770 l genommen. Die Differenz zwischen der Anzahl der ausgewählten Punkte und der Zahl der Sedimentproben entsteht, da nicht an allen aufgesuchten Orten eine Probenahme möglich war und zum Teil Mischproben über zwei oder mehr geplante Punkte genommen wurden.

Das Aufsuchen der Probenahmeorte geschah mit Hilfe eines GPS-Empfängers, der auf die im Altlastenkataster vermerkten Koordinaten programmiert war. Für die Punkte aus dem Muldeprojekt wurden fehlerhafte Koordinaten geliefert, die in vielen Fällen offensichtlich nicht zu den tatsächlich beprobten Punkten gehörten. Das Auffinden der bereits früher beprobten Orte war daher anhand der Koordinaten nicht immer fehlerfrei möglich. Diese wurden daher in Begleitung von Frau A. Greif von der TU Bergakademie Freiberg, die auch an den Untersuchungen zum Muldeprojekt teilgenommen hat und daher die früher beprobten Orte kannte, aufgesucht. Abbildung 4.2 zeigt die Lage der Probenahmepunkte in Sachsen und dem angrenzenden Sachsen-Anhalt.

Vor Ort wurden zunächst, soweit möglich, die Temperatur, der pH-Wert, das Redox-Potential ($E_{\rm H}$ -Wert), die Temperatur sowie der Sauerstoffgehalt des Wassers mit tragbaren Messgeräten der Firma WTW bestimmt. Weiterhin fand eine Messung der Photonen-Äquivalentdosisleistung an der Probenahmestelle statt. Die hierfür verwendeten Geräte finden sich in Tabelle C.11 im Anhang. Die Messgeräte vom Typ FH 40 G-L erlauben die Vorwahl einer bestimmten Anzahl von Impulsen, die bei der Messung erreicht werden muss. Nach Registrierung der vorgewählten Impulszahl, in diesem Fall 500 Impulse, wird automatisch der gemittelte Wert der ODL angezeigt. Das Gerät FH 40 F2 erlaubt diese automatische Zählung nicht, so dass für dieses Gerät 20 Einzelwerte im Abstand von 30 s aufgenommen wurden, über die gemittelt wurde. Diese nicht um die kosmische Komponente der Strahlung korrigierten Messwerte finden sich im Anhang. Aufgrund der Ausfälle verschiedener Messgeräte während der Probenahmekampagne sind nicht für alle Probenahmeorte

Abbildung 4.2: Probenahmepunkte in Sachsen und Sachsen-Anhalt

sämtliche Parameter vorhanden. Die genauen Koordinaten des Ortes wurden mit dem GPS-Empfänger bestimmt.

Für die Entnahme des Sediments wurde ein Schöpfer verwendet, der aus einer verlängerten Kunststoff-Kelle bestand. Mit diesem Schöpfer wurde Material aus den oberen 2 bis 3 cm der Sedimentschicht³ entnommen, wobei an jedem Probenahmeort eine Mischprobe über den Gewässerabschnitt genommen wurde. Durch Siebung über ein handelsübliches Küchensieb in 2-l-Weithals-PE-Flaschen⁴ wurden Bestandteile >2 mm entfernt. Ziel war die Entnahme von 4 l Feuchtsediment an jedem Probenahmeort, was an den meisten Stellen erreicht werden konnte.

Für Untersuchungen der Universität Hamburg wurde jeweils eine Wasserprobe von 2 l genommen; diese wurden abends im Laborwagen weiter bearbeitet: Jede Wasserprobe wurde über ein Glasfaser- und ein Zellulosefilter (Porenweite jeweils 0,45 µm) filtriert, Aliqoute wurden genommen und die Konzentrationen an Nitrit, Nitrat, Phosphat sowie Ammonium photometrisch bestimmt. Aufgrund des anfänglichen Einsatzes ungeeigneter Küvetten sind verlässliche Ergebnisse der Photometrie nur für die Proben der beiden letzten Wochen vorhanden.

4.3 Probenaufbereitung

Von den im Kühlhaus bei 4 °C gelagerten Proben wurde jeweils eine 2-l-Kautex-Flasche mit Sediment entnommen, das restliche Material als Rückstellprobe aufbewahrt. Zur Reduktion des hohen Wasseranteils wurde das Feuchtsediment im ersten Schritt in ca. 30 cm \times 50 cm großen Kunststoffwannen auf dem Dachboden des Institutes vorgetrocknet, bis das überstehende Wasser verdunstet war. Da dies im Sommer bei entsprechenden Temperaturen auf dem Dachboden stattfand, wurden vertretbare Trockenzeiten von etwa einer Woche je Probe erreicht. Diese Vortrocknung war notwendig, da eine Trocknung im Trockenschrank mit einer extremen, durch den hohen Organik- und Fäkalanteil nicht vertretbaren Geruchsbelastung geführt hätte. Danach wurde das Sediment in Aluminiumschalen überführt und im Trockenschrank bei 105 °C für mindestens 24 Stunden bis zur Gewichtskonstanz getrocknet.

Das jetzt trockene Sediment wurde in einer Scheiben-Schwing-Mühle vom Typ RETSCH RS-1 gemahlen und auf $<200 \ \mu m$ gesiebt. Dies war notwendig, damit innerhalb der Messgeometrie eine möglichst einheitliche Schüttdichte erzielt werden konnte.

Als Messgefäße waren 500-ml-Ringschalen, sogenannte Marinelli-Becher, vorgesehen, die bis zum Füllstrich 560 ml fassen. Diese haben den Vorteil, dass

 $^{^{3}\}mathrm{Die}$ Messanleitungen [Mun00] erlauben die Entnahme bis 10 cm.

⁴Im Folgenden auch Kautex-Flasche
eine große Menge an Probe in Detektornähe platziert werden kann; hierbei kann die Gammastrahlung nicht nur durch die Stirnfläche, sondern auch durch die Mantelfläche in den Detektor eindringen. In dieser Geometrie sind für die in dieser Arbeit zu untersuchenden Proben Messzeiten von 24 Stunden ausreichend.

Das vorbereitete Probenmaterial wurde in die Marinellibecher überführt und durch Klopfen von Hand verdichtet. Die Proben wiesen dabei eine Dichte im Bereich von 0,7 bis 1,6 g cm⁻³ auf. Anschließend wurden die Ringschalen gasdicht verschlossen. Bei einigen Proben war jedoch nicht genügend Material vorhanden, um die Becher zu füllen. Da eine einheitliche Füllhöhe der Marinelli-Becher notwendig ist, um die durchgeführte dichteabhängige Kalibrierung anwenden zu können, wurden diese Proben in einer anderen Geometrie gemessen.

Für diese Proben wurden Petri-Schalen mit 8,5 cm Durchmesser verwendet, die ein Volumen von 80 ml aufweisen. Diese besitzen gegenüber den Marinelli-Bechern den Nachteil, dass aufgrund des geringeren Probenvolumens eine höhere Messzeit notwendig ist. Diese Proben wurden für 48 Stunden gemessen.

Das Probenmaterial wurde in den Petrischalen mit Hilfe einer hydraulischen Presse verdichtet, bis schließlich ein Probenvolumen von 80 ml verdichtetem Material in der Petrischale war. Die erzielten Dichten lagen im Bereich von 0.9bis 1.7 g cm^{-3} . Da auch hier ein gasdichter Abschluss nötig ist, wurden die Deckel verklebt und die Petrischalen in PE-Folie eingeschweißt. Wie sich bei der Auswertung zeigte, war die Dichtigkeit trotzdem nicht immer gegeben.

Zur Einstellung des radioaktiven Gleichgewichts zwischen Radium, Radon sowie dessen kurzlebigen Töchtern war vor der Messung eine Wartezeit von drei Wochen notwendig. Das überschüssige, vorbereitete Probenmaterial wurde für weitere Untersuchungen, wie die Ermittlung des Anteils organischer Bestandteile, aufbewahrt.

4.4 Kalibrierung

Die Auswertung der gemessenen Gammaspektren erfordert die Kalibrierung der Detektoren. Notwendig sind die *Energiekalibrierung*, die *Halbwertbreitenkalibrierung* und die *Kalibrierung der Nachweiswahrscheinlichkeit*, die sogenannte *Efficiency-Kalibrierung*.

Die Energiekalibrierung liefert die Beziehung zwischen dem Kanal im Spektrum und der zu diesem Kanal gehörigen Energie der Gammaquanten und ermöglicht so die Zuordnung der Linien im Spektrum zu den Energien und somit zu den Nukliden. Die Halbwertbreitenkalibrierung beschreibt die volle Halbwertbreite eines Peaks in Abhängigkeit vom Kanal, in dem das Peakmaximum liegt. Diese Kalibrierung ist für die Auswerte-Software GAMMAW von großer Bedeutung, da sie für das Anpassen der Peaks benötigt wird. Außerdem liefert die Halbwertbreite ein Maß für das Auflösungsvermögen eines Detektors. Die Kalibrierung der Nachweiswahrscheinlichkeit schließlich ist notwendig, um von den gemessenen Zählraten auf die Aktivität in der Probe schließen zu können. Die Kalibrierung der Detektoren erfolgte mit eigens für die jeweilige Messgeometrie angefertigten Kalibrierstandards. Diese enthalten Nuklide bekannter Aktivität.

4.4.1 Energiekalibrierung

Die Software GAMMAW ermöglicht die Energiekalibrierung auf sehr einfache Weise direkt aus dem Spektrum heraus. Hier genügt die Anwahl eines Kanals mit dem Marker und die Eingabe der zu diesem Kanal gehörenden Energie. An die eingegebenen Kanal-Energie-Datenpaare passt GAMMAW ein Polynom 2. Grades der Form

$$E = E_1 + E_2 \cdot K + E_3 \cdot K^2, \tag{4.1}$$

an, hierbei ist E die Energie in keV und K die Kanalnummer. Die Eingabe von mindestens zwei Datenpaaren ist notwendig, die maximal mögliche ist 20. Sinnvoll ist die Eingabe von mindestens drei Datenpaaren, da bei nur zwei Werten eine lineare Funktion angepasst wird, bei mindestens vier Werten liefert GAMMAW die Parameter mit Unsicherheiten. Diese Unsicherheiten können jedoch bei diesen Untersuchungen vernachlässigt werden, da sie geringer als 0,1 keV sind und somit für die Auswertung keine Rolle spielen. Die im Multielementstandard, der für die Herstellung der Kalibrierstandards benutzt wurde, verwendeten Nuklide mit den zugehörigen Gammaenergien finden sich in Tabelle C.1 im Anhang. Häufig wurde aber die Energiekalibrierung direkt aus dem Probenspektrum durchgeführt, wobei Gammalinien aus den ²³⁸U- und ²³²Th-Zerfallsreihen sowie von ⁴⁰K verwendet wurden.

4.4.2 Halbwertbreitenkalibrierung

Die Halbwertbreite (engl. Full Width at Half Maximum, FWHM) ist die Breite eines (gaußförmigen) Peaks auf halber Höhe des Maximums. Diese Breite wird bestimmt durch drei Faktoren: die statistische Schwankung der Anzahl der von Gammaquanten gleicher Energie erzeugten Ladungsträger im Kristall, Schwankungen in der Effizienz der Trennung der Ladungsträger und Rauschen in der Signalverarbeitung. Diese Faktoren und somit die Halbwertbreite hängen von der Gammaenergie und dem Detektor selbst ab. In [Kno99], Kapitel 12, ist eine detaillierte Darstellung der Effekte gegeben. Da die FWHM mit wachsender Gammaenergie ansteigt, ist eine Halbwertbreitenkalibrierung notwendig. Wie auch bei der Energiekalibrierung verwendet GAMMAW hierfür ein Polynom 2. Grades:

$$F = F_1 + F_2 \cdot K + F_3 \cdot K^2, \tag{4.2}$$

wobei F die Halbwertbreite in Kanälen und K die Kanalnummer ist. Notwendig ist diese Kalibrierung, da GAMMAW an die im Probenspektrum enthaltenen Peaks nicht nur eine Stufenfunktion für den Untergrund, sondern auch eine Gaußfunktion für den Peak selbst anpasst, was auch bei sich überlappenden Flanken eng beieinander liegender Peaks eine Auswertung der Peakfläche, die so genannte Peakentfaltung, ermöglicht. Es ist jedoch notwendig, der Software die Halbwertbreite in Abhängigkeit von der Kanallage mitzuteilen, damit diese sich überlappende Peaks korrekt erkennen kann. Die Software berechnet eine solche Kalibrierung automatisch beim Laden eines Spektrums, es ist aber sinnvoll, sie von Hand vorzunehmen, da bei der automatischen Berechnung gelegentlich Fehlinterpretationen von Einzelpeaks oder überlappenden Peaks auftreten können. Die exakte Kalibrierung erfordert die Eingabe von Datenpaaren, die hier aus den Kalibrierspektren gewonnen wurden.

4.4.3 Kalibrierung der Nachweiswahrscheinlichkeit

Entscheidend für die Berechnung der Aktivität aus der Peakfläche ist die Nachweiswahrscheinlichkeit ε , die nachfolgend Efficiency genannt wird. Sie ist definiert als Quotient aus den im Detektor registrierten und den von der Probe emittierten Gammaquanten:

$$\varepsilon = \frac{N_{\text{detektiert}}}{N_{\text{emittiert}}}.$$
(4.3)

Zu unterscheiden ist zwischen der totalen Efficiency und der Peakefficiency. Die Peakefficiency berücksichtigt sämtliche Ereignisse, die im Photopeak registriert werden, die totale Efficiency dagegen alle Ereignisse, die im Detektor registriert werden, wie zum Beispiel Compton-, Rückstreu- und Escape-Effekte. Das Verhältnis zwischen Peakefficiency und totaler Efficiency r,

$$r = \frac{\varepsilon_{\text{Peak}}}{\varepsilon_{\text{total}}},\tag{4.4}$$

heißt auch *Peak-to-Total-Ratio*. Für die Aktivitätsbestimmung unbekannter Proben ist nur die Peakefficiency (im Folgenden kurz *Efficiency* ε) von Bedeutung. Die Efficiency hängt sowohl vom Detektor selbst als auch von der Probe und der Energie der Gammaquanten ab.

Im Detektor sind zwei Effekte zu berücksichtigen: Die Wahrscheinlichkeit, dass ein Gammaquant im Photopeak registriert wird, fällt mit steigender Energie ab. Bei geringen Gammaenergien treten Absorptionseffekte in der Detektorkappe und in der Totschicht des Kristalls auf, die das Eintreten des Photons in das aktive Detektorvolumen verhindern.

Im Probenvolumen treten vor allem bei niedrigen Energien so genannte *Selbstabsorptionseffekte* auf, das heißt, die emittierte Gammastrahlung wird im Probenmaterial selbst absorbiert. Abhängig ist die Selbstabsorption und somit auch die Efficiency im Wesentlichen von der Dichte sowie von der chemischen Zusammensetzung der Probe. Mit steigender Dichte nimmt die Schwächung der Strahlung zu, ebenso führt ein größerer Anteil an Stoffen mit hoher Ordnungszahl Z zu verstärkter Absorption. Dies macht sich insbesondere bei niederenergetischer Strahlung bemerkbar.

Experimentell ermitteln lässt sich die Efficiency durch Messung des Spektrums eines Kalibrierstandards, also einer Probe mit bekannter Aktivität. Aus der ermittelten Peakfläche einer bestimmten Gammalinie errechnet sich die zu dieser Energie gehörende Efficiency aus

$$\varepsilon = \frac{F}{A \cdot P_{\gamma} \cdot t}$$

Hierbei ist F die ermittelte Peakfläche, A die (bekannte) Aktivität der Probe, P_{γ} die Intensität der Gammalinie und t die Messzeit.

Zu beachten ist, dass bei Nukliden, die bei einem Zerfall mehr als ein Gammaquant emittieren, so genannte *Summationseffekte* auftreten können, das heißt, es werden zwei oder mehr Photonen aus demselben Zerfall gleichzeitig im Detektor registriert. Diese Ereignisse finden sich dann nicht im Photopeak der einzelnen Gammalinien wieder, sondern in einem Peak bei der Summe der einzelnen Energien. Diese so genannten *echten Koinzidenzen* sind von den *zufälligen Koinzidenzen* zu unterscheiden, bei denen zwei Photonen aus unterschiedlichen Kernzerfällen gleichzeitig detektiert werden. Die Wahrscheinlichkeit für zufällige Koinzidenzen hängt von der Zählrate ab, die Wahrscheinlichkeit für echte Koinzidenzen dagegen von der Messgeometrie. Korrektionen für die Summationseffekte können für einfache Zerfallsschemata berechnet werden, wenn die totale Efficiency bekannt ist. Für komplexe Zerfallsschemata ist dagegen eine experimentelle Korrektur oder die computergestützte Ermittlung von Korrekturfaktoren notwendig. Werden Gammalinien, die Summationseffekte zeigen, zur Efficiency-Kalibrierung verwendet, so müssen solche Korrekturfaktoren angebracht werden. Dies ist bei dem zur Kalibrierung verwendeten Multielementstandard für die 898,0-keV- und die 1836,1-keV-Linie von ⁸⁸Y sowie für die 1173,2-keV- und die 1332,5-keV-Linie von ⁶⁰Co der Fall. Die in dieser Arbeit verwendeten Korrekturfaktoren wurden [Deb90] entnommen und sind in Tabelle C.7 dargestellt.

Man unterscheidet zwischen nuklidorientierter und energieorientierter Kalibrierung. Bei der nuklidorientierten Kalibrierung wird nur eine einzige Gammalinie eines Radionuklids zur Kalibrierung verwendet. Gebräuchlicher ist die energieorientierte Kalibrierung, bei der ein Spektrum eines Multielementstandards aufgenommen wird, das Gammalinien über den gesamten interessierenden Energiebereich, der sich bei den Untersuchungen dieser Arbeit von 46,5 keV bis 1461 MeV erstreckt, enthält. Aus den einzelnen Efficiencywerten wird dann die Efficiency für den gesamten Bereich interpoliert. Für diese Interpolation werden verschiedene Funktionen verwendet.

Gebräuchlich ist zum einen die unterschiedliche Behandlung der Energiebereiche <200 keV und >200 keV. Bei Energien größer als 200 keV fällt in der doppeltlogarithmischen Darstellung die Efficiency annährend linear mit der Energie ab, also

$$\ln(\varepsilon) = -\alpha_1 \ln(E) + \alpha_2. \tag{4.5}$$

Die Abweichung von der Linearität ist meistens sehr gering. Falls eine bessere Anpassung notwendig sein sollte, so kann ein Polynom 2. Grades

$$\ln(\varepsilon) = \beta_1 + \beta_2 \cdot \ln(E) + \beta_3 \cdot (\ln(E))^2 \tag{4.6}$$

verwendet werden. Im Energiebereich unter 200 keV läßt sich die Efficiency ebenfalls gut durch ein Polynom 2. Grades beschreiben. Zum anderen gibt es aber auch Funktionen, die die Beschreibung der Efficiency über den gesamten interessierenden Bereich erlauben. Eine solche ist die so genannte JÄCKEL-WESTMEIER-Funktion [Jäc87], die auch für die automatische Aktivitätsberechnung in GAMMAW verwendet wird [Wes02]. Sie ist rein empirisch und besitzt keinen physikalischen Hintergrund. Die Gleichung hat die Form

$$\varepsilon = e^{(\lambda_1 + \lambda_2 \cdot \ln(E) + \lambda_3 \cdot (\ln(E))^2) \cdot \frac{2}{\pi} \cdot \arctan(\exp(\lambda_4 + \lambda_5 \cdot \ln(E) + \lambda_6 \cdot (\ln(E))^2) - 25}.$$
 (4.7)

In dieser Gleichung beschreibt die Arcustangens-Funktion das Abfallen der Nachweiswahrscheinlichkeit zu niedrigen Energien hin, für höhere Energien (oberhalb von etwa 200 keV) strebt der Wert gegen Eins, so dass der Verlauf von einem Polynom 2. Grades bestimmt wird. Diese Funktion wurde in allen Berechnungen in dieser Arbeit verwendet.

4.4.4 Selbstabsorption

Ein Problem bei der Bestimmung von Aktivitäten stellt, wie bereits erwähnt, das Auftreten von Selbstabsorption dar. Die entstehenden Gammaquanten werden also in der Probe selbst absorbiert. Dieser Effekt ist besonders bei niedrigen Gammaenergien, höheren Dichten und höheren mittleren Kernladungszahlen bemerkbar. Entspricht die Probe hinsichtlich Geometrie, Dichte und chemischer Zusammensetzung dem zur Efficiency-Kalibrierung verwendeten Standard, so treten im Kalibrierstandard die gleichen Effekte auf, so dass sie bei der Aktivitätsberechnung nicht ins Gewicht fallen. Im vorliegenden Fall wurde jeweils eine dichteabhängige Kalibrierung für die verwendeten Messgeometrien über den interessierenden Energiebereich durchgeführt, da zu erwarten war, dass sich die Proben in ihrer chemischen Zusammensetzung und somit der mittleren Kernladungszahl nicht allzu stark unterscheiden. Den größten Einfluss auf die Selbstabsorption hat somit die Dichte der Probe.

Für die Kalibrierung wurde daher ein Satz von Standards, die den von den Proben aufgespannten Dichtebereich abdecken, vermessen. Hierfür wurden mit einer definierten Menge der Multinuklidmischung QCY48, die 13 nutzbare Gammalinien im Bereich von 59,5 keV bis 1836,1 keV liefert [AEA03], versetzte Standards benutzt. Die physikalischen Daten der Multinuklidlösung finden sich in Tabelle C.1. Für jeden Standard wurde die beschreibende JÄCKEL-WESTMEIER-Funktion angepasst. Hierbei zeigte sich, dass die Efficiency-Kurven der unterschiedlichen Dichten für einen Detektor bei gleicher Geometrie sich lediglich in der Lage, nicht aber in der Form unterschieden. In Abbildung 4.3 ist dies für Detektor Benno als Beispiel dargestellt.

Betrachtet man die Efficiency einer Gammalinie in Abhängigkeit von der Dichte des verwendeten Standards, so können diese Punkte interpoliert werden, so dass sich eine Gerade ergibt. Dies wurde für jede Gammalinie durchgeführt. Aus den Geraden wurden dann die Werte für die Efficiency der Gammalinie bei Dichten von 0,7 g cm⁻² bis 1,6 g cm⁻² im Abstand von 0,1 g cm⁻² entnommen, und für jeden Datensatz eine JÄCKEL-WESTMEIER-Funktion (Gleichung (4.7)) angepasst. Diese Datensätze wurden für die Aktivitätsberechnung verwendet. Die Koeffizienten der verwendeten Funktionen können den Tabellen C.3, C.4 und C.5 im Anhang entnommen werden. Die verwendete Funktionenschar für Detektor Benno ist graphisch dargestellt in Abbildung 4.4.

Die Nachweiswahrscheinlichkeit für die ²¹⁰Pb-Linie bei 46,5 keV wurde mit einem eigenen Satz von Kalibrierstandards ermittelt. Diese Gammalinie ist aufgrund der niedrigen Gammaenergie besonders empfindlich gegenüber Selbstabsorptionseffekten. Wegen des hohen Probenaufkommens im Rahmen des Projektes musste auf die Bestimmung des Massenschwächungskoeffizienten einer jeden Probe, der eine genauere Berechnung der Aktivität von ²¹⁰Pb ermöglicht hätte und in [Rit02] erläutert wird, verzichtet werden. Stattdessen wurde

Abbildung 4.3: Gemessene Nachweiswahrscheinlichkeiten für Detektor Benno in 500 ml-Marinelli-Geometrie

ebenfalls eine dichteabhängige Kalibration mit linearer Interpolation der Form

$$\varepsilon = \mu_1 + \mu_2 \cdot \varrho \tag{4.8}$$

für die Datenpunkte durchgeführt. Diese führt zu einer vertretbaren Unsicherheit in der Efficiency, die konservativ mit 10 % abgeschätzt wurde. Die verwendeten Koeffizienten können Tabelle C.6 entnommen werden.

4.4.5 Kalibrierstandards

Für die beiden verwendeten Messgeometrien, 500-ml-Marinelli-Becher und Petrischale, wurde jeweils ein Satz an Kalibrierstandards unterschiedlicher Dichte mit Multinuklidlösung QCY48 und einer mit ²¹⁰Pb verwendet. Diese waren zum Teil vorhanden, die weiteren wurden im Rahmen dieser Arbeit erstellt. Eine Übersicht über die verwendeten Standards mit QCY48 gibt Tabelle 4.1, die mit ²¹⁰Pb sind in Tabelle 4.2 zu finden.

Die Herstellung sämtlicher Standards erfolgte nach derselben Methode. Für die Sediment- und Quarzsandstandards wurde die benötigte Menge an Material in eine Kristallisierschale eingewogen und anschließend eine Suspension

Abbildung 4.4: Verwendete Nachweiswahrscheinlichkeiten für Detektor Benno in 500 ml-Marinelli-Geometrie

Matrix	Geometrie	Dichte in $g \cdot cm^{-3}$	selbst angefertigt
Amberlite	Marinelli	$0,\!698$	nein
verd. HCl	Marinelli	1,058	nein
Sediment	Marinelli	1,226	nein
Quarzsand	Marinelli	$1,\!409$	nein
Sediment	Marinelli	$1,\!493$	nein
Amberlite	Petri	$0,\!623$	ja
Gelatine	Petri	0,996	ja
Sediment	Petri	$1,\!184$	ja
Sediment	Petri	1,326	ja
Quarzsand	Petri	1,528	ja
Sediment	Petri	$1,\!540$	ja

Tabelle 4.1: Verwendete Standards mit QCY48

Matrix	Geometrie	Dichte in $g \cdot cm^{-3}$	selbst angefertigt
Amberlite	Marinelli	$0,\!645$	nein
verd. HNO_3	Marinelli	1,007	ja
Sediment	Marinelli	$1,\!135$	nein
Quarzsand	Marinelli	$1,\!434$	ja
Amberlite	Petri	$0,\!660$	ja
Gelatine	Petri	1,128	ja
Sediment	Petri	1,206	ja
Quarzsand	Petri	1,568	ja

Tabelle 4.2: Verwendete Standards mit ²¹⁰Pb

hergestellt, wobei für die Standards mit Multinuklidlösung QCY48 Salzsäure $(c = 1 \text{ mol } l^{-1})$ und für solche mit ²¹⁰Pb Salpetersäure $(c = 1 \text{ mol } l^{-1})$ verwendet wurde. Nach Zugabe einer ausgewogenen Menge der jeweiligen Stammlösung unter Rühren wurde die Suspension im Trockenschrank bei 95 °C oder im Abzug unter einer Wärmelampe unter Rühren getrocknet und homogenisiert. Das trockene, markierte Material wurde ausgewogen und auf <200 µm gesiebt, dann analog zur Vorgehensweise bei der Probenaufbereitung in die jeweilige Messgeometrie, Marinellibecher oder Petrischale, gebracht und verdichtet sowie das eingesetzte Aliquot bestimmt.

Für die Standards in flüssiger Form im Marinellibecher wurde die abgwogene Aktivität direkt in die jeweilige Flüssigkeit, entweder Salzsäure ($c = 1 \text{ mol} l^{-1}$) oder Salpetersäure ($c = 1 \text{ mol} l^{-1}$), eingetropft und die Gesamtmenge ermittelt. Dieses Vorgehen war für die Petrischalen nicht möglich, da sich die mit flüssiger Aktivität gefüllten Petrischalen nicht mehr hätten verschließen lassen. Daher wurde hier die abgewogene Aktivität zur jeweiligen Säure in ein Becherglas getropft, und die Flüssigkeit anschließend erwärmt. Dazu wurde ein in destilliertem Wasser eingeweichtes Blatt handelsübliche Gelatine gegeben, aufgelöst und die Gesamtmenge bestimmt. Die so vorbereitete Lösung wurde in eine Petrischale überführt. Nach Kühlung konnte die jetzt mit erstarrtem Material gefüllte Petrischale ohne Probleme verschlossen sowie das Aliquot bestimmt werden.

Für die Amberlite^{®5}-Standards mit dem Ionentauscher Amberlite 200 C wurde die benötigte Menge an Amberlite in eine Kristallisierschale eingewogen, mit Salzsäure ($c = 4 \text{ mol } l^{-1}$) versetzt und ca. 30 min ruhen gelassen. Nach mehrmaligem Waschen mit destilliertem Wasser konnte dann zu dem so konditionierten Ionentauscher die Aktivität zugegeben werden. Dazu wurde die ausgewogene Menge an Stammlösung zu dem in aqua dest. suspendierten Material eingetropft und gerührt. Die Suspension wurde im Trockenschrank bei 80 °C getrocknet, das markierte Amberlite dann in die jeweilige Messgeometrie

⁵Amberlite ist ein eingetragenes Warenzeichen der Firma Rohm & Haas.

überführt und das Aliquot bestimmt. Daten zu sämtlichen verwendeten Standards sowie zu den eingesetzten Stammlösungen befinden sich im Anhang.

4.5 Auswertung

4.5.1 Methode

Für die Ermittlung der spezifischen Aktivitäten aus den Peakflächen wird das folgende Modell der Auswertung benutzt:

$$A_{\rm s} = \frac{k}{m \cdot P_{\gamma} \cdot \varepsilon} \left(\frac{N_{\rm P,N}}{t_{\rm P}} - \frac{N_{0,\rm N}}{t_0} \right). \tag{4.9}$$

k:	Koeffizient zur Summationskorrektion
m:	Probenmasse
P_{γ} :	Emissionswahrscheinlichkeit
ε:	Efficiency
$N_{\rm P,N}, N_{0,\rm N}$:	Nettopeakfläche des Proben- bzw. Nulleffektspektrums
$t_{\rm P}, t_0:$	Messzeit des Proben- bzw. Nulleffektspektrums

Die für jedes Probenspektrum ausgewerteten Nuklide sind:

- 238 U über 234 Th und 234m Pa
- $^{226}\mathrm{Ra}$ über $^{214}\mathrm{Pb}$ und $^{214}\mathrm{Bi}$
- ²¹⁰Pb
- ²³⁵U
- 228 Ra und somit 232 Th über 228 Ac
- $^{224}\mathrm{Ra}$ über $^{212}\mathrm{Pb}$ und $^{208}\mathrm{Tl}$
- ¹³⁷Cs
- ⁴⁰K.

Die Energien und Emissionswahrscheinlichkeiten der verwendeten Gammalinien befinden sich in Tabelle C.9 im Anhang.

Die Auswertung der Nuklide ¹³⁷Cs und ⁴⁰K sowie ²¹⁰Pb erfolgt direkt über die Photopeaks der jeweiligen Gammalinien. Bei ²¹⁰Pb ist zu beachten, dass aufgrund der Selbstabsorptionseffekte (siehe Kapitel 4.4.4) das Ergebnis mit größeren Unsicherheiten behaftet ist. ²³⁸U wird über die Tochternuklide ²³⁴Th und ^{234m}Pa bestimmt, die mit diesem im säkularen Gleichgewicht stehen. Ebenso wird ²²⁸Ra und damit ²³²Th über ²²⁸Ac sowie ²²⁴Ra über ²¹²Pb und ²⁰⁸Tl bestimmt.

Problematischer ist die Auswertung der Aktivität von 226 Ra und 235 U, deren Gammalinien bei 186,1 keV bzw. 185,7 keV liegen. Diese können vom Detektor nicht unterschieden werden. Daher ist entweder die Bestimmung von 235 U

über die Linien bei 163,4 keV oder 205,3 keV notwendig, so dass der Anteil von 235 U am Uran-Radium-Doppelpeak bei 186 keV errechnet werden kann, oder der Anteil von 226 Ra wird bestimmt. Da die Bestimmung von 226 Ra über die Tochternuklide 214 Pb und 214 Bi im radioaktiven Gleichgewicht nur erfolgen kann, wenn das entstehende Edelgas 222 Rn zurückgehalten wird, ist ein gasdichter Abschluss der Messgefäße und die Einhaltung einer Wartezeit vor der Messung notwendig. Die Wartezeit beträgt in diesem Fall 3 Wochen, nach dieser Zeit ist das Gleichgewicht zu 97 % eingestellt. Es wurde die Bestimmung des 226 Ra über die Tochternuklide ausgewählt, da die Auswertung der 163,4-keV- und der 205,3-keV-Linie aufgrund der geringen Intensitäten zu unsicher ist.

Die ermittelten Peakflächen sowie der errechnete Untergrund wurden in eine MICROSOFT[®]-EXCEL-Tabelle, in der alle notwendigen Berechnungsvorgänge implementiert waren, eingetragen, so dass die spezifischen Aktivitäten mit den zugehörigen Messunsicherheiten, Erkennungs- und Nachweisgrenzen und Vertrauensbereiche direkt abzulesen waren. Das verwendete Excel-Tabellenblatt ist in Anhang B zu sehen.

4.5.2 Messunsicherheiten

Die Unsicherheit u(y) eines Messergebnisses y, das als Funktion verschiedener Eingangsgrößen mit Schätzern x_i und zugehörigen Standardunsicherheiten $u(x_i)$ nach der Gleichung

$$y = F(x_1, \dots, x_n) \tag{4.10}$$

gewonnen wird, wird aus der Varianz $u^2(y)$ nach $u(y) = \sqrt{u^2(y)}$ berechnet. Die Varianz wird dabei im Falle unabhängiger Eingangsgrößen mit Hilfe des Fehlerfortpflanzungsgesetzes

$$u^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial F}{\partial x_{i}}\right)^{2} \cdot u^{2}(x_{i})$$
(4.11)

gewonnen.

Bei der Berechnung der spezifischen Aktivitäten aus mehreren einzelnen Linien wurde der quadratisch gewichtete Mittelwert nach Gleichung (4.12) verwendet. Hierbei dienen die Unsicherheiten als Gewichte:

$$\bar{y} = \frac{\sum_{i} \frac{y_{i}}{u^{2}(y_{i})}}{\sum_{i} \frac{1}{u^{2}(y_{i})}}$$
(4.12)

4.5.3 Erkennungs-, Nachweis- und Vertrauensgrenzen bei Kernstrahlungsmessungen

Zur Beurteilung des Messergebnisses y, in dieser Arbeit der spezifischen Aktivität bestimmter Radionuklide in Umweltproben, ist nicht nur das vollständige Messergebnis, zu dem nach DIN 1319-3 [DIN96] auch die Messunsicherheit gehört, notwendig. Es muss auch beurteilt werden, ob ein Beitrag der Probe zum gemessenen Spektrum vorliegt, ob das Messverfahren geeignet ist, und in welchem Bereich mit großer Wahrscheinlichkeit der wahre Wert der Messgröße liegt. Hierzu sind die *Erkennungsgrenze*, die *Nachweisgrenze* und die *Vertrauensgrenzen* nach DIN 25482-10 [DIN00] notwendig [Mic99]:

- Die Erkennungsgrenze y^* ermöglicht die Entscheidung, ob ein Beitrag der Probe vorliegt.
- Die Nachweisgrenze η^* gibt den kleinsten wahren Wert an, der mit dem Messverfahren nachgewiesen werden kann und ermöglicht dadurch die Beurteilung, ob das Messverfahren für den Messzweck geeignet ist.
- Die Vertrauensgrenzen η_l und η_u schließen einen Vertrauensbereich ein, der mit einer vorgewählten Wahrscheinlichkeit den wahren Wert enthält.

Die Erkennungsgrenze y^* ist der kleinste Wert für ein Messergebnis y, für den bei einer vorgegebenen Irrtumswahrscheinlichkeit α gefolgert wird, dass der zu messende physikalische Effekt vorliegt. Es muss also gelten:

$$y^* = k_{1-\alpha} \cdot \tilde{u}(0), \tag{4.13}$$

wobei $k_{1-\alpha}$ das Quantil der Standardnormalverteilung zur Wahrscheinlichkeit $1-\alpha$ ist. $\tilde{u}(\eta)$ ist die Standardunsicherheit der Messgröße als Funktion des wahren Wertes η . Es kann mit einer Irrtumswahrscheinlichkeit α gefolgert werden, das ein Beitrag der Probe zum Spektrum vorliegt, wenn das primäre Messergebnis y über der Erkennungsgrenze y^* liegt. Lehnt man die Nullhypothese $\eta = 0$ fälschlicherweise ab, so macht man einen Fehler 1. Art.

Die Nachweisgrenze ist der kleinste wahre Wert η^* , der mit dem verwendeten Messverfahren noch zuverlässig nachgewiesen werden kann. Festgelegt wird die Nachweisgrenze dadurch, dass die Wahrscheinlichkeit für einen Fehler 2. Art (die fälschliche Annahme der Nullhypothese) gleich einer vorgegebenen Wahrscheinlichkeit β ist:

$$\eta^* = y^* + k_{1-\beta} \cdot \tilde{u}(\eta^*). \tag{4.14}$$

Diese implizite Gleichung kann durch Iteration gelöst werden, wobei als Anfangsnäherung $\eta_0 = 2y^*$ eine gute Wahl ist. Zur Beurteilung des Messverfahrens ist die Nachweisgrenze mit den Anforderungen an das Messverfahren zu vergleichen. Liegt die Nachweisgrenze höher als ein Richtwert für die Anforderungen, so ist das Messverfahren für den Messzweck nicht geeignet.

KAPITEL 4. EXPERIMENTELLES

Die Vertrauensgrenzen η_l und η_u werden so festgelegt, dass der von ihnen eingeschlossene Bereich mit einer Wahrscheinlichkeit $1 - \gamma$ den wahren Wert η der Messgröße y mit Standardunsicherheit u(y) enthält. Dann ist

$$\eta_l = y - k_p \cdot u(y) \quad \text{mit} \quad p = \sigma \cdot (1 - \gamma/2) \tag{4.15}$$

$$\eta_u = y + k_q \cdot u(y) \quad \text{mit} \quad q = 1 - \sigma \cdot \gamma/2, \tag{4.16}$$

wobei

$$\sigma = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{y}{u(y)}} \exp\left(-\frac{v^2}{2}\right) dv = \Phi\left(\frac{y}{u(y)}\right).$$
(4.17)

Die Funktion $\Phi(x)$ ist in [Mic99] tabelliert.

Zur Beurteilung des Messergebnisses ist das ermittelte primäre Messergebnissy mit der Erkennungsgrenze y^* zu vergleichen. Wenn $y \ge y^*$, dann gilt der durch die Messgröße beschriebene Effekt als erkannt, und der beste Schätzer z für die Messgröße ergibt sich zu

$$z = y + \frac{u(y) \cdot \exp\left(-\frac{y^2}{2u^2(y)}\right)}{\sigma\sqrt{2\pi}}$$
(4.18)

mit der zugehörigen Standardunsicherheit

$$u(z) = \sqrt{u^2(y) - (z - y) \cdot y}.$$
(4.19)

Die Bestimmung von Erkennungs- und Nachweisgrenze reduziert sich nach den Gleichungen 4.13 und 4.14 auf die Bestimmung der Funktion $\tilde{u}(\eta)$.

Berechnung der Erkennungs- und Nachweisgrenze für die Gammaspektrometrie

Mit Gleichung (4.9) als Modell der Auswertung, also

$$A_{\rm s} = \frac{k}{m \cdot P_{\gamma} \cdot \varepsilon} \left(\frac{N_{\rm P,N}}{t_{\rm P}} - \frac{N_{0,\rm N}}{t_0} \right) = \tau \cdot \left(\frac{N_{\rm P,N}}{t_{\rm P}} - \frac{N_{0,\rm N}}{t_0} \right), \tag{4.20}$$

wobei $\tau = k/(m \cdot P_{\gamma} \cdot \varepsilon)$, ergibt sich die Varianz der spezifischen Aktivität $u^2(A_s)$ unter der Annahme, dass die Unsicherheit von t_P und t_0 vernachlässigt werden kann, nach Gleichung (4.11) zu

$$u^{2}(A_{s}) = \left(\frac{N_{\rm P,N}}{t_{\rm P}} - \frac{N_{0,\rm N}}{t_{0}}\right) \cdot u^{2}(\tau) + \tau^{2} \left(\frac{u^{2}(N_{\rm P,\rm N})}{t_{\rm P}^{2}} + \frac{u^{2}(N_{0,\rm N})}{t_{0}^{2}}\right), \quad (4.21)$$

wobei $u^2(\tau)$ die nach Gleichung 4.11 berechnete Varianz des Faktors $\tau = k/(m \cdot P_{\gamma} \cdot \varepsilon)$ ist. Für den wahren Wert η der Messgröße kann gefordert werden, dass

$$\eta = \tau \left(\frac{N_{\rm P,N}}{t_{\rm P}} - \frac{N_{0,N}}{t_0} \right) \tag{4.22}$$

gilt. Somit folgt

$$N_{\rm P,N} = t_P \cdot \left(\frac{\eta}{\tau} + \frac{N_{0,N}}{t_0}\right). \tag{4.23}$$

Die Annahme einer Poisson-Verteilung der Zählimpulse liefert

$$u^{2}(N_{P,N}) = u^{2}(N_{P,B} - N_{P,Cu})$$
(4.24)
= $N_{P,B} + N_{P,Cu}$
= $N_{P,N} + N_{P,Cu} + N_{P,Cu}$
= $N_{P,N} + 2N_{P,Cu}$.

Damit ergibt sich

$$\begin{split} \tilde{u}^{2}(\eta) &= \frac{\eta^{2}}{\tau^{2}} \cdot u^{2}(\tau) + \tau^{2} \cdot \left(\frac{u^{2}(N_{\mathrm{P,N}})}{t_{\mathrm{P}}^{2}} + \frac{u^{2}(N_{0,\mathrm{N}})}{t_{0}^{2}}\right) \tag{4.25} \\ &= \eta^{2} \cdot \frac{u^{2}(\tau)}{\tau^{2}} + \tau^{2} \cdot \left(\frac{N_{\mathrm{P,N}} + 2N_{\mathrm{P,Cu}}}{t_{\mathrm{P}}^{2}} + \frac{N_{0,\mathrm{N}} + 2N_{0,\mathrm{Cu}}}{t_{0}^{2}}\right) \\ &= \eta^{2} \cdot u_{\mathrm{rel}}^{2}(\tau) + \tau^{2} \cdot \left(\frac{t_{\mathrm{P}} \cdot \left(\frac{\eta}{\tau} + \frac{N_{0,\mathrm{N}}}{t_{0}}\right) + 2N_{\mathrm{P,Cu}}}{t_{\mathrm{P}}^{2}} + \frac{N_{0,\mathrm{N}} + 2N_{0,\mathrm{Cu}}}{t_{0}^{2}}\right) \\ &= \eta^{2} \cdot u_{\mathrm{rel}}^{2}(\tau) + \tau^{2} \cdot \left(\frac{1}{t_{\mathrm{P}}} \cdot \left(\frac{\eta}{\tau} + \frac{N_{0,\mathrm{N}}}{t_{0}}\right) + \frac{2N_{\mathrm{P,Cu}}}{t_{\mathrm{P}}^{2}} + \frac{N_{0,\mathrm{N}} + 2N_{0,\mathrm{Cu}}}{t_{0}^{2}}\right). \end{split}$$

Für $\eta=0$ ist dann

$$\tilde{u}^{2}(0) = 0 + \tau^{2} \cdot \left(\frac{N_{0,\mathrm{N}}}{t_{\mathrm{P}} \cdot t_{0}} + \frac{2N_{\mathrm{P,Cu}}}{t_{\mathrm{P}}^{2}} + \frac{N_{0,\mathrm{N}} + 2N_{0,\mathrm{Cu}}}{t_{0}^{2}}\right).$$
(4.26)

Damit ergibt sich nach Gleichung (4.13) für die Erkennungsgrenze

$$y^* = k_{1-\alpha} \cdot \tau \cdot \sqrt{\frac{N_{0,N}}{t_P \cdot t_0} + \frac{2N_{P,Cu}}{t_P^2} + \frac{N_{0,N} + 2N_{0,Cu}}{t_0^2}}$$
(4.27)

und nach Gleichung (4.14) für die Nachweisgrenze

$$\eta^* = y^* + k_{1-\beta} \cdot \sqrt{\eta^{*2} \cdot u_{\text{rel}}^2(\tau) + \tau^2 \cdot \left(\frac{1}{t_{\text{P}}} \cdot \left(\frac{\eta}{\tau} + \frac{N_{0,\text{N}}}{t_0}\right) + \frac{2N_{\text{P},\text{Cu}}}{t_{\text{P}}^2} + \frac{N_{0,\text{N}} + 2N_{0,\text{Cu}}}{t_0^2}\right)}{(4.28)}$$

Diese Berechnung ist bei direkter Auswertung der Zählimpulse, wie sie zum Beispiel mit dem Programm SPEKANA erfolgt, notwendig, um die Unsicherheit aus der Poissonverteilung zu berücksichtigen. Die verwendete Software GAM-MAW liefert die aus Anpassung einer Gaußfunktion berechnete Peakfläche mit der zugehörigen Unsicherheit, die bereits die Poissonunsicherheit der Zählimpulse, die Unsicherheit aus der Peakanpassung sowie die Unsicherheit aus der Untergrundsubtraktion enthält. Die von GAMMAW gelieferten Unsicherheiten der Nettopeakfläche der Peaks aus dem Proben- und dem Nulleffektspektrum stellen somit bereits die Unsicherheiten dar, die benötigt werden: Aus Gleichung (4.25) folgt für $\eta = 0$

$$u^{2}(0) = \tau^{2} \cdot \left(\frac{u^{2}(N_{\rm P,N})}{t_{\rm P}^{2}} + \frac{u^{2}(N_{0,N})}{t_{0}^{2}}\right).$$
(4.29)

Damit ergibt sich mit (4.13) für die Erkennungsgrenze

$$y^* = k_{1-\alpha} \cdot \tau \cdot \sqrt{\frac{u^2(N_{\rm P,N})}{t_{\rm P}^2} + \frac{u^2(N_{0,N})}{t_0^2}}$$
(4.30)

und mit Gleichung (4.14) für die Nachweisgrenze

$$\eta^* = y^* + k_{1-\beta} \cdot \sqrt{\eta^{*2} \cdot u_{\rm rel}^2(\tau) + \tau^2 \cdot \left(\frac{u^2(N_{\rm P,N})}{t_{\rm P}^2} + \frac{u^2(N_{0,N})}{t_0^2}\right)}, \qquad (4.31)$$

wobei $u^2(N_{\rm P,N})$ und $u^2(N_{0,N})$ von GAMMAW geliefert werden.

Diese Berechnung der charakteristischen Grenzen ist im zur Auswertung verwendeten Excel-Blatt enthalten.

Bei der Auswertung zeigte sich, dass für die Proben 9001047, FM01ET, FM03WK, FM22RB, VM21RE, VM23FU und ZM24WE die aus der 1001,0-keV-Linie ermittelte spezifische Aktivität von 234m Pa zwar über der Erkennungs, aber unter der Nachweisgrenze liegt. Dies stellt aber für die Auswertung von 238 U kein Problem dar, da in allen Fällen die 63,3-keV-Linie des 234 Th gut auszuwerten war und die ermittelte spezifische Aktivität über der Nachweisgrenze liegt. Bei der Probe FM10RÄ liegt die aus der 185,7-keV-Linie berechnete spezifische Aktivität von 235 U unterhalb der Erkennungsgrenze. Gleiches gilt für die 163,4-keV- und die 205,3-keV-Linie. 235 U wird allerdings nicht in weitere Betrachtungen einbezogen.

4.6 Qualitätssicherung

4.6.1 Ringvergleiche

Zur Validierung der gammaspektrometrischen Messverfahren nimmt das ZSR regelmäßig erfolgreich an Ringvergleichen des BfS teil. Hierfür werden Aliquote einer Probe zur Analyse an die Teilnehmer abgegeben. Die Messergebnisse der Teilnehmer können dann mit dem Mittelwert aller Teilnehmer sowie den Messwerten der Physikalisch-Technischen Bundesanstalt verglichen werden, was eine Einschätzung der Leistungsfähigkeit und Zuverlässigkeit der eigenen Messverfahren ermöglicht. Nach Abschluss des Ringvergleiches dient die Probe als Referenzmaterial, da die Nuklidgehalte genau bekannt sind.

Im Rahmen dieser Arbeit wurde Material aus dem Ringvergleich V/98 des BfS vermessen. In diesem Ringvergleich wurde eine Bodenprobe vom Flussufer der Mulde in der Nähe des Sanierungsbetriebes Aue der Wismut GmbH vermessen. Die Aufarbeitung des Ausgangsmaterials durch das BfS umfasste Trocknung, Zerkleinerung in einer Schwingscheibenmühle und Siebung auf eine Korngröße <200 µm und entsprach somit der Aufarbeitung der in dieser Arbeit untersuchten Sedimentproben. Die Ergebnisse des Ringvergleiches sowie der Vergleichsmessungen der PTB befinden sich in [Sch98].

Das Material wurde für die durchgeführten Messungen analog zu den Sedimentproben in die benutzten Messgeometrien, 500-ml-Marinelli und Petrischale, eingebracht und verdichtet und die Behälter versiegelt. Vor der Messung war eine Wartezeit von drei Wochen zur Äquilibrierung notwendig.

Die Messergebnisse befinden sich in Tabelle C.8 im Anhang.

Es zeigte sich, dass die Messergebnisse für die Nuklide ²³⁸U, ²³⁵U, ²²⁸Ra, ²²⁴Ra und ¹³⁷Cs im Rahmen ihrer Unsicherheiten gut mit den Vergleichswerten übereinstimmen. Die Ergebnisse für ²²⁶Ra liegen insbesondere für die Petrischalen niedriger als die Vergleichswerte, was vermutlich auf Probleme der Dichtigkeit der Petrischalen zurückzuführen ist. Darauf deuten auch die erhöhten Werte für ²³⁵U hin (siehe auch Kapitel 4.5). Die Aussagekraft der Werte für ²¹⁰Pb ist fraglich, da nicht davon auszugehen ist, dass die Aufbewahrungsgefäße für das Material immer geschlossen waren. Durch entweichendes Radon fehlt dann ²¹⁰Pb, was sonst nachgebildet würde. Der gemessene Wert ist daher zu niedrig.

Auch die gemessenen Werte für ⁴⁰K sind im Vergleich mit den Vorgaben der PTB zum Teil deutlich zu niedrig, dies gilt besonders für die Proben in Petrischalen. Eine Überprüfung mit einer mit Kaliumchlorid gefüllten Petrischale, deren spezifische Aktivität über den Anteil von ⁴⁰K am natürlichen Isotopengemisch leicht auszurechnen ist, zeigte jedoch nicht eine solche Abweichung. Auf Detektor Benno ergab sich eine gemessene spezifische Aktivität von 15769 ± 631 Bq kg⁻¹, die theoretische beträgt 16188 Bq kg⁻¹.

4.6.2 Parallelbestimmungen einzelner Proben

Zur Überprüfung der Reproduzierbarkeit der Ergebnisse wurden während der Bearbeitung des Projektes für 17 Proben Parallelbestimmungen durchgeführt. Es zeigte sich, dass für alle Proben die Ergebnisse innerhalb ihrer Unsicherheiten übereinstimmen und somit die Reproduzierbarkeit gegeben ist. Die Ergebnisse für die in dieser Arbeit behandelten Punkte können dem Anhang, die für alle anderen [Knö04] entnommen werden.

4.6.3 Kalibrierung der ODL-Messgeräte

Die zur Messung der Ortsdosisleistung verwendeten Messgeräte werden zur Kalibrierung regelmäßig mit Hilfe einer ¹³⁷Cs-Quelle überprüft. Im Rahmen dieser Arbeit wurden außerdem Messungen auf den Referenzmessflächen der Wismut GmbH in Ronneburg sowie Messungen zur Feststellung der kosmischen Komponente der ODL auf einem See durchgeführt.

Die Messungen mit der ¹³⁷Cs-Quelle dienen zur Überprüfung der Kalibrierung sowie im Falle eines geeichten Messgerätes zur Verlängerung des Eichgültigkeitsdauer. Sie werden alle 6 Monate von einem Mitarbeiter des ZSR durchgeführt. Für diese Messungen wird eine von der PTB zugelassene Kontrollvorrichtung mit einem Prüfstrahler nach DIN 44427 verwendet. Die Messergebnisse müssen dabei innerhalb der sogenannten Verkehrsfehlergrenzen liegen. Die genaue Vorgehensweise für die Kontrollmessungen finden sich in der Betriebsanleitung zu den Geräten [ESM94]. Die vier verwendeten Messgeräte erfüllten die Vorschriften für die Kontrollmessung [Gro03].

Die Überprüfung der Geräte mit der ¹³⁷Cs-Kalibrierquelle liefert noch keine Aussage über die Qualität der Ergebnisse für ein natürliches Spektrum. Daher wurden am 05. August 2003 Messungen auf den Referenzmessflächen der Wismut GmbH in Ronneburg durchgeführt. Es gibt hier drei Flächen von jeweils 20 m × 20 m, eine Sandfläche, eine mit Haldenmaterial und eine mit Tailingmaterial, so dass ODL-Messungen durchgeführt werden können, die in Spektrum und Höhe der Dosisleistung etwa den Messungen bei der Probenahme entsprechen.

Für die Messung wurde bei den Geräten vom Typ FH 40 G-L eine Impulsvorwahl von 500 Impulsen eingestellt. Die Mittelung über 500 Impulse führt zu einem statistischen Fehler von <4,5 %. Auf der Sand- und der Halden-Fläche wurden je zwei, auf der Tailing-Fläche drei Messungen durchgeführt. Bei dem Messgerät FH 40 F2 wurden 20 Einzelwerte im Abstand von je 30 s aufgenommen, die arithmetisch gemittelt wurden. Die Ergebnisse finden sich in Tabelle 4.3.

Zu erkennen ist, dass die Ergebnisse unserer Messungen bis um einen Faktor

~ *	a 198 1	TT 11 AH 1	—
Gerät	Sandfläche	Haldenfläche	Tailingfläche
	$nSv h^{-1}$	$\rm nSv~h^{-1}$	$ m nSv~h^{-1}$
Referenzmessung	100	218	851
FH 40 G-L Nr.1	139	315	882
	145	309	1005
			986
FH 40 G-L Nr.2	129	287	863
	139	330	1000
			936
EII 40 C I Nr 2	140	202	946
ГП 40 G-L NГ.5	148	298	840
	140	268	898
			824
FH 40 F2	189 ± 54	309 ± 41	1170 ± 190

Tabelle 4.3: Ergebnisse der Messungen auf den Referenzmessflächen in Ronneburg sowie Vergleichswerte der Wismut GmbH, alle Werte enthalten die kosmische Strahlungskomponente

1,5 höher liegen als die der Referenzmessungen durch die Wismut [Wis03]. Diese fanden am 12. August 2003, also eine Woche nach unseren Messungen, statt. Nach Aussage eines Wismut-Mitarbeiters [Kni03] schwanken die Ergebnisse allerdings nur gering im Bereich von unter 10 %. Es fällt auf, dass bereits die Ergebnisse zweier unmittelbar aufeinander folgender Messungen mit demselben Messgerät um mehr als 10 % voneinander abweichen können. Die mittlere Standardabweichung beträgt 5,5 % und ist somit bereits größer als der statistische Fehler. Ein Korrekturfaktor für unsere Geräte lässt sich daher nicht ableiten. Für eine konservative Beurteilung der Ortsdosisleistungen können die Messwerte dennoch herangezogen werden, da die ODL in jedem Fall überschätzt wird.

Zur Abschätzung des Anteils der kosmischen Strahlungskomponente wurden am 02. August 2003 Messungen auf dem Bruchsee bei Duingen durchgeführt. Hierzu wurde von einem Boot aus in der Mitte des Sees die Ortsdosisleistung gemessen, so dass das Wasser die terrestrische Komponente abschirmte. Die Ergebnisse sind in Tabelle 4.4 dargestellt. Zur Abschätzung des Nulleffektes der Geräte wurde eine Messung in einer Bleiburg durchgeführt.

Für Gerät Nr. 1 ergibt sich mit der gemessenen Differenz eine Jahresdosis von 0,27 mSv, die Ergebnisse der anderen Geräte liegen darunter. Der Wert der

Gerät	Messergebnis	Messergebnis	Differenz
	Bruchsee	Bleiburg	
	$\rm nSv~h^{-1}$	$\rm nSv~h^{-1}$	$\rm nSv~h^{-1}$
FH 40 G-L Nr.1	82,9	52,1	30,8
FH 40 G-L Nr.2	72,8	$47,\!4$	25,4
FH 40 G-L Nr.3	70,7	44,2	26,5
FH 40 F2	112 ± 18	-*	_*

Tabelle 4.4: Messergebnisse für die kosmische Komponente der ODL sowie für den Nulleffekt der Geräte

* Da mit diesem Gerät keine automatische Messung möglich ist, konnte die Messung in der Bleiburg nicht durchgeführt werden.

kosmischen Komponente ist gut bekannt. Er beträgt in Deutschland etwa 0,32 mSv a⁻¹ in Meereshöhe [Bie00] und nimmt mit steigender Höhe zu. Die ermittelten Werte liegen also unter den tatsächlichen Werten. Dies liegt daran, dass in der Bleiburg nicht nur der Eigennulleffekt der Geräte, sondern auch die Untergrundstrahlung in der Bleiburg, die auch Bremsstrahlung der β -strahlenden Nuklide enthält, gemessen wurde. Der Nulleffekt der Geräte wird somit überschätzt. Zur Ermittlung des tatsächlichen Eigennulleffektes wäre eine Messung in einem Low-Level-Labor wie zum Beispiel der Asse notwendig.

Sämtliche Messergebnisse in dieser Arbeit wurden nicht um die kosmische Strahlung korrigiert.

4.7 Statistische Auswertung der Ergebnisse

Mit den Messwerten wurden verschiedene statistische Berechnungen durchgeführt. Diese sollen hier kurz vorgestellt werden.

Verteilungen

Die Normalverteilung ist eine kontinuierliche Verteilung mit den Parametern μ und σ , die den Erwartungswert und die Standardabweichung darstellen. Die Funktion ist gegeben durch

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right).$$
(4.32)

Bei Existenz eines wohldefinierten wahren Wertes und zufällig verteilten Messabweichungen beschreibt die Normalverteilung die Verteilung der gemessenen Werte. Der Erwartungswert der Normalverteilung wird dann durch das arithmetische Mittel (s.u.), die Standardabweichung durch die empirische Standardabweichung (s.u.) geschätzt. Auch die Verteilung der Zählraten in einem Photopeak im Gammaspektrum kann durch eine Normalverteilung genähert werden.

Die logarithmische Normalverteilung oder Lognormalverteilung wird durch

$$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{\ln(x) - \ln(\overline{x_{\rm G}})}{\sigma}\right)\right)$$
(4.33)

beschrieben. Für lognormalverteilte Messwerte x gilt, dass die Logarithmen $\ln(x)$ normalverteilt sind. Der Mittelwert der Lognormalverteilung ist der geometrische Mittelwert (s.u.). Als Folge des Multiplikativen Grenzwertsatzes der Statistik können lognormalverteilte Messwerte in der Natur häufig gefunden werden [Mic99].

Hypothesentests

Ob eine Anzahl von Messwerten einer bestimmten Verteilung genügen, kann durch Hypothesentests festgestellt werden. Es wurden in dieser Arbeit der Shapiro-Wilk-Test auf Normalverteilung sowie der Test mittels eines Quantil-Quantil-Diagramms (Q-Q-Plot), das auch für andere Verteilungen geeignet ist, durchgeführt.

Der Shapiro-Wilk-Test nach [Sha65] und [Roy82] ist in ORIGIN implementiert und gestattet den Test auf Normalverteilung auch für kleine Gesamtheiten. Für ein vorgegebenes Signifikanzniveau α , in dieser Arbeit wurde $\alpha = 0,05$ gewählt, liefert ORIGIN eine Teststatistik und die Entscheidung, ob die Annahme einer Normalverteilung abgelehnt werden kann oder nicht. Grundlage für die Teststatistik ist der Vergleich zwischen den gemessenen Quantilen der Verteilung und den theoretischen, für eine Normalverteilung berechneten Quantilen. Der Q-Q-Plot basiert ebenfalls auf dem Vergleich zwischen gemessenen und theoretisch berechneten Quantilen. Der Korrelationskoeffizient einer linearen Regression stellt dann ein Maß für die Wahrscheinlichkeit dar, ob die Annahme einer bestimmten Verteilung abgelehnt werden kann. Im Gegensatz zum Shapiro-Wilk-Test gestattet der Q-Q-Plot auch Tests auf andere Verteilungen als die Normalverteilung. Die graphische Darstellung ermöglicht, sofort zu erkennen, ob und warum die Annahme einer Verteilung abgelehnt werden kann. So sind einzelne Ausreißer oder das Vorhandensein von Werten aus einer anderen Gesamtheit sichtbar. Ein zusätzliches trendbereinigtes Q-Q-Diagramm zeigt, welche gemessenen Quantile gegenüber den theoretisch berechneten überoder unterrepräsentiert sind. Das Erzeugen von Q-Q-Plots ermöglicht das Programm SPSS.

Mittelwerte

Das arithmetische Mittel von n Werten wird definiert als

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{4.34}$$

mit der empirischen Standardabweichung

$$\Delta y = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}.$$
(4.35)

Das arithmetische Mittel $\bar{y} \pm \Delta y$ entspricht bei Annahme einer Normalverteilung dem Erwartungswert mit zugehöriger Standardabweichung.

Das geometrische Mittel von n Werten ist

$$\overline{y}_{G} = \sqrt[n]{\prod_{i=1}^{n} y_{i}}$$

$$= \sqrt[n]{y_{1} \cdot y_{2} \cdot \dots \cdot y_{n}}$$

$$= \exp\left(\frac{1}{n}\ln(y_{1}) + \frac{1}{n}\ln(y_{2}) + \dots + \frac{1}{n}\ln(y_{i})\right)$$

$$= \exp\left(\frac{1}{n}\sum_{i=1}^{n}\ln(y_{i})\right),$$
(4.36)
(4.36)
(4.37)

die zugehörige Standardabweichung

$$\Delta \overline{y_{\rm G}} = \exp\left(\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(\ln(y_i) - \overline{\ln(y_i)}\right)^2}\right) \tag{4.38}$$

$$= \exp\left(\Delta \ln(y_i)\right). \tag{4.39}$$

Das geometrische Mittel mit der geometrischen Standardabweichung $\bar{y}_{\rm G} \cdot \Delta y_{\rm G}$ von
n Werten lässt sich somit leicht aus den Logarithmen der einzelnen Messwerte gewinnen.

Der Median ist das 50-%-Quantil einer Verteilung, also derjenige Wert, für den gilt, dass 50 % der Messwerte größer und 50 % der Messwerte kleiner sind. Im Falle einer Normalverteilung ist der Median identisch mit dem arithmetischen Mittel, bei Vorliegen einer Lognormalverteilung sind geometrisches Mittel und Median identisch. Weichen Median und arithmetisches bzw. geometrisches Mittel deutlich voneinander ab, so ist das ein Hinweis, dass keine perfekte Normal- bzw. Lognormalverteilung vorliegt. Der Median ist in solchen Fällen gut zur Argumentation geeignet, da er weniger empfindlich gegenüber einzelnen Ausreißern ist.

Weiterhin werden zur statistischen Auswertung jeweils Minimum und Maximum sowie 25-%-Quantil und 75-%-Quantil angegeben. Diese ermöglichen eine bessere Interpretation der Verteilung und insbesondere von einzelnen Extremwerten.

Zur Überprüfung, ob die Mittelwerte zweier Verteilungen sich signifikant unterscheiden, wurde ein t-Test [Fun92] benutzt. Der t-Test ist als Funktion in ORIGIN implementiert. Durch den Test wird ein Prüfwert berechnet und mit dem zugehörigen, vom Signifikanzniveau und der Zahl der Freiheitsgrade abhängigen Schwellenwert der t-Verteilung verglichen.

Kapitel 5

Ergebnisse und Diskussion

In diesem Kapitel werden die erhaltenen Messergebnisse dargestellt und diskutiert. Hierbei wird mit den Ergebnissen der ODL-Messungen vor Ort begonnen, anschließend werden die Resultate der Gammaspektrometrie getrennt nach Muldesystem und Verdachtsfläche Lengenfeld sowie geogenen Punkten aller Verdachtsflächen vorgestellt und unter Bezugnahme auf die Daten aus dem Muldeprojekt [Beu99], dem Altlastenkataster [Ett01], [Dus02b] sowie dem Bericht "Sedimente und Auenböden" [Ges96] bewertet. Sämtliche Messergebnisse befinden sich im Anhang.

Es werden für die Sedimentuntersuchungen nur die Ergebnisse für die Leitnuklide ²³⁸U und ²²⁶Ra dargestellt und diskutiert, bei der statistischen Auswertung wird außerdem ²¹⁰Pb berücksichtigt. Die Verteilung der Nuklide ²³⁸U und ²²⁶Ra wird durch den Uranbergbau beeinflusst und lässt Rückschlüsse auf Transportmechanismen zu. Für das Leitnuklid ²¹⁰Pb sind Literaturwerte nur sehr lückenhaft vorhanden und bedingt durch die schwierige Selbstabsorptionskorrektur wenig verlässlich [Ges96], so dass eine Diskussion vor dem Hintergrund möglicher Veränderungen nicht sinnvoll ist. Belastungssituationen durch Nuklide der Thorium-Zerfallsreihe, durch ¹³⁷Cs oder durch ⁴⁰K sind für das Erzgebirge nicht denkbar. Es wird aus der Thorium-Reihe lediglich das ²²⁴Ra im Zusammenhang mit dem ²²⁶Ra/²²⁴Ra-Verhältnis betrachtet, da dies ein Indikator für uranbergbaulichen Einfluss ist, siehe Kapitel 3.3.2.

5.1 Ortsdosisleistung

Zur Aufnahme der Feldparameter gehörte, wie in Kapitel 4.2 dargestellt, die Messung der ODL. Nicht an allen Probenahmeorten konnten jedoch Messungen durchgeführt werden, da im Verlauf der Probenahmekampagne verschiedene Geräte ausfielen. Insgesamt wurden 147 ODL-Messungen an den Probenahmepunkten in den Verdachtsflächen und an den Muldeläufen durchgeführt. Die

Verdachtsfläche	100 bis	$151 \mathrm{\ bis}$	$201 \mathrm{bis}$	$251 \mathrm{\ bis}$	$301 \mathrm{bis}$	>350
	150	200	250	300	350	$\mathbf{nSv} \ \mathbf{h}^{-1}$
	$\mathbf{nSv} \ \mathbf{h}^{-1}$					
Annaberg-		3	2	1		
Buchholz						
Bärenstein		4	2			
Filzteich		1	2			
Freital		8	5	1		
Lengenfeld		6	11	4	1	6
Marienberg	1		2			
Oberrothenbach			3			
und Zwickau						
Pobershau		2	1			
Pöhla	1	5	2			
Schneeberg-Aue		2	6	2		
Gottesberg-		2	8	3	2	
Schneckenstein						
Freiberger Mulde	6	5	2			
Zwickauer Mulde	2	10	4			
Vereinigte Mulde	7	11				

Tabelle 5.1: Verteilung der ODL-Werte, Mehrfachmessungen an einzelnen Punkten sowie der Lenkteich sind nicht berücksichtigt. Alle Werte enthalten die kosmische Strahlungskomponente

Messwerte sind in den Tabellen C.12, C.13 und C.14 im Anhang zu finden. Sämtliche ODL-Werte in dieser Arbeit sind nicht für die kosmische Strahlung korrigiert. Zusätzlich wurde der Lenkteich intensiv untersucht, diese Messungen sind jedoch nicht Gegenstand dieser Arbeit. Die Ergebnisse für den Lenkteich können ebenso wie die Koordinaten derjenigen Punkte, die nicht in dieser Arbeit näher untersucht wurden, dem Abschlussbericht zum Projekt [Knö04] entnommen werden.

Ein Histogramm sämtlicher Messergebnisse zeigt Abbildung 5.1. Die Annahme einer Lognormalverteilung kann abgelehnt werden, dies zeigt der Q-Q-Plot Abbildung 5.2. Wie im trendbereinigten Q-Q-Diagramm zu sehen ist, sind hohe ODL-Werte überrepräsentiert. Da in den VF insbesondere Orte beprobt wurden, an denen in früheren Untersuchungen [Ett01] höhere Radionuklidgehalte gefunden worden waren, war dies zu erwarten.

Von Will et. al. [Wil97] wird für den terrestrischen Anteil der ODL in Sachsen ein Wert von bis zu 200 nSv h⁻¹ als normal angesehen. Berücksichtigt man den kosmischen Anteil der Strahlung, der bei den verwendeten Messgeräten etwa 80 nSv h⁻¹ (siehe Kapitel 4.6.3) beträgt, so kann eine gemessene ODL von unter 300 nSv h⁻¹ als im Bereich der natürlichen Schwankung des geogenen Untergrundes angesehen werden. Dieser Wert entspricht auch den Empfehlungen der Strahlenschutzkomission [Str91], nach denen durch den Uranbergbau

Abbildung 5.1: Histogramm der ODL-Messwerte, alle Werte enthalten die kosmische Strahlungskomponente

kontaminierte Gebiete mit einem ODL-Wert von $<300 \text{ nSv h}^{-1}$ als unbedenklich einzustufen sind. Hierdurch wird gewährleistet, dass die zusätzlich zur natürlichen Strahlenexposition erhaltene Dosis den von der SSK empfohlenen Richtwert von 1 mSv a⁻¹ nicht überschreitet. Solche Flächen sind, falls die spezifische Aktivität eines Nuklides der U-Ra-Reihe im Boden 1 Bq g⁻¹ nicht überschreitet, für die Nutzung als landwirtschaftliche Grünfläche, für gewerbliche Nutzung o. Ä. geeignet.

ODL-Werte über 300 nSv h^{-1} konnten in der VF Gottesberg-Schneckenstein im Bereich der IAA Schneckenstein sowie in der VF Lengenfeld an Punkten in der Nähe des Lenkteiches und der IAA gemessen werden. Dies ist auf die Rückstände aus der Uranerzaufbereitung zurückzuführen.

Auf dem Lenkteich selbst wurden Extremwerte von bis zu 1200 nSv h^{-1} gemessen [Knö03]. Hier sind stellenweise Tailingmaterialien frei zugänglich. Auf dieses Problem wird in Kapitel 5.4 noch eingegangen.

Die sechs im Q-Q-Diagramm deutlich auffallenden Werte sind alle in der VF Lengenfeld im Bereich der IAA, des Lenkteiches oder des Plohnbaches gemessen worden.

Abbildung 5.2: Q-Q-Diagramm der ODL-Messwerte

Abbildung 5.3: Trendbereinigtes Q-Q-Diagramm der ODL-Messwerte

Für diese Bereiche ist zu prüfen, ob der Richtwert für die zusätzliche Dosis von 1 mSv a^{-1} überschritten werden kann, und ob Nutzungsbeschränkungen oder Sanierungsmaßnahmen erforderlich sind. Dies sollte auch für den Bereich des Lenkteiches erfolgen, obwohl dieser im rechtlichen Sinne keine Hinterlassenschaft des Uranbergbaus ist.

5.2 Muldesystem

Die Radionuklidgehalte der Sedimente zeigen deutliche Unterschiede zwischen Freiberger, Zwickauer und Vereinigter Mulde. Zur Lage der Probenahmeorte befinden sich Karten in Anhang A. Das Fließschema zeigt Abbildung 5.4. Die ²³⁸U-Gehalte im Verlauf des gesamten Flusssystems aus Freiberger, Zwickauer und Vereinigter Mulde zeigt Abbildung 5.5, die ²²⁶Ra-Gehalte Abbildung 5.6. In Abbildung 5.7 wird die Veränderung der ²³⁸U- und ²²⁶Ra-Gehalte im Vergleich zum Muldeprojekt dargestellt.

Abbildung 5.4: Fließschema des Systems aus Freiberger, Zwickauer und Vereinigter Mulde

Abbildung 5.5: Spezifische Aktivitäten von ²³⁸U der Sedimentproben aus dem Muldesystem; Literaturwerte sind [Beu99] entnommen

5.2.1 Freiberger Mulde

Die Freiberger Mulde weist im Vergleich zur Zwickauer Mulde generell niedrigere Radionuklidgehalte auf. Die Proben der einzelnen Punkte unterscheiden sich dabei nur wenig. Die Lage der Probenahmepunkte zeigt Abbildung A.2 in Anhang A. Die Messergebnisse für die spezifischen Aktivitäten befinden sich in Tabelle C.19 in Anhang C.

Statistische Kenngrößen der Verteilungen für die Leitnuklide ²³⁸U, ²²⁶Ra und ²¹⁰Pb befinden sich in Tabelle 5.2, die Literaturwerte aus dem Muldeprojekt zum Vergleich in Tabelle 5.3.

Für alle drei Nuklide kann, wie der Shapiro-Wilk-Test (siehe Kapitel 4.7) zeigt, die Annahme einer Lognormalverteilung nicht abgelehnt werden. Arithmetisches und geometrisches Mittel sowie Median sind für alle Nuklide praktisch identisch, was ebenfalls zeigt, dass die Annahme einer Lognormalverteilung geeignet ist, die Verteilung zu beschreiben.

Abbildung 5.6: Spezifische Aktivitäten von ²²⁶Ra der Sedimentproben aus dem Muldesystem; Literaturwerte sind [Beu99] entnommen

Das Verhältnis $\frac{A^{(226}Ra)}{A^{(224}Ra)}$, das nach [Beu99] als Indikator für den Einfluss des Uranerzbergbaus dienen kann, beträgt durchschnittlich 1, $4 \pm 0, 3$. Dieser Wert kann als repräsentativ für den geogenen Untergrund angesehen werden, der vom Uranbergbau nicht beeinflusst ist.

Der geometrische Mittelwert von ²²⁶Ra ist gegenüber dem Literaturwert praktisch gleich geblieben, ebenso zeigt ein t-Test [Ori03], [Fun92] bei einem Signifikanzniveau von 95%, dass die Mittelwerte der Verteilungen sich nicht signifikant unterscheiden. Allerdings unterscheiden sich die geometrischen Mittelwerte der gemessenen Daten für ²³⁸U und ²¹⁰Pb signifikant von den Literaturwerten: der geometrische Mittelwert für ²³⁸U ist um 45% gesunken, der von ²¹⁰Pb um 28%. Dies ist für das Uran aus Abbildung 5.5 sofort ersichtlich, da an praktisch allen Probenahmepunkten die gemessenen Urangehalte geringer sind als die in der Literatur genannten. Diese Tatsache lässt auch darauf schließen, dass es sich nicht um Korngrößeneffekte handelt. Es ist unwahrscheinlich, dass bei der zu dieser Arbeit durchgeführten Probenahme an allen Punkten Sedimentproben mit einem deutlich geringeren Anteil an Feinkorn als in den Untersuchungen zu Muldeprojekt genommen wurden.

Abbildung 5.7: Verhältnis von gemessenem Wert zu Literaturwert für die spezifischen Aktivitäten von ²³⁸U- und ²²⁶Ra; Literaturwerte sind [Beu99] entnommen. Nicht für alle Probenahmepunkte waren Literaturwerte verfügbar.

Die praktisch identischen Mittelwerte für ²³⁸U, ²²⁶Ra und ²¹⁰Pb lassen vermuten, dass in vielen Proben heute ein radioaktives Gleichgewicht in der Zerfallsreihe herrscht. Für Uran und Radium bestätigt sich dies, da der Korrelationskoeffizient für die spezifischen Aktivitäten dieser beiden Nuklide 0,9057 beträgt; dargestellt ist die Beziehung zwischen ²³⁸U und ²²⁶Ra in Abbildung 5.10 auf Seite 70. Dies stellt eine Veränderung im Vergleich zur Situation im Muldeprojekt dar, wo die beiden Nuklide mit einem Koeffizienten von 0,214 nicht korreliert waren, und die Aktivität des Urans an vielen Punkten höher als die des Radiums war. Das Isotopenverhältnis ²³⁸U/²²⁶Ra, das in Abbildung 5.8 dargestellt ist, liegt heute für alle Punkte innerhalb eines Bereiches, der durch die verschiedenen hydrologischen Gegebenheiten und die unterschiedliche Löslichkeit von Uran- und Radiumverbindungen erklärt werden kann.

Es lässt sich anhand der vorliegenden Daten nicht beurteilen, worauf die geringere spezifische Aktivität von $^{238}\rm U$ der Sedimentproben in der Freiberger

Abbildung 5.8: Aktivitätsverhältnis $^{238}\mathrm{U}/^{226}\mathrm{Ra}$ im Muldesystem

Mulde zurückzuführen ist. Denkbar sind:

- Verringerte Uran-Einträge in gelöster Form,
- Mobilisierung von Uran aus dem Sediment und
- Verdünnung durch geringer belastetes Sediment

Der erste Punkt würde auf eine mögliche Verringerung von Einleitungen hindeuten, die Uran in gelöster Form transportieren. Dazu könnten Grubenwässer zählen. Ein Indiz dafür ist, dass insbesondere im Abstrom Freibergs an den Punkten FM14OR und FM12OB sowie nach Zufluss der Zschopau, die ebenfalls bergbauliche Gebiete entwässert, verringerte U-Gehalte gefunden wurden. Nach Prof. Klemm von der TU Freiberg [Kle04] zeigen Grubenwässer aus Buntmetallgruben, die in dieser Region vorhanden sind, jedoch generell sehr niedrige Urangehalte, so dass eine Verringerung der Einleitungen nicht diesen Effekt hätte.

Der zweite Fall könnte eine Folge der Hochwasserereignisse sein. Hier würde

Abbildung 5.9: Aktivitätsverhältnis $^{226}{\rm Ra}/^{224}{\rm Ra}$ im Muldesystem; Literaturwerte sind [Beu
99] entnommen

durch die anströmenden Wassermassen das Sediment aufgewirbelt, und Uran könnte durch Oxidation in eine lösliche Form gebracht werden, die ausgetragen wird. In diesem Fall hätte sich die Situation der Einträge sowie die Quellen frischen Sediments, das sich in Zukunft ablagern wird, nicht geändert. Dagegen spricht, dass das Uran in Sedimenten, die nicht durch den Uranbergbau beeinflusst sind, vor allem in den Akzessorien zu finden ist [Ges96]. Hier könnte ein Übergang in die gelöste Form als U(VI) nur durch Verwitterung erfolgen, nicht aber durch kurzfristige Hochwasserereignisse.

Verlagerung von Sediment und somit die Freilegung älterer Schichten kommt ebenfalls nicht in Frage, da sich die Belastungssituation in der Freiberger Mulde durch Radionuklideinleitungen nicht wesentlich geändert hat. Möglich scheint der dritte Fall: Verdünnung durch unbelastetes Sediment. Durch die in Folge der Starkregenfälle gefluteten Grubenbaue wurden zum Teil große Mengen Sediment mit geringen Radionuklidgehalten eingetragen.

Zur Beurteilung wäre eine umfassendere Kenntnis des zeitlichen Verlaufs der

	U-238	Ra-226	Pb-210
arithm. Mittel	$58,9\pm17,6$	$62,6\pm16,0$	$65,5\pm21,3$
geom. Mittel	$56, 4 \times 1, 35^{\pm 1}$	$60, 5 \times 1, 31^{\pm 1}$	$62, 2 \times 1, 39^{\pm 1}$
Median	54, 6	61, 8	61, 2
Minimum	30, 8	33, 6	34, 4
25~%-Quantil	46,9	48,7	48, 5
75 %-Quantil	64	74, 4	78, 5
Maximum	97, 6	92, 2	107, 3
n	20	20	20

Tabelle 5.2: Gemessene Daten für die Freiberger Mulde. alle Aktivitäten in B
q $\rm kg^{-1}$

Tabelle 5.3: Literatur-Daten für die Freiberger Mulde, alle Aktivitäten in B
q $\rm kg^{-1}$

	U-238	Ra-226	Pb-210
arithm. Mittel	$108,6\pm 38,1$	$65,8\pm19,2$	$87,9\pm19,4$
geom. Mittel	$103, 0 \times 1, 39^{\pm 1}$	$63, 3 \times 1, 33^{\pm 1}$	$86, 1 \times 1, 25^{\pm 1}$
Median	90	60	86
Minimum	62	37	60
25~%-Quantil	80	53	76
75~%-Quantil	130	80	98
Maximum	180	110	123
n	15	19	7

U-Gehalte notwendig. So ist zu klären, wie sich diese zwischen den Untersuchungen zum Muldeprojekt und den in dieser Arbeit durchgeführten entwickelt haben. Sind sie vor der Flut gesunken, würde dies für den ersten Punkt sprechen. Sind die Gehalte jedoch konstant auf dem im Muldebericht [Beu99] genannten Niveau geblieben, wären der zweite oder der dritte Punkt wahrscheinlich. In diesem Falle würden die Gehalte an Uran in der Zukunft durch nachgebildetes Sediment wieder langsam bis auf den früheren Wert ansteigen. Die Ergebnisse der TU Freiberg, die regelmäßig Schwermetalluntersuchungen im Bereich der Freiberger und der Zwickauer Mulde durchführt, könnten eventuell zur Klärung beitragen.

Eine durch das Hochwasser entstandene Belastungssituation durch Radionuklide im Bereich der Freiberger Mulde ist anhand der vorliegenden Daten nicht zu erkennen. Eine Beeinflussung der Radionuklidgehalte im Sediment der Freiberger Mulde durch das Hochwasser kann nicht abschließend beurteilt werden. Sie ist jedoch nicht auszuschließen.

Auffälligkeiten einzelner Punkte sind im Bereich der Freiberger Mulde nicht zu erkennen, so dass auf die Einzelpunkte nicht eingegangen werden muss.

Abbildung 5.10: Beziehung zwischen ²³⁸U und ²²⁶Ra in der Freiberger Mulde

5.2.2 Zwickauer Mulde

An der Zwickauer Mulde wurden insgesamt 17 Punkte über den gesamten Verlauf von Tannenbergsthal bis Sermuth beprobt. Die Lage der Probenahmepunkte zeigt Abbildung A.3 in Anhang A, die Messergebnisse befinden sich in Tabelle C.20 in Anhang C.

Es ergaben sich generell höhere Radionuklidgehalte als in der Freiberger Mulde, und aufgrund des Verhältnisses $\frac{A(^{226}Ra)}{A(^{224}Ra)}$ an den einzelnen Punkten ist praktisch der gesamte Flusslauf unterhalb des Zuflusses der Kleinen Pyra als bergbaulich beeinflusst anzusehen.

Die Annahme einer Lognormalverteilung kann nach dem Shapiro-Wilk-Test für alle drei Nuklide nicht abgelehnt werden. Arithmetisches und geometrisches Mittel sowie Median unterscheiden sich deutlich. Der Unterschied zwischen Median und geometrischem Mittelwert zeigt, dass tatsächlich keine reine Lognormalverteilung vorliegt. Punkte mit hohen Nuklidkonzentrationen sind überrepräsentiert.

Die Uranbelastung der Zwickauer Mulde ist seit den Untersuchungen des Muldeprojektes stark zurückgegangen, der Median sank von 1005 Bq $\rm kg^{-1}$ auf

	U-238	Ra-226	Pb-210
arithm. Mittel	$499, 6 \pm 326, 9$	$216,3\pm83,1$	$190,3\pm63,2$
geom. Mittel	$384, 9 \times 2, 28^{\pm 1}$	$199,7 \times 1,55^{\pm 1}$	$179, 1 \times 1, 46^{\pm 1}$
Median	446, 6	215, 1	192, 0
Minimum	57, 1	61,7	64, 6
25~%-Quantil	291,1	160,0	155,9
75~%-Quantil	693,2	266, 6	219,3
Maximum	1134,0	$391,\! 6$	$337,\!3$
n	17	17	17

Tabelle 5.4: Daten für die Zwickauer Mulde, alle Aktivitäten in Bq kg^{-1}

Tabelle 5.5: Literatur-Daten für die Zwickauer Mulde, alle Aktivitäten in B
q $\rm kg^{-1}$

	U-238	Ra-226	Pb-210
arithm. Mittel	$1114, 4 \pm 688, 7$	$278,3\pm87,3$	$265,4\pm71,2$
geom. Mittel	$916, 1 \times 2, 02^{\pm 1}$	$259, 3 \times 1, 56^{\pm 1}$	$255, 7 \times 1, 34^{\pm 1}$
Median	1005	286	270
Minimum	150	63	135
25~%-Quantil	690	230	210
75~%-Quantil	1260	330	270
Maximum	3000	420	390
n	16	16	12

447 Bq kg⁻¹ und somit um 55 %. Weniger ausgeprägt ist der Rückgang von ²²⁶Ra und ²¹⁰Pb, die um 24 % beziehungsweise 28 % sanken. Die Abnahme der gesamten Uranfracht ist wesentlich auf verringerte Einleitungen zurückzuführen. Der Grund dafür sind Sanierungsmaßnahmen von uranbergbaulichen Objekten in den Gebieten Schlema-Alberoda und Crossen sowie die Inbetriebnahme der Wasserbehandlungsanlagen (WBA) Pöhla (1995), Helmsdorf (1995) und Schlema-Alberoda (1998) [Wis01]. Abbildung 5.11 zeigt, dass weiterhin die spezifische Aktivität von ²³⁸U deutlich über der von ²²⁶Ra liegt. Dies deutet auf den Eintrag von Uran in gelöster Form und anschließende Ausfällung hin. Bestätigt wird diese Vermutung durch den Wismut-Umweltbericht 2002 [Wis02b], aus dem hervorgeht, dass die durch WBA eingeleiteten Aktivitäten von ²³⁸U gegenüber ²²⁶Ra dominieren.

An der Zwickauer Mulde ergibt sich kein einheitliches Bild an den verschiedenen Probenahmepunkten. Es zeigt sich folgendes:

• Der erste Punkt ZM01TA zeigt einen ²³⁸U-Gehalt von 113,9 ± 8,9 Bq kg⁻¹, die Gehalte an ²²⁶Ra und ²¹⁰Pb liegen nur leicht darüber. Das Verhältnis der Radiumisotope ²²⁶Ra zu ²²⁴Ra beträgt 1,7± 0,1. Die Gehalte am Punkt ZM04WO sind ähnlich, jedoch beträgt das Verhältnis $\frac{A^{(226}Ra)}{A^{(224}Ra)}$ hier 2,9±0,1.

Abbildung 5.11: Beziehung zwischen ²³⁸U und ²²⁶Ra in der Zwickauer Mulde

- Die Punkte ZM02SH und ZM05AU sind miteinander vergleichbar, die Radionuklidgehalte liegen etwa um einen Faktor 2 bis 3 über den Gehalten am Punkt ZM01TA.
- Die Punkte ZM08NS und ZM81HS weisen im Sediment einen deutlich höheren Gehalt an ²³⁸U auf, der 1 kBq kg⁻¹ beträgt. Die spezifischen Aktivitäten von ²²⁶Ra und ²¹⁰Pb sind dagegen auf durchschnittlichem Niveau. Die Radionuklidgehalte des frischen schwebstoffbürtigen Sediments aus der Sedimentfalle am Punkt ZM81HS liegen für alle Nuklide leicht über denen des mit dem Schöpfer gewonnenen Sediments. Das Isotopenverhältnis ²²⁶Ra/²²⁴Ra liegt mit 4,7±0,3 ebenfalls noch über dem Verhältnis für das geschöpfte Sediment, das in etwa dem Durchschnitt für die Zwickauer Mulde von 3,3 entspricht.
- Nachdem an den Punkten ZM10WI und ZM12ZP deutlich niedrigere ²³⁸U-Gehalten und leicht verringerte spezifischen Aktivitäten an ²²⁶Ra und ²¹⁰Pb zu messen waren, sind an den Punkten ZM14OR, ZM16GC und ZM19KE wieder hohe Werte von ca. 700 Bq kg^{-1 238}U zu finden, am Punkt ZM19KE ist zusätzlich das Verhältnis ²²⁶Ra/²²⁴Ra mit 6, 2 ± 0, 3 deutlich erhöht.

- Die Probe ZM24WE zeigt sehr niedrige spezifische Aktivitäten aller Radionuklide, die im Bereich des geogenen Untergrunds sich befinden.
- Die Punkte ZM21AM, ZM22GÖ, ZM25LA und ZM26SE sind vergleichbar mit ZM10WI und ZM12ZP, wobei am Punkt ZM26SE leicht höhere Werte gemessen wurden.

Damit zeigt sich im Vergleich mit den Daten aus dem Muldeprojekt folgendes:

Am Punkt ZM01TA konnte der ²³⁸U-Wert aus dem Muldeprojekt [Beu99] reproduziert werden, es wurde jedoch ein um den Faktor drei höherer Wert der spezifischen Aktivität von ²²⁶Ra, das sich im radioaktiven Gleichgewicht mit ²¹⁰Pb befindet, gemessen. Diese Aktivität liegt jedoch nur geringfügig über dem geogenen Untergrund, dem auch das ²²⁶Ra/²²⁴Ra-Verhältnis mit 1,7 entspricht, so dass hier von natürlicher Schwankung auszugehen ist.

Die Punkte ZM02SH und ZM04WO zeigen den Einfluss der Kleinen Pyra, die das Gebiet Gottesberg-Schneckenstein entwässert. Hier ist die spezifische Aktivität des Urans auf etwa ein Drittel, die des ²²⁶Ra auf etwa zwei Drittel der im Muldeprojekt erhaltenen Werte gesunken. Dies kann darauf hin deuten, dass die Einträge durch die Kleine Pyra abgenommen haben. Laut [Beu99] fanden allerdings schon zum Zeitpunkt des Muldeprojektes keine Ableitungen mehr aus bergbaulichen Anlagen in diesem Bereich statt. Ein bergbaulicher Einfluss ist am ²²⁶Ra/²²⁴Ra-Verhältnis von 4, 4 ± 0,3 am Punkt ZM02SH aber weiterhin deutlich zu erkennen, auch ist hier das radioaktive Gleichgewicht noch leicht zum Uran hin verschoben. Am Punkt ZM04WO unterhalb der Talsperre Eibenstock befindet sich die U-Ra-Reihe dagegen jetzt im Gleichgewicht, was darauf hin deutet, dass in der Talsperre, die als Sedimentfalle wirkt, gelöstes Uran ausfällt. Im Verlauf der Mulde sind am Punkt ZM05AU dann wieder leicht höhere Werte zu finden.

An den Punkten ZM08NS und ZM81HS zeigt sich dann die höchste spezifische Aktivität von Uran im Sediment, die bei diesen Untersuchungen im gesamten Muldesystem gefunden wurde. Sie ist im Vergleich mit den Untersuchungen aus dem Muldeprojekt am Messpunkt ZM08NS auf 60% gesunken, während die ²²⁶Ra- und ²¹⁰Pb-Aktivität nur leicht niedriger als in den früheren Untersuchungen liegen. Dies lässt darauf schließen, dass die Belastung durch Einträge aus dem Gebiet Aue-Schlema abgenommen hat. Der Einfluss auf die Zwickauer Mulde ist aber weiterhin deutlich erkennbar. Das zum Uran hin verschobene radioaktive Gleichgewicht zeigt, dass die Einträge hauptsächlich Uran in gelöster Form transportieren, das in der Zwickauer Mulde ausgefällt wird. Bei diesen Einträgen handelt es sich um die Ableitungen aus der WBA Schlema-Alberoda. Hier ist insbesondere für das Jahr 2002 eine gegenüber ²²⁶Ra deutlich höhere Aktivität von ²³⁸U eingeleitet worden. Diese außergewöhnlich hohen Einleitungen sind eine Folge der Starkregenereignisse, bei der deutlich höhere Wassermassen bei gleichbleibender Urankonzentration abgegeben wurden [Wis02b]. Eine Abnahme der Radionuklide
inträge zeigt sich auch sehr deutlich am Punkt ZM10WI, an dem die spezifische Aktivität von
 $^{238}\rm U$ im Sediment um den Faktor 5 abgenommen hat. Die Radionuklid
gehalte sind jetzt vergleichbar mit denen am Probenahmeort ZM12ZP, die nur marginal höher liegen.

Der Punkt ZM14OR wies im Muldeprojekt die höchsten Urangehalte im Muldesystem auf, da er die Einflüsse der im Gebiet Crossen-Oberrothenbach liegenden uranbergbaulichen Objekte zeigte. Die spezifische Aktivität von ²³⁸U ist heute sehr stark zurückgegangen und jetzt so hoch wie an den flussabwärts liegenden Punkten ZM16GC und ZM19KE. Dies ist auf den Betrieb der WBA Helmsdorf zurückzuführen. Auch hier ist das radioaktive Gleichgewicht zum Uran hin verschoben, die Aktivität von ²³⁸U ist etwa doppelt so hoch wie die von ²²⁶Ra. Auffällig ist am Punkt ZM19KE das extreme Verhältnis ²²⁶Ra/²²⁴Ra von $6, 2 \pm 0, 3$.

Im weiteren Verlauf der Zwickauer Mulde wurden an den Probenahmepunkten ZM21AM, ZM22GÖ, ZM25LA und ZM26SE im Vergleich zu früheren Untersuchungen ebenfalls geringere spezifische Aktivitäten an Uran im Sediment gefunden, sie entsprechen heute in etwa dem Median für die Zwickauer Mulde. Wie an fast allen Punkten ist der Urangehalt deutlich stärker zurückgegangen als der Gehalt an 226 Ra.

Die Radionuklidgehalte am Punkt ZM24WE unterscheiden sich deutlich von den übrigen Punkten der Zwickauer Mulde. Die Gehalte liegen im Bereich des geogenen Untergrunds, und das 226 Ra/ 224 Ra-Isotopenverhältnis weist auf keinen uranbergbaulichen Einfluss hin. Der Probenahmeort liegt jedoch ungefähr 2 km unterhalb des Zuflusses der Chemnitz, die wesentlich größere Wassermassen transportiert als die Zwickauer Mulde, so dass ein großer Anteil des an diesem Probenahmepunkt vorhandenen Sediments aus der Chemnitz stammt.

Im Bereich der Zwickauer Mulde sind generell die Belastungen durch den Bau von Wasserbehandlungsanlagen zurückgegangen. Zur Beurteilung der Flutfolgen ist jedoch eine genauere Kenntnis der Situation kurz vor dem Augusthochwasser 2002 notwendig. Die Daten aus dem Muldeprojekt können wegen der stark veränderten Situation im Umfeld der Mulde durch Sanierungs- und Sicherungsmaßnahmen an bergbaulichen Objekten sowie durch den Bau von Wasserbehandlungsanlagen zur Klärung dieser Frage nicht beitragen. Für die Einschätzung der Situation unmittelbar vor der Flut und der zeitlichen Entwicklung der Belastung könnten auch hier die regelmäßigen Untersuchungen der TU Freiberg hilfreich sein. Diese könnten besonders bei der Klärung von zwei Punkten helfen:

• Im Oberlauf der Zwickauer Mulde sind im Vergleich zum Muldeprojekt verringerte Nuklidgehalte vorgefunden worden. Hier ist ein Reinigungseffekt durch die Flut denkbar.

- Durch die in der Folge der Starkregenereignisse 2002 erhöhten Uran-Einleitungen der WBA Schlema-Alberoda könnten sich im Abstrom die Nuklidgehalte gegenüber der Situation vor der Flut erhöht haben.
- Auch Mobilisation von Uran aus dem Sediment oder der Transport von Uran-kontaminiertem Sediment ist denkbar.

Für die Einschätzung dieser Effekte ist die Kenntnis der Situation unmittelbar vor der Flut notwendig.

Der Einfluss der Starkregen- und Hochwasserereignisse im August 2002 kann anhand der vorliegenden Daten nicht sicher beurteilt werden.

5.2.3 Vereinigte Mulde

An der Vereinigten Mulde wurden insgesamt 13 Punkte über den gesamten Verlauf untersucht. Zusätzlich wurden zwei Punkte an den Nebenflüssen Spittelwasser (VM23FU) und Fuhne (VM21RE) beprobt. Diese beiden Punkte zeigen sehr niedrige Radionuklidgehalte und können als repräsentativ für das geogene Niveau am Unterlauf der Vereinigten Mulde angesehen werden. Sie werden daher in die weiteren Betrachtungen nicht mit einbezogen. Die Lage der Probenahmepunkte zeigen die Karten A.4 und refbitterfkarte in Anhang A, die spezifischen Aktivitäten befinden sich in Tabelle C.19 und C.20 in Anhang C. Die statistische Auswertung der Messergebnisse für die Vereinigte Mulde zeigt Tabelle 5.6.

Tabelle 5.6: Daten für die Vereinigte Mulde, alle Aktivitäten in Bq kg^{-1}

	U-238	Ra-226	Pb-210
arithm. Mittel	$101,9\pm53,2$	$74,6\pm 39,8$	$77,4\pm39,6$
geom. Mittel	$87,9 \times 1,81^{\pm 1}$	$63, 8 \times 1, 85^{\pm 1}$	$67, 6 \times 1, 75^{\pm 1}$
Median	$94,\! 6$	72,5	72,9
Minimum	34,2	26,0	29,4
25%-Quantil	48,9	30,9	42,4
75%-Quantil	138,2	113,2	116,2
Maximum	183,0	127,8	146,2
n	13	13	13

Auch bei der Vereinigten Mulde kann für die Nuklide ²³⁸U, ²²⁶Ra und ²¹⁰Pb die Annahme einer Lognormalverteilung nicht abgelehnt werden. Wie auch bei der Zwickauer Mulde ist insbesondere die Belastung mit Uran gesunken, so fiel der Median von 260 Bq kg⁻¹ auf 96 Bq kg⁻¹. Die Nuklidgehalte sind aber weiterhin höher als in der Freiberger Mulde und zeigen den Einfluss der Zwickauer Mulde. Auch die Gehalte an ²²⁶Ra sowie ²¹⁰Pb sind gesunken. Obwohl die Mediane von ²³⁸U und ²²⁶Ra sich unterscheiden, ist eine Korrelation der beiden Nuklide zu erkennen, dies wird auch in Abbildung 5.12 deutlich.

	U-238	Ra-226	Pb-210
arithm. Mittel	$370,9\pm276,7$	$126,7\pm59,1$	$116, 8 \pm 61, 0$
geom. Mittel	$265, 8 \times 2, 52^{\pm 1}$	$108, 5 \times 1, 96^{\pm 1}$	$106, 9 \times 1, 56^{\pm 1}$
Median	260	134	91
Minimum	60	22	76
25%-Quantil	140	95	76
75%-Quantil	680	185	120
Maximum	750	210	221
n	11	11	5

Tabelle 5.7: Literatur-Daten für die Vereinigte Mulde, alle Aktivitäten in B
q $\rm kg^{-1}$

Diese Korrelation mit einem Koeffizienten von 0,9587 deutet darauf hin, dass das Isotopenverhältnis in der Vereinigten Mulde nicht mehr wesentlich verändert wird. Die Ursache für die Verschiebung des Radioaktiven Gleichgewichtes zum ²³⁸U hin liegt somit in den Uraneinträgen durch die Zwickauer Mulde.

Bei Betrachtung der Einzelpunkte zeigt sich, dass die Nuklidgehalte mit dem Flussverlauf abnehmen, was wegen Verdünnungseffekten sofort verständlich ist. Diese führen dazu, dass die Radionuklidgehalte im Sediment nahe der Mündung der Mulde in die Elbe nur noch geringfügig über dem geogenen Niveau liegen, das als Durchschnitt für die Freiberger Mulde ermittelt wurde. Die Ursache für die im Vergleich zum Muldeprojekt geringeren spezifischen Aktivitäten, die gefunden wurden, ist in den Sanierungsmaßnahmen an uranbergbaulichen Anlagen im Gebiet der Zwickauer Mulde zu suchen.

Der Einfluss der Flutereignisse auf die Radionuklidsituation in der Vereinigten Mulde kann wie für die Zwickauer Mulde bei der vorhandenen Datenlage nicht beurteilt werden.

Abbildung 5.12: Beziehung zwischen ²³⁸U und ²²⁶Ra in der Vereinigten Mulde

5.3 Geogene Punkte in den Verdachtsflächen

Zur Abschätzung des geogenen Niveaus in den Verdachtsflächen wurden, verteilt über alle VF, 21 Punkte beprobt, die im Rahmen der Untersuchungen zum Altlastenkataster [Ett01] als repräsentativ für den geogenen Hintergrund ausgewählt wurden und somit Vergleichswerte für uranbergbaulich unbeeinflusste Sedimente liefern. Die geogenen Punkte sind in Tabelle C.25 im Anhang aufgeführt.

Die statistische Auswertung der Messergebnisse zeigt Tabelle 5.8, die der Literaturwerte Tabelle 5.9

Für die gemessenen Werte von ²²⁶Ra und ²¹⁰Pb sowie für die Literaturwerte aller drei Nuklide ist die Annahme einer Lognormalverteilung nicht abzulehnen. Es findet sich aber ein höherer Anteil an größeren Werten für ²³⁸U bei den gemessenen Daten, als eine Lognormalverteilung erwarten lässt. Dies ist im Histogramm (Abbildung 5.13) erkennbar. Dies ist möglicherweise auf Korm-größeneffekte zurückzuführen.

	U-238	Ra-226	Pb-210
arithm. Mittel	$102,4\pm65,4$	$109,7\pm51,4$	$102,6\pm 39,2$
geom. Mittel	$89, 1 \times 1, 65^{\pm 1}$	$100, 5 \times 1, 51^{\pm 1}$	$95,9 \times 1,46^{\pm 1}$
Median	77,5	$93,\!6$	93,7
Minimum	52,7	$53,\!5$	52,2
25~%-Quantil	$60,\!6$	74,1	$76,\! 6$
75~%-Quantil	112,9	126,9	126,7
Maximum	308,1	254,0	202,9
n	21	21	21

Tabelle 5.8: Daten für die geogenen Punkte in den Verdachtsflächen, alle Aktivitäten in Bq $\rm kg^{-1}$

Tabelle 5.9: Literaturdaten für die geogenen Punkte in den Verdachtsflächen, alle Aktivitäten in B
q $\rm kg^{-1}$

	U-238	Ra-226	Pb-210
arithm. Mittel	$75,0\pm31,6$	$68, 3 \pm 28, 0$	$56, 6 \pm 31, 8$
geom. Mittel	$69,0 \times 1,53^{\pm 1}$	$63, 7 \times 1, 45^{\pm 1}$	$48,5 \times 1,46^{\pm 1}$
Median	74	58	53
Minimum	32	36	13
25~%-Quantil	56	50	31
75 %-Quantil	91	75	61
Maximum	151	131	130
n	21	21	20

Für alle drei Nuklide liegen unsere Messergebnisse leicht über denen der Untersuchungen aus dem Altlastenkataster. Es fällt auf, das die Maxima der gemessenen Werte deutlich über denen der Literaturwerte liegen. Dies ist vermutlich auf Korngrößeneffekte zurückzuführen, was auch den Anteil der hohen ²³⁸U-Werte im Histogramm erklärt.

Vergleicht man die gemessenen Werte mit den Angaben für die spezifische natürliche Untergrund-Aktivität in der Feinkornfraktion des Bodens in den Berechnungsgrundlagen-Bergbau [Str99], so ist die Abschätzung mit 100 Bq kg⁻¹ für die Nuklide der Uran-Radium-Zerfallsreihe auch für Sediment sinnvoll.

Das Verhältnis A(²²⁶Ra)/A(²²⁴Ra) beträgt für die geogenen Punkte im arithmetischen Mittel 1, 7 ± 0,6 und liegt damit leicht höher als im Mittel für die Freiberger Mulde. Dies wird offensichtlich durch die zwei markierten Messwerte verursacht, wie man in Abbildung 5.14 erkennen kann. Diese stammen von den Punkten 9001047 am Oelsabach in der VF Freital und 9003022 an der Zwickauer Mulde vor Tannenbergsthal in der VF Gottesberg-Schneckenstein. Das Verhältnis A(²²⁶Ra)/A(²²⁴Ra) beträgt hier 3,9 bzw. 3,0. Berücksichtigt man diese beiden Punkte nicht, so beträgt das arithmetische Mittel 1, 4 ± 0, 3 und entspricht somit dem in der Freiberger Mulde. Dieser Wert kann als re-

Abbildung 5.13: Histogramm der spezifischen Aktivitäten von $^{238}\mathrm{U}$ der geogenen Punkte in den VF

päsentativ für bergbaulich unbeeinflusstes Sediment angesehen werden. Der Grund für die Abweichung der Punkte 9001047 und 9003022, die bezüglich ihrer Radionuklidgehalte unauffällig sind, ist nicht bekannt.

5.4 Lengenfeld

Die Messergebnisse für die Verdachtsfläche Lengenfeld zeigen zum Teil deutliche Veränderungen im Vergleich zu den Ergebnissen aus dem Altlastenkataster [Dus02b]; ein einheitlicher Trend ist jedoch nicht erkennbar. Die Lage der Probenahmepunkte zeigt Karte A.6 in Anhang A, die Koordinaten und Erklärungen zur Lage der Punkte Tabelle C.30.

Beprobt wurden

- am Waldkirchener Bach der Punkt 7112004,
- im Verlauf des Freibaches die Punkte 9004098, 403628027, 403628028, 403628030, 403628031 und 403628032,

Abbildung 5.14: Beziehung zwischen 226 Ra und 224 Ra. Berücksichtigt man die beiden markierten Werte (siehe Text) nicht, so gilt für die Gerade R=0,934.

- ein Bach im Wald nahe der IAA am Punkt 403628034,
- ein Sickerwasser am Damm der IAA, hier wurde eine Mischprobe der Punkte 403628035 und 403628036 genommen;
- am Plohnbach die Punkte 9004094, 403628037 und 403628038, 403628040-46 und 7112002,
- eine Mischprobe am Ufer des Stauteiches 403628053,
- ein Haldensickerwasser in den Plohnbach am Punkt 403628062;
- im Verlauf der Göltzsch die Punkte 403629637, 9004103, 403629638, 7112001 und 403629641.

Graphische Darstellungen der spezifischen Aktivitäten von ²³⁸U bzw. ²²⁶Ra finden sich in den Abbildungen 5.16 und 5.17.

Es sind in auch in der Verdachtsfläche Lengenfeld zum Teil deutliche Veränderungen erkennbar. Da diese keinem einheitlichen Trend folgen, ist eine einzelne Betrachtung der Punkte notwendig.

Abbildung 5.15: Fließschema der Gewässer in der VF Lengenfeld

- Waldkirchener Bach:
 - Am Punkt 7112004 liegen die spezifischen Aktivitäten von ²³⁸U und ²²⁶Ra bei 71, 8 ± 6, 3 Bq kg⁻¹ bzw. 92, 0 ± 2, 6 Bq kg⁻¹, ²²⁶Ra und ²¹⁰Pb befinden sich im Gleichgewicht. Das ²²⁶Ra/²²⁴Ra-Verhältnis beträgt 1, 4 ± 0, 1.
- Freibach
 - Der Probenahmepunkt 9004098 zeigt im Sediment eine spezifische Aktivität an ^{238}U von 184 Bq kg $^{-1}$ und an ^{226}Ra von 142 Bq kg $^{-1}$. Das $^{226}\text{Ra}/^{224}\text{Ra-Verhältnis beträgt ebenfalls }1,4\pm0,1.$
 - Die Probenahmeorte 403628027 und 403628028 zeigen beide 238 U-Werte von etwa 240 Bq kg⁻¹. Am Punkt 403628027 ist die 226 Ra-Aktivität mit 513 Bq kg⁻¹ deutlich höher.
 - Die Punkte 403628031 und 403628032 zeigen $^{238}\rm U-Werte$ von 238 Bq kg $^{-1}$ bzw. 332 Bq kg $^{-1}$, die Aktivitäten von $^{226}\rm Ra$ sind vergleichbar.
 - Die Mischprobe 403628035+36 zeigt sehr hohe spezifische Aktivitäten an 238 U und 226 Ra, diese betragen 2200 Bq kg⁻¹ bzw. 4600 Bq kg⁻¹. Das Verhältnis 226 Ra/ 224 Ra beträgt 13, $6 \pm 0, 8$.

Abbildung 5.16: Spezifische Aktivitäten von 238 U in der VF Lengenfeld, Literaturwerte sind [Dus02b] entnommen

- Plohnbach
 - Am Punkt 9004094 sind spezifische Aktivitäten von 325 Bq kg⁻¹ für 238 U und 250 Bq kg⁻¹ für 226 Ra zu finden.
 - Im Verlauf zwischen den Punkten 403628037 bis 403628044 steigt die Aktivität von 238 U auf etwa 1000 Bq kg⁻¹ und die Aktivität von 226 Ra auf etwa 950 Bq kg⁻¹ merklich an. Das 226 Ra/ 224 Ra-Verhältnis erhöht sich von 1,5 auf über 10.
 - Am Probenahmeort 403628062 ist eine sehr hohe Aktivität von 238 U zu finden. Diese beträgt 3300 Bq kg $^{-1}$ und ist deutlich höher als die Aktivität von 226 Ra.
 - Die Werte am Punkt 403628045 betragen etwa 2500 Bq kg⁻¹ für ²³⁸U und ²²⁶Ra. Das ²²⁶Ra/²²⁴Ra-Verhältnis nimmt mit 47, $3 \pm 2, 8$ den höchsten gemessenen Wert in der Verdachtsfläche Lengenfeld an.
 - -Zu den Punkten 7112002 und 403628046 nehmen die Aktivitäten

Abbildung 5.17: Spezifische Aktivitäten von ²²⁶Ra in der VF Lengenfeld, Literaturwerte sind [Dus02b] entnommen

an $^{238}\rm{U}$ und $^{226}\rm{Ra}$ sowie das $^{226}\rm{Ra}/^{224}\rm{Ra}$ -Verhältnis wieder ab. Die Aktivitäten sind mit über 1 kBq kg^{-1} für $^{238}\rm{U}$ und $^{226}\rm{Ra}$ jedoch weiterhin sehr hoch.

- \bullet Göltzsch
 - Im Verlauf der Göltzsch steigen die Werte für ²³⁸U von 65 Bq kg⁻¹ auf 185 Bq kg⁻¹ und die von ²²⁶Ra von 75 Bq kg⁻¹ auf 195 Bq kg⁻¹ an. Für das Verhältnis ²²⁶Ra/²²⁴Ra ist ebenfalls ein Ansteigen von 1,1 auf 2,6 zu beobachten.

Unter Berücksichtigung der Literaturdaten [Dus02b] ergibt sich damit Folgendes:

Am Waldkirchener Bach konnte am Punkt 7112004 der Wert für 238 U reproduziert werden. Die spezifische Aktivität von 226 Ra liegt gegenüber dem Wert aus dem Altlastenkataster [Dus02b] um den Faktor 1,5 höher, aber mit 92,0 ± 2,6 Bq kg⁻¹ im Bereich des durchschnittlichen geogenen Niveaus in den Verdachtsflächen.

Abbildung 5.18: Aktivitätsverhältnis $^{226}{\rm Ra}/^{224}{\rm Ra}$ in der VF Lengenfeld, die roten Linien markieren Bereich $1,4\pm0,3$

Am Freibach ist der Probenahmepunkt 9004098 als bergbaulich unbeeinflusster Punkt ausgewählt. Das $^{226}\mathrm{Ra}/^{224}\mathrm{Ra}$ - Verhältnis von 1,4 ± 0,1 bestätigt dies. Die gemessenen Aktivitäten von $^{238}\mathrm{U}$ und $^{226}\mathrm{Ra}$ liegen jedoch über dem durchschnittlichen Niveau für die geogenen Punkte in den VF und liegen um einen Faktor 2 bis 2,5 über den Literaturwerten. Der höhere Nuklidgehalt wird möglicherweise durch Korngrößeneffekte verursacht.

Die Punkte 403628027 und 403628028 zeigen höhere spezifische Aktivitäten als in der Literatur angegeben. Das Verhältnis ²²⁶Ra/²²⁴Ra der Probe 403628027 deutet mit einem Wert von 3 auf uranbergbaulichen Einfluss hin. Dies kann durch Kontaminationen mit Materialien der IAA verursacht worden sein, die auf Sicherungs- und Abdeckungsarbeiten an der IAA zurückzuführen sind. Diese fanden im Zeitraum vor und während der Probenahme statt und gingen mit erheblicher Staubfreisetzung einher. Dies kann auch den Punkt 403628028 beeinflusst haben. An den Punkten 403628030-32 lässt sich kein eindeutiger Trend erkennen. Das Verhältnis ²³⁸U/²²⁶Ra liegt jedoch höher als in den früheren Untersuchungen, was auf verringerte Einträge aus der IAA hindeuten kann. Veränderungen im Verhältnis ²²⁶Ra/²²⁴Ra können leider für diese Beurteilung nicht herangezogen werden, da keine Literaturdaten vorhanden sind.

Abbildung 5.19: Aktivitätsverhältnis ²³⁸U/²²⁶Ra in der VF Lengenfeld

Auffällig ist das Verhältnis $A(^{238}U)/A(^{235}U)$, das mit 8,2 stark von dem theoretischen Wert 21,7 abweicht. Da keine Anreicherungseffekte bekannt sind, ist die Ursache vermutlich in der Probenvorbereitung zu suchen. Die Probe wurde in einer Petrischale gemessen, so dass mangelnde Radon-Dichtigkeit des Messgefäßes (siehe Kapitel 4.3) zu einer Unterschätzung der Aktivität von ²²⁶Ra und zu einem überhöhten Wert von ²³⁵U geführt hat, da wegen Entweichen des Radons keine Einstellung des radioaktiven Gleichgewichtes zwischen ²²⁶Ra und seinen Töchtern erfolgt ist.

Die Probe 403628034 am Waldbach nordwestlich der IAA zeigt Werte im Bereich des geogenen Niveaus. Da der Bach im Anstrom oberhalb der IAA liegt, war dies zu erwarten. Der Grund für die in früheren Untersuchungen höheren Werte ist nicht bekannt.

Die Mischprobe 403628035+36 am Sickerwasser der IAA zeigt sehr hohe Aktivitäten, die spezifische Aktivität von ²²⁶Ra liegt sogar um den Faktor 2,2 höher als in früheren Untersuchungen. Das radioaktive Gleichgewicht ist deutlich zum ²²⁶Ra hin verschoben, und das ²²⁶Ra/²²⁴Ra-Verhältnis beträgt 13, $6 \pm 0, 8$. Ein Einfluss von Tailingmaterialien, die in partikulärer Form eingetragen werden, ist somit zu erkennen.

Am Plohnbach wurde der Probenahmepunkt 9004094 als bergbaulich unbeeinflusst ausgewählt. Wie auch am Punkt 9004098 am Freibach wurden im Rahmen dieser Arbeit deutlich höhere Werte für ²³⁸U und ²²⁶Ra gefunden als bei den Untersuchungen zum Altlastenkataster, so liegt die gemessene spezifische Aktivität von ²³⁸U um den Faktor 6 und die von ²²⁶Ra um den Faktor 5 höher. Auch hier deutet das Verhältnis ²²⁶Ra/²²⁴Ra nicht auf einen uranbergbaulichen Einfluss hin, so dass vermutlich Korngrößeneffekte die Ursache für die erhöhten Nuklidgehalte sind. Auch hier wurde ein zu niedriges Verhältnis $A(^{238}U)/A(^{235}U)$ gefunden, was vermutlich auf die Verwendung von Petrischalen zurückzuführen ist.

Im Verlauf des Plohnbaches zwischen den Punkten 403628037 bis 403628044 kann generell ein Ansteigen der Radionuklidgehalte im Sediment beobachtet werden. Ein einheitlicher Trend ist jedoch nicht auszumachen. Es scheinen zum einen Einträge in gelöster Form, bei denen ²³⁸U dominiert, vorzuliegen, wie dies zum Beispiel am Punkt 403628041 der Fall ist. An anderen Orten ist ²²⁶Ra mit größerer spezifischer Aktivität vertreten. Die Gehalte an ²³⁸U und ²²⁶Ra sind mit bis zu 1000 Bq kg⁻¹ stark erhöht. Das ²²⁶Ra/²²⁴Ra-Verhältnis steigt im Verlauf zwischen den Punkten 403628037 bis 403628044 von 1,5 auf etwa 16 an, was die zunehmende Belastung mit Tailingmaterial verdeutlicht.

Die Mischprobe 403628053 am Ufer des Stauteiches zeigt spezifische Aktivitäten, die mit denen der Proben aus dem Plohnbach vergleichbar sind. Die extremen Aktivitäten, die im Altlastenkataster für den Boden des Stauteiches genannt waren, konnten nicht reproduziert werden. Da für unsere Untersuchungen jedoch nur vom Ufer aus beprobt werden konnte, ist ein Vergleich mit Literaturwerten nicht möglich. Über im Teich zurückgehaltenes Tailingmaterial kann keine Aussage gemacht werden.

Das Sediment des Haldensickerwassers, das am Punkt 403628062 beprobt wurde, zeigt eine extreme spezifische Aktivität von 238 U von 3300 Bq kg⁻¹, die um einen Faktor 19 über der von 226 Ra liegt. Der Transport von 238 U in gelöster Form ist hier deutlich dominierend, was im hier herrschenden schwefelsauren Milieu zu erwarten war. Der pH-Wert des Wassers betrug bei der Messung während der Probenahme 2,5. Dies ist vermutlich auf die Bildung von Schwefelsäure durch die Verwitterung sulfidischer Erze zurückzuführen.

Am Probenahmepunkt 403628045 wurde gegenüber den früheren Untersuchungen stark erhöhte Werte von ²³⁸U und ²²⁶Ra von 2500 Bq kg⁻¹ gefunden, und das ²²⁶Ra/²²⁴Ra-Verhältnis zeigte den höchsten Wert aller Sedimente. Dies ist offensichtlich auf freigelegte, beim Dammbruch 1954 abgelagerte Tailingmaterialien zurückzuführen, die an diesem Probenahmepunkt vorhanden sind. In Abbildung 5.20 sind sie deutlich zu erkennen. Diese Tailingmaterialien, die Aktivitäten von etwa 15 bis 18 kBq kg⁻¹ ²³⁸U und etwa 35 bis 40 kBq kg⁻¹ ²²⁶Ra enthalten (die Daten sind [Knö04] entnommen), können durch den Bach leicht mobilisiert und abtransportiert werden.

Die Untersuchung des *Lenkteiches*, der im Verlauf des Plohnbaches folgt, ist nicht Bestandteil dieser Arbeit. Es liegen auch hier derartige Tailingmateriali-

Abbildung 5.20: Probenahmeort 403628045 mit erkennbaren Tailingmaterialien

en frei. Das Verhältnis 226 Ra/ 224 Ra beträgt in diesen Materialien bis zu 280. Untypisch ist das 238 U/ 226 Ra-Verhältnis in diesen Tailings, das bei etwa 0,5 liegt. Das Uran ist also nur unvollständig entzogen worden, was auf die zum damaligen Zeitpunkt verwendete Extraktionstechnik zurückzuführen ist. Diese Materialien wurden nur mit Wasser gelaugt [Lei04]. Die Darstellung der Ergebnisse für den Lenkteich finden sich ebenfalls in [Knö04].

Der erste Probenahmepunkt unterhalb des Lenkteiches ist der Punkt 7112002. Hier wurden für ²³⁸U mit 2 kBq kg⁻¹ und für ²²⁶Ra mit 1,2 kBq kg⁻¹ sehr hohe Werte. Dies ist auf den Einfluss des Lenkteiches zurückzuführen, möglicherweise handelt es sich um eine Folge der Hochwasserereignisse. Die im Vergleich zum ²²⁶Ra deutlich höhere Aktivität des ²³⁸U deutet auf Transport von Uran in gelöster Form und anschließende sekundäre Fällung hin. Das Uran ging vermutlich durch Auslaugung der im Lenkteich vorhandenen Tailings in Lösung. Die im Altlastenkataster für diesen Punkt angegebenen niedrigen spezifischen Aktivitäten sind allerdings in Frage zu stellen. Am Punkt 9004102, der mit dem Punkt 7112002 praktisch identisch ist und von uns mit diesem zusammengefasst wurde, wurden auch bei den Untersuchungen zum Altlastenkataster [Dus02b] Aktivitäten von etwa 1,5 kBq kg⁻¹ gefunden. Diese Werte scheinen für einen Vergleich besser geeignet.

Auch am Punkt 403628046 vor der Einmündung in die Göltzsch sind spezifische Aktivitäten für 238 U und 226 Ra von 1,2 kBq kg $^{-1}$ bzw. 1,0 kBq kg $^{-1}$ zu finden,

die allerdings etwas unter den Literaturwerten liegen. Eine Veränderung durch die Flut ist hier nicht zu sehen. Der Einfluss der im Lenkteich abgelagerten Tailingmaterialien ist jedoch am $^{226}\mathrm{Ra}/^{224}\mathrm{Ra}$ -Verhältnis von etwa 20 deutlich erkennbar.

Die Proben im Verlauf der *Göltzsch* vor dem Zufluss des Lenkteiches (403629637, 9004103 und 403629638) zeigen Werte, die auf geogenem Niveau liegen.

Am Punkt 7112001 wurden deutlich niedrigere Radionuklidgehalte als in früheren Proben gefunden. Die Aussagekraft ist jedoch fraglich, da nicht an der geplanten Stelle an einem Wehr in der Göltzsch beprobt werden konnte. Daher wurde die Probe etwa 50 m stromaufwärts genommen. Hier ist aber vermutlich Sediment, das zu einem großen Teil mit dem Waldkirchener Bach eingetragen wurde, beprobt worden.

Die Probe 403629641 zeigt daher eher, dass die Göltzsch durch den Plohnbach beeinflusst wird. Die spezifischen Aktivitäten liegen um einen Faktor 2 über dem geogenen Niveau, und das Verhältnis 226 Ra/ 224 Ra ist mit 2, 6 ± 0, 1 erhöht. Die Nuklidgehalte liegen jedoch insbesondere für 226 Ra niedriger als im Altlastenkataster angegeben, so dass möglicherweise höher belastetes Sediment im Rahmen der Hochwasserereignisse abtransportiert wurde. Dies kann jedoch anhand der vorliegenden Messungen nicht beurteilt werden.

Zusammenfassend können in der VF Lengenfeld also im Vergleich zu den Untersuchungen des Altlastenkatasters [Dus02b] Veränderungen in in drei Gebieten ausgemacht werden:

Im Bereich der IAA kam es vermutlich durch Sicherungs- und Abdeckungsarbeiten zu lokal eng begrenzten Kontaminationen im Freibach.

Im Plohnbach kam es im Bereich vor dem Lenkteich zur Freilegung und Mobilisation von abgelagerten Tailingmaterialien. Im Abstrom des Lenkteiches sind ebenfalls Hinweise auf die Verlagerung von Tailingmaterialien zu finden, wobei insbesondere der Transport von Uran durch Auslaugung der abgelagerten Tailingmaterialien zu vermuten ist.

In der Göltzsch sind nach Zufluss des Plohnbaches niedrigere Radionuklidgehalte als in der Literatur angegeben vorgefunden werden. Dies kann auf den Abtransport höher belasteten Sediments hindeuten.

Für den Bereich der IAA ist zu überprüfen, ob die erhöhten Nuklidgehalte tatsächlich auf die Sicherungsarbeiten zurückzuführen sind. Daher sollte in Zukunft untersucht werden, ob im Sediment wieder geringere spezifischen Aktivitäten vorgefunden werden. Dies würde dafür sprechen.

Für die Einschätzung der Flutfolgen reicht die vorhandene Datenlage nicht aus. Dazu wäre im Anstrom und im Bereich des Lenkteiches insbesondere die Kenntnis notwendig, ob die Freilegung von Tailingmaterialien durch die Hochwasserereignisse verursacht wurde. Der heutige Verlauf des Plohnbaches im Lenkteich lässt jedoch vermuten, dass bei Hochwasserereignissen wie im August 2002 bei hohem Wasserstand Tailings in partikulürer Form und Uran durch Auslaugung aus den Tailingmaterialien ausgetragen werden können. Da zu erwarten ist, dass dieses auch zukünftig auftreten wird, sollten Sanierungsmaßnahmen durchgeführt werden, auch wenn es sich beim Lenkteich nicht um ein bergbauliches Objekt im rechtlichen Sinn handelt. Denkbar ist die Abtragung der Tailingmaterialien aus dem Bereich. Diese wurde bereits in Folge der Untersuchungen zum Altlastenkataster angeregt (siehe Kommentare zu den Probenahmepunkten in der Datenbank ALASKA [Ges97]). Auch die Kanalisierung des Plohnbaches könnte geeignet sein, um die Austragung von belasteten Massen zu stoppen oder einzuschränken. Für die Entscheidung über den Umfang der durchzuführenden Sanierungsmaßnahmen sind jedoch weitere Beprobungen und radiologische Betrachtungen notwendig. Diese sind sowohl für den Bereich des Lenkteiches, der frei zugänglich ist, als auch im Abstrom durchzuführen. In diesem Bereich werden Flächen als private Gärten genutzt.

Auch in der Göltzsch sollte durch eine detailliertere Beprobung geklärt werden, wie die Belastungssituation aussieht, und ob sich Unterschiede zu früheren Untersuchungen ergeben. Denkbar ist auch der Einsatz von Sedimentfallen, um die Nuklidgehalte des frischen Sediments zu ermitteln. Diese könnten eine Beurteilung der zukünftigen Entwicklung ermöglichen.

Kapitel 6

Zusammenfassung und Ausblick

In dieser Arbeit wurde die Radionuklidsituation im Bereich der Freiberger, der Zwickauer und der Vereinigten Mulde sowie in der Verdachtsfläche Lengenfeld untersucht. Dies geschah vor dem Hintergrund möglicherweise durch das Hochwasser im August 2002 verursachter Veränderungen. Hierzu wurden während einer vom 05. Mai bis zum 04. Juni 2003 durchgeführten Probenahmekampagne im Muldesystem und allen Verdachtsflächen insgesamt 220 Punkte aufgesucht, 183 Sedimentproben genommen sowie 147 Messungen der Ortsdosisleistung an den Probenahmepunkten durchgeführt.

Bei der Messung der ODL ergaben sich an fast allen Orten Werte, die im Bereich der natürlichen Schwankung des geogenen Untergrunds für diese Gegend liegen. Leicht darüber liegende Werte konnten an zwei Punkten im Bereich der IAA Schneckenstein gemessen werden. Deutlich erhöhte Werte wurden in der Verdachtsfläche Lengenfeld im Bereich des Lenkteiches und der IAA Lengenfeld vorgefunden. Für diese Bereiche sollte geprüft, ob der Richtwert für die zusätzlich zur natürlichen Strahlenexposition erhaltene Dosis von 1 mSv a⁻¹ überschritten werden könnte, gegebenenfalls sind Maßnahmen einzuleiten.

Die gammaspektrometrische Untersuchung der Sedimentproben zeigte, dass die Radionuklidbelastungen im Muldesystem im Vergleich mit den Untersuchungen zum Muldeprojekt in den neunziger Jahren teilweise sehr deutlich zurückgegangen sind. Dies ist insbesondere für die Zwickauer Mulde der Fall, wo der Betrieb von Wasseraufbereitungsanlagen und Sanierungs- und Sicherungsmaßnahmen an uranbergbaulichen Objekten zu einem Rückgang der Belastungen geführt haben. Selbst am Unterlauf der Vereinigten Mulde sind verringerte Nuklidgehalte festzustellen. Hier liegen die spezifischen Aktivitäten im Sediment nur noch geringfügig über dem für die Freiberger Mulde ermittelten geogenen Niveau. Ein Einfluss der Hochwasserereignisse im August 2002 kann jedoch nicht beurteilt werden, da die Situation unmittelbar davor nicht bekannt ist. Die Ergebnisse des Muldeprojektes wegen des in der Zwischenzeit deutlich veränderten Umfeldes nicht mehr geeignet, um eine Einschätzung der Wirkung des Hochwassers zu erlauben.

In der Verdachtsfläche Lengenfeld kam es vermutlich durch Sicherungsarbeiten an der IAA zu einer lokal begrenzten Kontamination im Freibach. Im Bereich des Lenkteiches liegen Tailingmaterialien mit sehr hohen Nuklidgehalten frei. Die spezifische Aktivität beträgt bei 238 U bis zu 18 kBq kg⁻¹ und bei 226 Ra bis zu 40 kBq kg⁻¹. Diese Materialien können durch Hochwasserereignisse verlagert werden. Im Abstrom des Lenkteiches wurden Hinweise auf die Auslaugung von Uran aus diesen Tailingmaterialien gefunden. In der Göltzsch wurden im Sediment niedrigere Radionuklidgehalte als in früheren Untersuchungen vorgefunden. Dies kann auf den Abtransport höher belasteten Sediments hindeuten. Wie auch im Bereich der Mulde ist die Situation unmittelbar vor der Flut nicht bekannt, so dass eine gesicherte Beurteilung der Flutfolgen nicht möglich ist.

Für den Bereich des Lenkteiches, der vollständig öffentlich zugänglich ist, sollte durch weitere Untersuchungen und radiologische Betrachtungen der Umfang nötiger Sanierungsmaßnahmen festgestellt werden. Dies sollte auch im Abstrom des Lenkteiches durchgeführt werden, da sich hier ebenfalls Hinweise auf Verlagerungen ergeben haben. Hierzu wären der Austrag aus dem Lenkteich und die Belastungssituation in der Göltzsch genauer zu untersuchen.

Im Bereich der Mulde könnte ein Vergleich mit Daten aus Schwermetalluntersuchungen der TU Freiberg, die regelmäßig durchgeführt werden, eine bessere Einschätzung der Flutfolgen ermöglichen. Im Bereich der Zwickauer Mulde sollte der Erfolg der Sanierungsmaßnahmen und die Belastungssituation auch in Zukunft untersucht werden. Hierzu sollten auch in Zukunft Untersuchungen der Radionuklidgehalte im Sediment durchgeführt werden. Die Analyse von Sedimentbohrkernen könnte Rückschlüsse auf den Einfluss der Flut zulassen. Außerdem wäre so die Entwicklung der Belastung mit Radionukliden nachzuvollziehen und eine Einschätzung der Situation vor Beginn des Uranbergbaus möglich.

Anhang A

Karten

Die Übersichtskarte A.1 stammt aus [Beu99].

Die Karten A.2 und A.3 im Maßstab 1:1000000 sowie die Karte A.6 im Maßstab 1:50000 sind [Lan01b] entnommen, ©Landesvermessungsamt Sachsen, Bundesamt für Kartographie und Geodäsie 2001

Die Karte A.4 im Maßstab 1:1000000 und die Karte A.5 im Maßstab 1:200000 sind [Lan01a] entnommen, ©Landesamt für Landesvermessung und Datenverarbeitung Sachsen-Anhalt, Bundesamt für Kartographie und Geodäsie 2001

Abbildung A.1: Probenahmepunkte im Muldesystem

Abbildung A.2: Probenahmepunkte an der Freiberger Mulde

Abbildung A.3: Probenahmepunkte an der Zwickauer Mulde

Abbildung A.4: Probenahmepunkte an der Vereinigten Mulde

Abbildung A.5: Probenahmepunkte an der Vereinigten Mulde, Ausschnitt Raum Bitterfeld

Abbildung A.6: Probenahmepunkte in der VF Lengenfeld

Anhang B

Verwendetes Excel-Blatt

Pro	 oe:						Date			.CHN									
Geometr Probenn Messtag Masse: t_Probe t_Nulleffe	ie: ie: **	500ml-Marin 604800	elli ∆t= C kg C s	0 Dichte: 0 1 168 1		g/cm²	<u>Unsic</u> u((m) u(m)	herheiten - 0,1 = 3E-05	<u>ک</u>			$\begin{array}{c} \text{Benutzte} \\ \alpha = e \\ \beta = e \\ 1 - \gamma = g \\ 1 \end{array}$	e Wahrschei 5 95 Modell: A=-	$\begin{array}{l} \text{nlichkeiten } / \\ k_{(1-a)} = \cdot \\ k_{(1-y)} = \cdot \\ k_{(1-y/2)} = \cdot \\ k_{(1-y/2)} = \cdot \\ k_{(1-y/2)} = \cdot \\ m P \epsilon \end{array} \right)$	<u>Quantile</u> 1,64 1,9599628 1,9599628		Efficiency: P1= 2,6 P2= -7, P3= -1, P5= 3,4 P6= 3,4	63E+01 ,66E-01 ,05E-02 ,15E+00 7,1E-01 41E-01	
Nuklid	Energie [keV]	P(Emiss.)	(J)n	×	ω	u _{rei} (£)	Brutto Netto	Probe Cu	(^w)u	Netto	effekt _{u(Y} ^w)	Aktivität [Bq/kg]	u(A) [Bq/kg]	u _{rei} (A) [%]	EKG X*	NWG ⊓*	Vertrauens unten	sbereich oben	Bester Schätzer
	Ura	in / Rac	dium	Rei	he		رر	J-238)										<u> </u>	
Th-234	63,3	0,041	0,002	1,00	0,0522	0,0500		0		32689	0,024								
Pa-234m	1001,0	0,008	0,002	1,00	0,0107	0,0400		0		1088	0,128								
Ra-226	186,1	0,035	0,002	0,45	0,0459	0,0400		0		17445	0,053								
Pb-214 Ph-214	295,2 351 9	0,182 0.351	0,002	5 6	0,0318	0,0400				1123	0,212 0.12								
Bi-214	609,3	0,446	0,002	1,08	0,0168	0,0400		0 0		1588	0,11								
Bi-214	1120,3	0,147	0,002	1,09	0,0097	0,0400		0		693	0,113	TO THE	WATTOT!	0 TOTIAN					
Pb-210	46.5	0.0425	0.002	1.00		0.1000		o o	Acwici III	3052	0.114	#WENT:	#WENT:	#MENI	0				
	Urai	n / Acti	nium	ר Re	ihe		ر	1-235)											
U-235	143,8	0,110	0,002	0,77	0,0543	0,0400		0		3279	0,114							1	
U-235	163,3	0,051	0,002	1,01	0,0502	0,0400		0		1699	0,143								
U-235	185,7 205.3	0,572	0,002	1,00	0,0460	0,0400	0	#WERT!	#WERT!	17445 1283	0,053				i0//IC#	10//1C#	#WERT!	#WERT!	#WERT!
		Tho	rium				E	h-232)											
Ac-228	911,2	0,258	0,002	1,02	0,0117	0,0400		0		1143	0,144								
Ac-228	969,0	0,158	0,002	1,02	0,0110	0,0400		0 0		668	0,145								
AC-228	338,3	0,113	200'0	10,1	0,0283	0,0400		Ouadratis	ch gewich	600 teter MW (Ra-2	0,250	#WERT!	#WERT!	#WERT!	6				
Pb-212	238,6	0,433	0,002	1,00	0,0379	0,0400		0	0	2893	0,152								
Pb-212	300,1	0,033	0,002	1,00	0,0313	0,0400		0		403	0,414								
TI-208	583,2	0,306	0,002	1,10	0,0175	0,0400		0		1103	0,121								
			-					Quadratis	sch gewich	nteter MW (Ra-2	224)	#WERT!	#WERT!	#WERT!	6			1	
Cs-137	661,7	0,851	0,002	1,00	0,0156	0,0400		0		98	0,480								
₹40	1460,8	0,107	0,002	1,00	0,0076	0,0400		0		1502	0.037								-

Anhang C

Tabellen

Tabelle	C.1:	Nuklide	und	verwendete	Gamma	linien	mit	Emissio	nswahr	schein-
		lichkeite	n de	s Multinukli	dstanda	rds Q0	CY48	8		

Nuklid	Energie in keV	Halbwertszeit	Emissionswahrscheinlichkeit
241 Am	59,5	432,2 a	0,3600
^{109}Cd	88,0	$462,6~{\rm d}$	0,0360
57 Co	122,1	271,8 d	0,8560
57 Co	136,5	271,8 d	$0,\!1068$
139 Ce	165,9	137,6 d	0,7987
203 Hg	279,2	$46,59 \ d$	0,8148
113 Sn	391,7	115,1 d	0,6489
85 Sr	514,0	$64,\!85~{ m d}$	0,9840
^{137}Cs	661,7	30,17 a	0,8510
⁸⁸ Y	898,0	106,6 d	0,9400
60 Co	1173,2	5,272 a	0,9986
60 Co	1332,5	5,272 a	0,9998
⁸⁸ Y	1836,1	106,6 d	0,9933

	Ambe	\mathbf{erlite}	Salzs	äure	Sedir	\mathbf{nent}	Quarz	zsand
Dichte	0,698 g	$\rm cm^{-3}$	1,058 g	$\rm cm^{-3}$	1,226 g	$\rm cm^{-3}$	1,409 g	$\rm cm^{-3}$
Geometrie	Mari	nelli	Mari	nelli	Mari	nelli	Mari	nelli
	Α	$\pm \Delta \mathbf{A}$	Α	$\pm \Delta \mathbf{A}$	Α	$\pm \Delta \mathbf{A}$	Α	$\pm \Delta \mathbf{A}$
Am-241	$510,\!6$	13,3	679,7	17,7	644,2	16,7	650,4	16,9
Cd-109	2877,5	178,4	3830,3	237,5	3630,2	225,1	3665,3	227,2
Ce-139	140,8	2,0	187,4	2,6	$177,\! 6$	2,5	179,3	2,5
Co-57	112,1	1,7	149,3	2,2	141,5	2,1	142,8	2,1
Co-60	550,7	8,3	733,1	11,0	$694,\!8$	10,4	701,5	10,5
Cs-137	463,2	8,8	$616,\! 6$	11,7	584,4	11,1	590	11,2
Hg-203	382,8	5,4	509,5	7,1	482,9	6,8	$487,\! 6$	6,8
Sn-113	$523,\!6$	16,8	697,0	22,3	660, 6	21,1	666,9	21,3
Sr-85	658,1	16,5	876,0	21,9	830,3	20,8	838,3	21,0
Y-88	1085,7	14,1	1445,2	18,8	1369,7	17,8	1382,9	18,0

Tabelle C.2:	Verwendete N	Iultinuklidsta	ndards mi	it ihren	Aktivitäten	zum	Ka-
	librierzeitpun	kt 01.09.2003,	, alle Akti	vitäten	in Bq		

	Sedir	\mathbf{nent}	Amb	\mathbf{erlite}	Gela	\mathbf{tine}	Sedir	\mathbf{nent}
Dichte	1,493 g	$\rm cm^{-3}$	0,623 g	$\rm cm^{-3}$	0,996 g	$\rm cm^{-3}$	1,184 g	$\rm cm^{-3}$
Geometrie	Mari	nelli	Pe	tri	Pe	tri	Pe	tri
	Α	$\pm \Delta \mathbf{A}$	Α	$\pm \Delta \mathbf{A}$	Α	$\pm \Delta \mathbf{A}$	Α	$\pm \Delta \mathbf{A}$
Am-241	$623,\! 6$	16,2	110,3	2,9	268,4	7	386,9	10,1
Cd-109	3514,1	217,9	$621,\!9$	$38,\! 6$	$1512,\!4$	$93,\!8$	2180,5	135,2
Ce-139	171,9	2,4	$_{30,4}$	0,4	74	1	106,7	1,5
Co-57	137	2	24,2	0,4	$58,\!8$	$_{0,9}$	84,8	1,3
Co-60	$672,\! 6$	10,1	119	1,8	289,5	4,3	417,3	6,3
Cs-137	565,7	10,7	100,1	1,9	243,5	4,6	351	6,7
Hg-203	467,5	6,5	82,7	1,2	201,2	2,8	290,1	4,1
Sn-113	639,4	20,5	113,2	3,6	275,2	8,8	396,8	12,7
Sr-85	803,7	20,1	142,2	3,6	345,9	8,6	498,7	12,5
Y-88	1325,9	17,2	$234,\! 6$	3,1	$570,\! 6$	7,4	822,7	10,7

	Sedir	\mathbf{nent}	Quarz	zsand	Sedir	\mathbf{nent}	
Dichte	1,326 g	$\rm cm^{-3}$	1,528 g	$\rm cm^{-3}$	1,540 g	$\rm cm^{-3}$	
Geometrie	Pe	tri	Pe	tri	Pe	tri	
	Α	$\pm \Delta \mathbf{A}$	Α	$\pm \Delta \mathbf{A}$	Α	$\pm \Delta \mathbf{A}$	
Am-241	439,5	11,4	$321,\!4$	8,4	278,7	7,2	
Cd-109	$2476,\!9$	$153,\! 6$	1811,3	112,3	$1570,\!6$	97,4	
Ce-139	121,2	1,7	88,6	1,2	$76,\!8$	1,1	
Co-57	96,4	1,4	70,5	1,1	61,1	$_{0,9}$	
Co-60	474	7,1	346,7	5,2	300,7	4,5	
Cs-137	398,7	7,6	$291,\! 6$	5,5	$252,\!8$	4,8	
Hg-203	329,5	4,6	240,9	3,4	208,9	2,9	
Sn-113	450,7	14,4	$329,\!6$	10,5	$285,\!8$	9,1	
Sr-85	566, 5	14,2	414,3	10,4	359,2	$_{9,0}$	
Y-88	934,5	12,1	683,4	8,9	$592,\!4$	9,5	

Tabelle C.3: Parameter der Efficiencyfunktion λ_1 bis λ_6 für die Petrischalen-Geometrie-Multinuklidstandards, interpoliert für die Dichten von 0,7 g cm⁻³ bis 1,6 g cm⁻³, Detektoren Benno und Josef

Detektor	$\varrho { m in} { m g} { m cm}^{-3}$	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
Benno	0,7	$3,14E{+}01$	-1,99E+00	7,65E-02	-3,87E+00	$1,70E{+}00$	-1,14E-02
Benno	0,8	$_{3,16E+01}$	-2,07E+00	8,39E-02	-4,04E+00	$1,75E{+}00$	-1,24E-02
Benno	0,9	$3,\!17\mathrm{E}{+}01$	-2,12E+00	9,01E-02	-4,24E+00	$1{,}82\mathrm{E}{+}00$	-1,32E-02
Benno	1,0	$3,\!18E{+}01$	-2,17E+00	9,55E-02	-4,42E+00	$1{,}87\mathrm{E}{+}00$	-1,39E-02
Benno	1,1	$3,\!18E{+}01$	-2,22E+00	1,01E-01	-4,64E+00	$1,93E{+}00$	-1,47E-02
Benno	1,2	$3,\!19E{+}01$	-2,25E+00	1,05E-01	-4,86E+00	$1,\!99\mathrm{E}{+}00$	-1,54E-02
Benno	$1,\!3$	$3,\!18E{+}01$	-2,28E+00	1,09E-01	$-5,16E{+}00$	$2,\!09\mathrm{E}{+}00$	-1,64E-02
Benno	1,4	$3,\!18E{+}01$	-2,29E+00	1,12E-01	-5,57E+00	$2{,}21\mathrm{E}{+}00$	-1,76E-02
Benno	1,5	$3,\!16E\!+\!01$	-2,27E+00	1,13E-01	-6,05E+00	$2{,}35\mathrm{E}{+}00$	-1,91E-02
Benno	$1,\!6$	$3,\!14E\!+\!01$	-2,23E+00	1,11E-01	-6,54E+00	$2{,}50\mathrm{E}{+}00$	-2,05E-02
Josef	0,7	$3{,}15\mathrm{E}{+}01$	-2,11E+00	9,47E-02	-4,16E+00	$1,\!80\mathrm{E}{+}00$	-1,33E-02
Josef	$0,\!8$	$3,\!15E\!+\!01$	-2,15E+00	9,85E-02	-4,29E+00	$1,83E{+}00$	-1,37E-02
Josef	0,9	$3,\!16E\!+\!01$	-2,19E+00	1,02E-01	-4,43E+00	$1{,}87\mathrm{E}{+}00$	-1,42E-02
Josef	1,0	$3,\!18E{+}01$	-2,25E+00	1,08E-01	-4,53E+00	$1,90\mathrm{E}{+}00$	-1,46E-02
Josef	1,1	$3,\!18E{+}01$	-2,28E+00	1,11E-01	-4,68E+00	$1,94\mathrm{E}{+}00$	-1,51E-02
Josef	1,2	$3,\!20\mathrm{E}{+}01$	-2,33E+00	1,16E-01	-4,81E+00	$1,98\mathrm{E}{+}00$	-1,55E-02
Josef	$1,\!3$	$3,\!20\mathrm{E}{+}01$	-2,36E+00	1,18E-01	-4,98E+00	$2{,}02\mathrm{E}{+}00$	-1,61E-02
Josef	1,4	$3,\!20\mathrm{E}{+}01$	-2,38E+00	1,21E-01	$-5,18E{+}00$	$2{,}08\mathrm{E}{+}00$	-1,66E-02
Josef	1,5	$3,\!20\mathrm{E}{+}01$	-2,40E+00	1,24E-01	$-5,35E{+}00$	$2{,}13\mathrm{E}{+}00$	-1,72E-02
Josef	$1,\!6$	$3{,}21\mathrm{E}{+}01$	-2,42E+00	1,26E-01	-5,54E+00	$2{,}18\mathrm{E}{+}00$	-1,77E-02

Tabelle C.4: Parameter der Efficiencyfunktion λ_1 bis λ_6 für die Marinelli-Geometrie-Multinuklidstandards, interpoliert für die Dichten von 0.7 g cm^{-3} bis 1.6 g cm^{-3} , Detektoren Benno und Josef

Detektor	$\varrho { m in} { m g} { m cm}^{-3}$	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
Benno	0,7	2,77E+01	-1,20E+00	2,40E-02	$7,86E{+}00$	-2,52E+00	7,49E-02
Benno	0,8	$2{,}78\mathrm{E}{+}01$	-1,22E+00	2,56E-02	$6{,}69\mathrm{E}{+}00$	-2,12E+00	6,80E-02
Benno	0,9	$2,78E{+}01$	-1,24E+00	2,70E-02	$5{,}34\mathrm{E}{+}00$	-1,67E+00	5,99E-02
Benno	1,0	$2,\!79E{+}01$	-1,26E+00	2,86E-02	$_{4,21E+00}$	-1,29E+00	5,31E-02
Benno	1,1	$2,\!79E{+}01$	-1,28E+00	3,00E-02	$3,\!09E\!+\!00$	-9,10E-01	$4,\!65E-02$
Benno	1,2	$2,\!80\mathrm{E}{+}01$	$-1,30E{+}00$	3,16E-02	$2,06E{+}00$	-5,62E-01	4,02E-02
Benno	1,3	$2,\!82E\!+\!01$	-1,34E+00	3,44E-02	$1,\!17\mathrm{E}{+}00$	-2,62E-01	3,47E-02
Benno	$1,\!4$	$2,\!83E\!+\!01$	-1,38E+00	3,70E-02	4,32E-01	-1,43E-02	3,00E-02
Benno	1,5	$2,\!84E\!+\!01$	-1,42E+00	4,00E-02	-1,92E-01	1,95E-01	2,60E-02
Benno	$1,\!6$	$2,\!86E\!+\!01$	-1,47E+00	$4,\!32E-02$	-8,60E-01	4,21E-01	2,16E-02
Josef	0,7	$2,78E{+}01$	-1,27E+00	3,59E-02	$3,\!87E\!+\!00$	-1,31E+00	5,40E-02
Josef	0,8	$2{,}72\mathrm{E}{+}01$	-1,10E+00	2,34E-02	$5,\!62\mathrm{E}{+}00$	-1,94E+00	$6,\!63E-02$
Josef	0,9	$2,\!69\mathrm{E}{+}01$	-1,03E+00	1,78E-02	$6,50\mathrm{E}{+}00$	-2,26E+00	7,28E-02
Josef	1,0	$2,\!66E\!+\!01$	-9,29E-01	1,07E-02	$7,79\mathrm{E}{+}00$	-2,72E+00	8,19E-02
Josef	1,1	$2,\!64E\!+\!01$	-8,95E-01	8,28E-03	$^{8,22\mathrm{E}+00}$	-2,89E+00	8,54E-02
Josef	1,2	$2,\!63E\!+\!01$	-8,61E-01	5,79E-03	$8{,}42\mathrm{E}{+}00$	-2,98E+00	8,74E-02
Josef	1,3	$2,\!62E\!+\!01$	-8,38E-01	$4,\!17E-03$	$_{8,63E+00}$	-3,06E+00	8,94E-02
Josef	$1,\!4$	$2,\!61E\!+\!01$	-8,17E-01	2,75E-03	$8{,}72\mathrm{E}{+}00$	-3,11E+00	9,08E-02
Josef	1,5	$2,\!60\mathrm{E}{+}01$	-7,82E-01	2,40E-04	$8,96\mathrm{E}{+}00$	-3,22E+00	9,33E-02
Josef	$1,\!6$	$2{,}59\mathrm{E}{+}01$	-7,56E-01	-1,66E-03	$9{,}10\mathrm{E}{+}00$	$-3,28E{+}00$	9,50E-02

Tabelle C.5: Parameter der Efficiencyfunktion λ_1 bis λ_6 für die Marinelli-Geometrie-Multinuklidstandards, interpoliert für die Dichten von 0,7 g cm⁻³ bis 1,6 g cm⁻³, Detektoren K1, K2 und K3

Detektor	$\varrho { m in} { m g} { m cm}^{-3}$	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
K1	0,7	$2,\!64E\!+\!01$	-8,67E-01	8,60E-03	$1,83E{+}00$	-1,04E+00	5,88E-02
K1	$0,\!8$	$2{,}65\mathrm{E}{+}01$	-8,79E-01	9,47E-03	$1,23\mathrm{E}{+}00$	-8,34E-01	5,52E-02
K1	0,9	$2{,}65\mathrm{E}{+}01$	-8,90E-01	1,03E-02	6,44E-01	-6,32E-01	5,15E-02
K1	1,0	$2,\!66\mathrm{E}{+}01$	-9,13E-01	1,20E-02	-4,65E-02	-3,94E-01	4,72E-02
K1	1,1	$2{,}66\mathrm{E}{+}01$	-9,36E-01	1,37E-02	-7,14E-01	-1,63E-01	$4,\!30E-02$
K1	1,2	$2{,}67\mathrm{E}{+}01$	-9,72E-01	1,63E-02	-1,45E+00	9,39E-02	3,83E-02
K1	$1,\!3$	$2{,}69\mathrm{E}{+}01$	-1,02E+00	2,01E-02	-2,17E+00	3,46E-01	3,36E-02
K1	1,4	$2{,}71\mathrm{E}{+}01$	-1,07E+00	2,36E-02	-2,94E+00	6,12E-01	2,86E-02
K1	1,5	$2,73E{+}01$	-1,14E+00	2,85E-02	-3,75E+00	8,96E-01	2,31E-02
K1	$1,\!6$	$2{,}76\mathrm{E}{+}01$	-1,23E+00	3,51E-02	-4,60E+00	$1,20\mathrm{E}{+}00$	1,72E-02
K2	0,7	$2,\!84E{+}01$	-1,51E+00	4,37E-02	$1,\!27\mathrm{E}{+}01$	-4,25E+00	1,07E-01
K2	0,8	$2,\!83E{+}01$	-1,49E+00	4,21E-02	$1,\!27\mathrm{E}{+}01$	-4,29E+00	1,09E-01
K2	0,9	$2{,}82\mathrm{E}{+}01$	-1,46E+00	4,00E-02	$1,\!29\mathrm{E}{+}01$	$-4,36E{+}00$	$1,\!11E-01$
K2	1,0	$2{,}80\mathrm{E}{+}01$	-1,43E+00	3,75E-02	$1,\!31\mathrm{E}{+}01$	-4,46E+00	1,13E-01
K2	1,1	$2{,}79\mathrm{E}{+}01$	-1,40E+00	3,54E-02	$1,\!33\mathrm{E}{+}01$	-4,55E+00	1,16E-01
K2	1,2	$2,78E{+}01$	-1,37E+00	3,36E-02	$1,\!34E\!+\!01$	-4,63E+00	1,18E-01
K2	$1,\!3$	$2{,}77\mathrm{E}{+}01$	-1,34E+00	3,21E-02	$1,36\mathrm{E}{+}01$	-4,70E+00	1,20E-01
K2	1,4	$2{,}76\mathrm{E}{+}01$	-1,32E+00	3,01E-02	$1,\!38\mathrm{E}{+}01$	-4,81E+00	1,23E-01
K2	1,5	$2{,}75\mathrm{E}{+}01$	-1,29E+00	2,85E-02	$1,\!39\mathrm{E}{+}01$	-4,88E+00	1,26E-01
K2	$1,\!6$	$2{,}74\mathrm{E}{+}01$	-1,26E+00	2,65E-02	$1,\!41E\!+\!01$	-4,97E+00	1,28E-01
K3	0,7	$2{,}80\mathrm{E}{+}01$	-1,33E+00	3,53E-02	$_{6,44\mathrm{E}+00}$	-2,01E+00	6,46E-02
K3	0,8	$2{,}79\mathrm{E}{+}01$	-1,28E+00	3,21E-02	$6,\!90\mathrm{E}{+}00$	-2,19E+00	6,84E-02
K3	0,9	$2{,}76\mathrm{E}{+}01$	-1,23E+00	2,81E-02	$7,\!49\mathrm{E}{+}00$	-2,41E+00	7,32E-02
K3	1,0	$2{,}75\mathrm{E}{+}01$	-1,18E+00	2,47E-02	$8,04E{+}00$	-2,62E+00	7,76E-02
K3	1,1	$2{,}73\mathrm{E}{+}01$	-1,13E+00	2,15E-02	$^{8,65\mathrm{E}+00}$	-2,85E+00	8,25E-02
K3	1,2	$2{,}71\mathrm{E}{+}01$	-1,09E+00	1,82E-02	$9,\!32\mathrm{E}{+}00$	-3,10E+00	8,78E-02
K3	1,3	$2{,}70\mathrm{E}{+}01$	-1,05E+00	1,59E-02	$9,\!99\mathrm{E}{+}00$	$-3,36E{+}00$	9,31E-02
K3	$1,\!4$	$2{,}69\mathrm{E}{+}01$	-1,02E+00	1,39E-02	$1{,}06\mathrm{E}{+}01$	$-3,\!60\mathrm{E}{+}00$	9,83E-02
K3	1,5	$2{,}67\mathrm{E}{+}01$	-9,83E-01	1,13E-02	$1{,}14\mathrm{E}{+}01$	-3,88E+00	1,04E-01
K3	$1,\!6$	$2{,}66\mathrm{E}{+}01$	-9,56E-01	$9,\!60E-03$	$1{,}20\mathrm{E}{+}01$	-4,11E+00	$1,\!09E-01$

Tabelle C.6: Parameter μ_1 und μ_2 der Efficiency
funktion für $^{210}\mathrm{Pb}$

Detektor	Geometrie	μ_1	μ_2
Benno	Marinelli	0,06425	-0,01744
Josef	Marinelli	0,02834	-0,00905
Jenö	Marinelli	0,0366	-0,01519
K2	Marinelli	0,04728	-0,01351
K3	Marinelli	0,05533	-0,01473
Benno	Petri	$0,\!15054$	-0,04103
Josef	Petri	0,13253	-0,03715

Tabelle C.7: Faktoren zur Summationskorrektion für die im Multielementstandard QCY48 verwendeten Nuklide. Die Faktoren wurden [Deb90] entnommen.

Detektor	Geometrie	60 Co	60 Co	88 Y	88 Y
		1173,2 keV	1332,5 keV	$898,0~{\rm keV}$	$1836,1~{\rm keV}$
$\varepsilon{=}30\%$	500 ml-Marinelli	1,08	1,08	1,07	1,08
$arepsilon{=}30\%$	$10~{\rm cm}\mathchar`-Petri,$ Füllhöhe $10~{\rm mm}$	$1,\!14$	$1,\!13$	$1,\!12$	$1,\!14$

Vergleichswert PTB 340 ± 13 $16, 3 \pm 0, 7$ 258 ± 13 260 K1 (Marinelli) 325 ± 28 $15, 6 \pm 0, 9$ 233 ± 8 $\#$ K2 (Marinelli) 329 ± 20 $16, 5 \pm 1, 1$ 243 ± 7 187 K3 (Marinelli) 317 ± 24 $16, 8 \pm 1, 0$ 239 ± 6 191 Josef (Marinelli) 345 ± 29 $15, 1 \pm 1, 6$ 239 ± 8 196 Josef (Marinelli) 334 ± 16 $17, 0 \pm 1, 4$ 235 ± 8 186 Josef (Petri) 314 ± 22 $20, 0 \pm 3, 5$ 171 ± 9 195	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 3 & 260 \pm 40 \\ 8 & \# \mathrm{NV} \\ 7 & 187 \pm 13 \\ 3 & 191 + 10 \end{array}$	$\begin{array}{c} 62,4\pm2,1\\ 56,2\pm3,6\\ 57,2\pm3,6\\ 57,2\pm3,6\\ 57,0\pm3,6\\ \end{array}$	$60,6 \pm 1,8$ $55,9 \pm 3,1$ $57,1 \pm 2,1$	850 ± 19 830 ± 34 800 ± 33	$32,5 \pm 1,2$ $27,6 \pm 1,3$ $26,8 \pm 1,1$
K1 (Marinelli) 325 ± 28 $15, 6 \pm 0, 9$ 233 ± 8 $\#$ K2 (Marinelli) 329 ± 20 $16, 5 \pm 1, 1$ 243 ± 7 187 K3 (Marinelli) 317 ± 24 $16, 8 \pm 1, 0$ 239 ± 6 191 Josef (Marinelli) 317 ± 24 $16, 8 \pm 1, 0$ 239 ± 6 191 Josef (Marinelli) 345 ± 29 $15, 1 \pm 1, 6$ 239 ± 8 196 Josef (Marinelli) 334 ± 16 $17, 0 \pm 1, 4$ 235 ± 8 196 Josef (Petri) 314 ± 22 $20, 0 \pm 3, 5$ 171 ± 9 195	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 8 & \# NV \\ 7 & 187 \pm 13 \\ 3 & 191 + 10 \end{array}$	$56,2 \pm 3,6$ $57,2 \pm 3,6$ $57,0 \pm 3,6$	55.9 ± 3.1 57.1 ± 2.1	830 ± 34 800 ± 33	$27,6 \pm 1,3$ $26,8 \pm 1,1$
K2 (Marinelli) 329 ± 20 $16, 5 \pm 1, 1$ 243 ± 7 187 K3 (Marinelli) 317 ± 24 $16, 8 \pm 1, 0$ 239 ± 6 191 Josef (Marinelli) 345 ± 29 $15, 1 \pm 1, 6$ 239 ± 8 196 Benno (Marinelli) 334 ± 16 $17, 0 \pm 1, 4$ 235 ± 8 186 Josef (Petri) 314 ± 22 $20, 0 \pm 3, 5$ 171 ± 9 195	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 7 & 187 \pm 13 \\ \hline 3 & 191 \pm 10 \\ \end{array}$	$57,2 \pm 3,6$ $57,0 \pm 3,6$	$57,1\pm2,1$	800 ± 33	$26,8\pm1,1$
K3 (Marinelli) 317 ± 24 $16, 8 \pm 1, 0$ 239 ± 6 191 Josef (Marinelli) 345 ± 29 $15, 1 \pm 1, 6$ 239 ± 8 196 Benno (Marinelli) 334 ± 16 $17, 0 \pm 1, 4$ 235 ± 8 188 Josef (Petri) 314 ± 22 $20, 0 \pm 3, 5$ 171 ± 9 195	317 ± 24 $16,8 \pm 1,0$ $239 \pm 0.015 \pm 0.015$ 15.1 ± 1.6 0.20 ± 0.015	3 191 + 10	570 ± 36			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9.45 ± 9.0 15.1 ± 1.6 9.90 ± 9			$57,0\pm2,1$	802 ± 32	$27,7\pm1,1$
Benno (Marinelli) 334 ± 16 $17,0 \pm 1,4$ 235 ± 8 188 Josef (Petri) 314 ± 22 $20,0 \pm 3,5$ 171 ± 9 195	040 T 29 10,1 T 1,0 209 T 0	$3 196 \pm 21$	$57,1\pm3,6$	$55,6\pm2,4$	813 ± 38	$27,5\pm1,2$
Josef (Petri) 314 ± 22 $20,0 \pm 3,5$ 171 ± 9 195	334 ± 16 $17,0 \pm 1,4$ 235 ± 3	$3 188 \pm 20$	$57,7\pm3,7$	$56,9\pm2,2$	815 ± 33	$25,2\pm1,5$
	314 ± 22 $20,0 \pm 3,5$ 171 ± 9	$9 195 \pm 28$	$57,8\pm3,8$	$60,0\pm3,8$	802 ± 33	$27,8\pm1,7$
Benno (Petri) 354 ± 29 $22,9 \pm 1,3$ 167 ± 6 184	354 ± 29 $22,9 \pm 1,3$ 167 ± 6	$3 184 \pm 21$	$56,6\pm3,6$	$62,3\pm2,4$	791 ± 32	$28,1\pm1,2$
Jenö (Petri) $\#NV \#NV \#NV$ 218	VN# VN# VN#	218 ± 23	NN₩	NN#	NN#	NN#

Tabelle C.8: Ergebnisse der Ringvergleichsmessungen
Nuklid	\mathbf{E}_{γ} in keV	\mathbf{P}_{γ}
234 Th	63,3	0,041
234m Pa	1001,0	0,00839
226 Ra	186,1	0,0351
214 Pb	295,2	$0,\!1815$
214 Pb	351,9	$0,\!3510$
$^{214}\mathrm{Bi}$	609,3	$0,\!4460$
$^{214}\mathrm{Bi}$	1120,3	$0,\!1470$
$^{210}\mathrm{Pb}$	46,5	0,0424
$^{235}{ m U}^{*}$	143,8	0,1096
$^{235}\mathrm{U}^{\dagger}$	163,4	0,0508
$^{235}\mathrm{U}$	185,7	0,5720
$^{235}\mathrm{U}^{\dagger}$	205,3	0,0501
^{228}Ac	911,2	0,2660
^{228}Ac	968,9	0,1620
$^{228}\mathrm{Ac}^*$	338,3	0,1125
$^{212}\mathrm{Pb}$	$238,\!6$	$0,\!4350$
$^{212}\mathrm{Pb}^{*}$	300,1	0,0325
208 Tl	583,2	0,3060
	,	,
^{137}Cs	661,7	0,8510
$^{40}\mathrm{K}$	1460,8	0,1067

Tabelle C.9: Ausgewertete Nuklide der Probenspektren mit Energien E_γ und Emissionswahrscheinlichkeiten P_γ

Die mit * gekennzeichneten Linien werden nicht zur Aktivitätsberechnung verwendet, da sie von Linien anderer Nuklide gestört sind. Die mit [†] markierten Linien werden nicht benutzt, da sie im Spektrum meist sehr schwach sind. Diese Linien sind nur zum Vergleich ausgewertet.

Nuklid	\mathbf{E}_{γ}	$\mathbf{k}_{\mathrm{Marinelli}}$	$\mathbf{k}_{\mathrm{Petri}}$
214 Pb	295,2	1,01	1,01
214 Bi	609,3	1,08	$1,\!14$
214 Bi	1120,3	1,09	1,16
235 U	163,3	1,01	1,03
235 U	205,3	0,99	0,99
^{228}Ac	911,2	1,02	1,03
^{228}Ac	968,9	1,02	1,03
^{228}Ac	338,3	1,01	1,02
208 Tl	583,2	1,10	$1,\!18$

Tabelle C.10: Faktoren zur Summationskorrektion der in den Probenspektren ausgewerteten Gammalinien für Marinelli- und Petrischalen-Geometrie. Die Faktoren wurden [Deb90] entnommen.

Tabelle C.11:	Übersicht	über	die	verwendeten	ODL-Messgeräte

Nr.	Hersteller	Тур	Seriennummer
1	ESM	FH 40 G-L	11829
2	\mathbf{ESM}	FH 40 $G-L$	12692
3	ESM	FH 40 G-L $$	12967
4	FAG	$\mathrm{FH}~40~\mathrm{F2}$	1141

- Werte sind nicht um die kosmische Strahlungskomponente korrigiert
- Tabelle C.12: ODL-Messwerte,alleTabelle C.13: ODL-Messwerte, alleWerte sind nicht um die kosmische Strahlungskomponente korrigiert

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Punkt Nr.	VF	ODL in nSv h^{-1}	Punkt Nr.	VF	ODL in nSv h^{-1}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.112.001	9	246	9.003.205	15	157
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.112.002	9	570	9.003.207	15	230
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.112.004	9	193	71.512.403	15	232
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9.004.098	9	220	71.512.405	15	252
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9.004.103	9	233	71.512.407	15	243
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403.628.027	9	195	9.003.012	17	196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.628.028	9	269	9.003.013	17	161
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403.628.030	9	243	9.003.041	17	196
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403.628.031	9	291	9.003.045	17	149
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.628.032	9	182	9.003.046	17	169
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403.628.034	9	190	9.003.063	17	212
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403.628.035	9	441	9.003.064	17	244
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.628.036	9	511	9.003.065	17	184
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403.628.037	9	216	9.002.028	18	191
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	403.628.038	9	176	50.001.001	18	172
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.628.040	9	241	50.001.008	18	205
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403.628.041	9	266	50.001.012	18	180
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	403.628.042	9	448	50.001.016	18	218
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.628.042	9	242	50.001.019	18	286
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403.628.043	9	238	9.002.135	19	146
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	403.628.044	9	320	28.008.408	19	204
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.628.045	9	1350	28.008.409	19	221
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.628.046	9	271	9.002.046	20	173
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	403.628.053	9	226	28.008.419	20	151
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.628.062	9	485	28.008.420	20	229
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.629.637	9	166	9.001.047	21	178
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	403.629.638	9	214	9.001.048	21	246
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	403.629.641	9	216	9.001.052	21	216
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.003.022	13	158	40.500.001	21	189
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9.003.023	13	232	40.500.002	21	173
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.003.026	13	297	40.500.009	21	246
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.003.029	13	227	40.500.011	21	217
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9.003.030	13	214	40.500.014	21	165
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.004.091	13	185	72.114.039	21	220
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71.319.101	13	207	72.114.042	21	288
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	71.319.102	13	202	121.000.020	21	192
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71.319.104	13	301	121.000.023	21	176
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	191.400.004	13	243	121.000.026	21	190
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	191.400.005	13	274	121.000.029	21	196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	191.400.008	13	334	9.003.213	11 + 12	247
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	191.400.016	13	228	9.003.215	11 + 12	207
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	194.400.027	13	212	12.490.003A	11 + 12	225
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	194.400.030	13	278	12.490.003B	11 + 12	225
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.162.006	14	239	11.342.001	18a	158
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.162.007	14	200	11.342.003	18a	249
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.162.008	14	170	11.342.007	18a	201
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.003.055	15	215	11.342.022	18a	169
9.003.0841528711.342.02518a1739.003.15715215FM03WKFM1509.003.20215211FM05TEFM126	9.003.057	15	194	11.342.024	18a	172
9.003.157 15 215 FM03WK FM 150 9.003.202 15 211 FM05TE FM 126	9.003.084	15	287	11.342.025	18a	173
9.003.202 15 211 FM05TE FM 126	9.003.157	15	215	FM03WK	\mathbf{FM}	150
	9.003.202	15	211	FM05TE	\mathbf{FM}	126

Tabelle C.14: ODL-Messwerte, alle Werte sind nicht um die kosmische Strahlungskomponente korrigiert

Punkt Nr.	\mathbf{VF}	ODL in $nSv h^{-1}$
FM06NG	FM	140
FM07TO	\mathbf{FM}	153
FM09GL	\mathbf{FM}	217
FM10RÄ	FM	138
FM11NO	\mathbf{FM}	120
FM12OB	\mathbf{FM}	150
FM15HA	FM	171
FM16CO	\mathbf{FM}	174
FM17HI	\mathbf{FM}	161
FM18MU	\mathbf{FM}	205
FM23HO	\mathbf{FM}	192
VM01KÖ	VM	188
VM02GR	VM	177
VM05HO	VM	116
VM07PO	VM	170
VM07PO 2.PN	VM	158
VM08MU	VM	155
VM09RA	VM	195
VM09RA 2.PN	VM	147
VM10DE	VM	125
VM10DE 2.PN	VM	113
VM21RE	Fuhne	125
VM23FU	Spittelwasser	126
VM31NW	VM	154
VM41EI	VM	152
VM41EI 2.PN	VM	167
VM71SP	VM	180
VM81MS	VM	167
VM91AB	VM	129
ZM01TA	ZM	216
ZM02SH	ZM	232
ZM04WO	ZM	236
ZM05AU	ZM	177
ZM08NS	ZM	211
ZM10WI	ZM	183
ZM12ZP	ZM	152
ZM14OR	ZM	186
ZM16GC	ZM	165
ZM19KE	ZM	178
ZM21AM	ZM	149
ZM22GÖ	ZM	175
ZM24WE	ZM	145
ZM25LA	ZM	151
ZM26SE	ZM	165
ZM81HS	ZM	166

Die Tabellen C.15, C.16, C.26 und C.30 zeigen jeweils die Bezeichnung und eine Beschreibung des jeweiligen Probenahmepunktes sowie die Koordinaten im Gauß-Krüger-System, Potsdam-Datum.

In den Tabellen C.17, C.18, C.27 und C.31 sind folgende Feld- bzw. Probenparameter zu finden:

- Genommenes Probenvolumen in l
- Wassertemperatur am Probenahmeort
- pH-Wert des Wassers
- Redoxpotential (E_H) in mV
- Leitfähigkeit κ des Wassers in μ S cm⁻¹
- Ortsdosisleistung an der Probenahmestelle in nSv ${\rm h}^{-1}$
- Masse der Probe im Marinelli
becher bzw. in der Petrischale sowie die Dichte in g
 $\rm cm^{-3}$

Die ermittelten spezifischen Aktivitäten der untersuchten Nuklide befinden sich mit den zugehörigen Unsicherheiten in den Tabellen C.19, C.20, C.28 und C.32. Alle Angaben sind in Bq kg⁻¹.

In den Tabellen C.23 und C.24 sind die vorhandenen Literaturwerte der spezifischen Aktivitäten für das Muldesystem zu finden. Die Werte sind [Beu99] entnommen. Alle Angaben sind in Bq kg⁻¹. Die gemessenen Aktivitätsverhältnisse $A(^{238}U)/A(^{226}Ra)$, $A(^{238}U)/A(^{235}U)$ und $A(^{226}Ra)/A(^{224}Ra)$ für das Muldesystem zeigen die Tabellen C.21 und C.22.

In den Tabellen C.29 und C.33 sind die Literaturangaben sowie die Aktivitätsverhältnisse für der geogenen Punkte sowie für Lengenfeld dargestellt. Die Literaturangaben entstammen [Dus01e], [Dus02b], [Wic02], [Dus02a], [Wic01b], [Küm02], [Dus01c], [Wic01a], [Dus01a] und [Dus03].

Probe Nr.	Rechtswert	Hochwert	Fluss	Ort
FM01ET	4556223	5669353	Freiberger Mulde	Erlln-Tanndorf
FM02MA	4561448	5670698	Freiberger Mulde	Marschwitz
FM03WK	4568983	5668963	Freiberger Mulde	Klosterbuch
FM05TE	4574478	5666628	Freiberger Mulde	Technitz
FM06NG	4579593	5663393	Freiberger Mulde	Neugreussig
FM07TO	4581113	5660598	Freiberger Mulde	Troischau
FM09GL	4587203	5659528	Freiberger Mulde	Gleisberg
FM10RÄ	4590413	5659543	Freiberger Mulde	Altzella-Rhäsa
FM11NO	4592158	5657673	Freiberger Mulde	Nossen
FM120B	4593378	5653668	Freiberger Mulde	Obergruna
FM13GV	4591848	5650793	Freiberger Mulde	$\operatorname{Großvoigtsberg}$
FM14GR	4592438	5648633	Freiberger Mulde	Großschirma
FM15HA	4593753	5647868	Freiberger Mulde	Halsbrücke
FM16CO	4596518	5646043	Freiberger Mulde	Conradsdorf
FM17HI	4597428	5642773	Freiberger Mulde	$\operatorname{Hilbersdorf}$
FM18MU	4597693	5641458	Freiberger Mulde	Muldenhütten
FM19BE	4598168	5636503	Freiberger Mulde	Berthelsdorf
FM20MD	4599293	5631578	Freiberger Mulde	Mulda
FM22RB	5397293	5623534	Freiberger Mulde	Rechenberg-Bienenmühle
FM23HO	5403280	5621740	Freiberger Mulde	Holzhau
VM01KÖ	4554428	5671998	Vereinigte Mulde	Kössern
VM02GR	4550828	5677303	Vereinigte Mulde	Grimma
VM05HO	4542062	5710795	Vereinigte Mulde	$\operatorname{Hohenprie{Bnitz}}$
VM07PO	4530692	5719208	Vereinigte Mulde	Löbnitz
VM08MU	4524012	5724201	Vereinigte Mulde	Muldensteinkanal
VM09RA 1.PN	4520774	5728789	Vereinigte Mulde	AltjeBnitz
VM09RA 2.PN	4519900	5730858	Vereinigte Mulde	Raguhn

Tabelle C.15: Probenahmepunkte an Freiberger, Zwickauer und Vereinigter Mulde

2	
Teil	
Aulde	
nigter N	
l Verein	
unc	
Zwickauer	
n Freiberger,	
spunkte a	
robenahme	
6: P	
C.1	
Tabelle	

Probe Nr.	${\rm Rechtswert}$	Hochwert	Fluss	Ort
VM10DE 2.PN	4516712	5748995	Vereinigte Mulde	Dessau
VM21RE	4519984	5726870	Fuhne	Greppin
VM23FU	4519868	5729301	Spittelwasser	Bobbau
VM31NW	4552614	5687913	Vereinigte Mulde	Oelschütz
VM41EI	4545026	5699820	Vereinigte Mulde	Kollau
VM71SP	4524676	5724441	Vereinigte Mulde	Muldenstein
VM81MS	4522002	5725116	Vereinigte Mulde	Greppin
VM91AB 1.PN	4521001	5736252	Vereinigte Mulde	Sollnitz
ZM01TA	4533223	5590678	Zwickauer Mulde	${ m Tannenbergsthal}$
ZM02SH	4538698	5595328	Zwickauer Mulde	Schönheide
ZM04WO	4543703	5598168	Zwickauer Mulde	Wolfsgrün
ZM05AU	4547198	5601238	Zwickauer Mulde	Albernau Rechenhaus
ZM08NS	4548283	5610818	Zwickauer Mulde	Niederschlema
ZM81HS	4547093	5612798	Zwickauer Mulde	Hartenstein
ZM10WI	4540238	5613178	Zwickauer Mulde	Wiesenburg
ZM12ZP	4534943	5622933	Zwickauer Mulde	Zwickau
ZM14OR	4534273	5626938	Zwickauer Mulde	Oberrothenbach
ZM16GC	4536273	5629948	Zwickauer Mulde	Glauchau Wehr
ZM19KE	4540118	5635493	Zwickauer Mulde	Kertzsch
ZM21AM	4551733	5644188	Zwickauer Mulde	Amerika
ZM22GÖ	4554018	5649748	Zwickauer Mulde	Göhren
ZM24WE	4554113	5652148	Zwickauer Mulde	Wechselburg
ZM25LA	4556463	5663288	Zwickauer Mulde	Lastau
ZM26SE	4555683	5669453	Zwickauer Mulde	Sermuth

ρ in g cm ⁻³	1,5	1,6	1,5	1,6	1,4	1,4	1,3	1,5	1,5	1,3	1,1	1,1	1,4	1,3	1,0	1,6	1,6	1,1	1,2	1,2	1,4	$1,4^{-}$	1,2	1,5	1,7	1,7	1,7
\mathbf{m} Petri																								118,2	132,3		
${f m}$ Marinelli	828,3	882,3	842,2	873,8	795,2	769,6	730,9	867,8	850,9	708,5	614,8	613, 5	761,3	709,3	535,6	914,1	879,8	605,8	666, 6	682,5	810,4	765,9	682,2			964,9	968, 7
ODL in nSv h ⁻¹	∕NN#	NN#	150	126	140	153	217	138	120	150	NN#	NN₩	171	174	161	205	NN#	NN#	NN#	192	188	177	116	170	155	195	147
κ in $\mu S \ cm^{-1}$	413	416	344	618	209	638	999	637	509	521	676	563	480	421	405	362	242	220	141	126	483	287	519	538	536	511	546
\mathbf{E}_{H} in mV	203	248	234	234	228	281	262	154	184	241	266	232	202	204	253	248	289	278	237	277	247	230	215	234	242	308	175
μd	8,24	7,93	7,75	7,69	7,74	7,99	7,76	7,7	7,88	7,69	7,8	7,73	7,54	7,44	7,28	7,3	7,15	7,3	7,26	7,38	7,63	7,6	8,72	$9,\!22$	8,82	8,78	8,91
T in °C	18,6	18,3	17,1	17,9	17,0	17,8	17,8	17,1	16,5	16,1	18,4	18,2	17,4	17,1	16,1	15,7	13,9	13,6	11,7	12,7	16,2	15,0	17,1	19,1	17,3	16,2	16,0
$\mathbf{Probe} \ / \ \mathbf{L}$	4	4	4	4	4	4	4	4	4	4	4	4	4	8	9	4	4	4	4	4	4	4	4	4	4	4	4
Probe Nr.	FM01ET	FM02MA	FM03WK	FM05TE	FM06NG	FM07TO	FM09GL	FM10RÄ	FM11NO	FM120B	FM13GV	FM14GR	FM15HA	FM16CO	FM17HI	FM18MU	FM19BE	FM20MD	FM22RB	FM23HO	VM01KÖ	VM02GR	VM05HO	VM07PO	VM08MU	VM09RA 1.PN	VM09RA

Tabelle C.17: Feldparameter an Freiberger, Zwickauer und Vereinigter Mulde

Probe Nr.	$\mathbf{Probe} \ / \ \mathbf{L}$	T in °C	μd	\mathbf{E} $_{H}$ in mV	κ in $\mu S \ cm^{-1}$	ODL in nSv h ⁻¹	m Marinelli	$m {\rm Petri}$	ho in g cm ⁻³
VM10DE	9	15,7	7,55	290	577	125	957,6		1,7
VM21RE	4	16,0	7,16	100	1566	125		116,6	1,5
VM23FU	4	15,5	7,05	293	1818	126		138,8	1,7
VM31NW	4	18,1	8,92	300	513	154	861,6		1,5
VM41EI	4	18,2	9,02	269	521	152	806,5		1,4
VM71SP	4	18,4	9,66	218	499	180	867,0		1,5
VM81MS	4	17,6	9,47	181	516	167	851,9		1,5
VM91AB	4	16,6	8,56	270	572	129		116,1	1,5
ZM01TA	2	NN#	NN#	NN#	NN#	NN#		115,5	1,4
ZM02SH	4	11,5	6,4	234	115	232	820,0		1,5
ZM04WO	4	7,4	6,43	255	119	236	954,6		1,7
ZM05AU	4	10,1	7,01	255	137	177	691,9		1,2
ZM08NS	4	14,4	6,92	146	572	211	774,3		1,4
ZM10WI	4	15,3	7,06	317	455	183	820,7		1,5
ZM12ZP	9	12,8	7,08	86	502	152	707,5		1,3
ZM14OR	4	13,6	7,3	223	548	186	720,8		1,3
ZM16GC	4	14,1	7,41	206	543	165	643,6		1,1
ZM19KE	4	14,7	7,28	40	569	178	634, 5		1,1
ZM21AM	4	13,5	7,18	197	590	149	770,5		1,4
ZM22GÖ	4	14,3	7,5	198	570	175	618,2		1,1
ZM24WE	4	14,7	7,56	180	572	145		108,7	1,4
ZM25LA	4	15,2	7,54	155	548	151	691, 6		1,2
ZM26SE	4	15,5	7,81	25	530	165	735,0		1,3
ZM81HS	4	12,5	7,02	166	417	166	548,7		1,0
Sedimentfalle								74,1	0,9

. ...

Tabelle C.18: Feldparameter an Freiberger, Zwickauer und Vereinigter Mulde Teil 2

Probe Nr.	0^{238}	$^{226}\mathbf{Ra}$	$^{210}\mathbf{Pb}$	235 U	$^{228}\mathbf{Ra}$	$^{224}\mathrm{Ra}$	137 Cs	$^{40}\mathbf{K}$
FM01ET	$34, 5\pm 4, 3$	$38,4\pm1,5$	$34,4\pm4,3$	$2,2\pm0,5$	$38,9\pm2,6$	$36, 6\pm1, 5$	$6,4\pm0,3$	$717,5\pm29,5$
FM02MA	$62, 6\pm 4, 7$	$50,7\pm1,6$	$72, 7\pm9, 0$	$2,4\pm0,5$	$50,2\pm3,2$	$44,7\pm1,9$	$7,2\pm0,4$	$682,7\pm28,0$
FM03WK	$56, 3 \pm 4, 4$	$57,8\pm1,9$	$51, 6\pm 6, 1$	$3,0\pm0,5$	$53,7\pm3,6$	$50,1\pm2,3$	$8, 3\pm 0, 5$	$668, 2\pm 28, 2$
FM05TE	$52,2\pm4,5$	$53,5\pm1,7$	$48,5\pm7,4$	$2,7\pm0,5$	$48,4\pm3,0$	$45, 2\pm 1, 8$	$9,4\pm0,6$	$654, 4 \pm 27, 1$
FM06NG	$59,3\pm3,2$	$61, 1 \pm 2, 0$	$61,7\pm6,3$	$3,5\pm1,0$	$60,8\pm3,9$	$57,4\pm2,3$	$9,4\pm0,6$	$648,1\pm26,6$
FM07TO	$50, 6\pm 3, 5$	$63,9\pm2,1$	$58, 6\pm7, 5$	$2,8\pm0,3$	$53,5\pm3,4$	$48, 3\pm 2, 1$	$12,9\pm0,7$	$681,8\pm27,5$
FM09GL	$64, 0\pm 5, 2$	$70,5\pm2,1$	$73, 3 \pm 9, 4$	$3,0\pm0,5$	$56, 0\pm 3, 6$	$51, 5\pm 2, 2$	$15,4\pm0,7$	$690,9\pm28,1$
$FM10R\ddot{A}$	$52,8\pm5,8$	$62,5\pm2,1$	$60, 6\pm7, 5$	< 3, 4	$43,9\pm2,9$	$42,5\pm1,9$	$10,2\pm0,7$	$699,4\pm29,5$
FM11NO	$47,1\pm3,0$	$55, 3\pm 1, 6$	$50,9\pm5,2$	$2,5\pm0,3$	$39,2\pm2,6$	$35,9\pm1,5$	$12,4\pm0,7$	$696,9\pm29,0$
FM12OB	$80, 3 \pm 6, 4$	$77,9\pm2,2$	$91,5\pm10,7$	$3,7\pm0,5$	$56, 7\pm 3, 6$	$51, 6\pm 2, 3$	$19,9\pm0,9$	$742,2\pm31,5$
FM13GV	$46,9\pm4,9$	$48, 7\pm 1, 4$	$62, 6\pm 8, 1$	$2,3\pm0,7$	$48,5\pm3,0$	$45, 3\pm1, 8$	$14, 3\pm 0, 7$	$202, 3\pm9, 4$
FM14GR	$77,2\pm5,8$	$78,2\pm2,3$	$107, 3\pm11, 4$	$3,5\pm0,6$	$54,0\pm3,4$	$47,0\pm2,0$	$23,5\pm1,1$	$718,9\pm30,1$
FM15HA	$97,6\pm5,2$	$92, 2\pm 2, 7$	$79,5\pm 8,1$	$5,1\pm1,0$	$49,1\pm3,3$	$47, 1 \pm 1, 8$	$18, 3\pm0, 8$	$692,7\pm28,6$
FM16CO	$89,6\pm5,7$	$84, 2\pm 2, 5$	$101,9\pm10,5$	$4,5\pm1,1$	$56,4\pm3,6$	$54, 5\pm 2, 2$	$22,1\pm1,3$	$699,7\pm29,5$
FM17HI	$68,7\pm6,0$	$78,4\pm2,5$	s.u.	$3,6\pm0,5$	$67, 6\pm 4, 2$	$62, 6\pm 2, 6$	$29, 3 \pm 1, 3$	$750,5\pm30,5$
FM17HI	$73,6\pm3,9$	$80,1\pm2,7$	$92,8\pm10,3$	$3, 3 \pm 0, 7$	$68, 0 \pm 4, 3$	$63,9\pm2,5$	$29, 3\pm1, 3$	$742,7\pm34,7$
FM18MU	$46, 3 \pm 4, 0$	$47,2\pm1,4$	$47,7\pm5,0$	$2,6\pm0,6$	$26,4\pm1,8$	$26,2\pm1,2$	$2,3\pm0,2$	$760,5\pm31,4$
FM19BE	$30,8\pm1,9$	$33,6\pm1,1$	$36,2\pm5,1$	$1,7\pm0,5$	$33,7\pm2,2$	$29,3\pm 1,2$	$3,6\pm0,3$	$775,4\pm31,7$
FM20MD	$63, 7\pm 6, 5$	$74,4\pm2,3$	$78,5\pm9,7$	$3,2\pm0,5$	$73,5\pm4,7$	$57,9\pm2,5$	$8,9\pm0,5$	$820,2\pm33,6$
FM22RB	$40,9\pm4,9$	$47,4\pm1,6$	$39,3\pm5,0$	$2,3\pm0,3$	$43,5\pm3,0$	$36,7\pm2,6$	$6,5\pm0,4$	$1038, 6 \pm 42, 7$
FM22RB	$36, 3\pm3, 3$	$42,8\pm1,5$	$32,6\pm4,0$	$2,1\pm0,4$	$38,9\pm2,6$	$33, 5\pm 1, 4$	$5,7\pm0,4$	$754, 5\pm30, 8$
FM23HO	$50,8\pm4,7$	$73,4\pm2,2$	$59,8\pm6,4$	$2,9\pm1,0$	$52,2\pm3,3$	$39,6\pm1,7$	$17,1\pm0,7$	$875, 0 \pm 35, 2$
VM01KÖ	$183,0\pm10,2$	$124,9\pm3,9$	$123,5\pm12,5$	$9,4\pm1,0$	$57,6\pm3,8$	$55, 3\pm 2, 3$	$9,7\pm0,5$	$684,8\pm28,9$
VM02GR2	$112,9\pm5,1$	$84,4\pm2,2$	$81,7\pm8,5$	$5,4\pm0,3$	$48, 3\pm3, 0$	$45,1\pm1,7$	$7,9\pm0,4$	$657,9\pm26,8$
VM05HO	$161, 7 \pm 14, 0$	$122,6\pm3,8$	$146,2\pm16,1$	$7,2\pm0,8$	$65, 0 \pm 4, 1$	$53,9\pm3,3$	$13,5\pm0,8$	$669, 7\pm27, 7$
VM7PO	$132,8\pm 8,3$	$127,8\pm4,4$	$123, 3\pm14, 2$	$7,4\pm1,4$	$62,4\pm3,9$	$58, 5\pm 2, 5$	$12,8\pm0,6$	$649, 1 \pm 29, 8$
VM08MU	$138, 2\pm8, 0$	$82, 3\pm 2, 8$	$86,4\pm11,3$	$9,5\pm0,8$	$41,0\pm2,7$	$45,5\pm1,8$	$3,4\pm0,2$	$580,2\pm23,9$
VM09RA1	$39,9\pm3,2$	$28, 3 \pm 1, 1$	$30,2\pm3,5$	$2,0\pm0,5$	$21,2\pm 1,5$	$20,1\pm0,8$	$1,5\pm0,1$	$489, 2 \pm 20, 3$
VM09RA2	$50,2\pm4,1$	$35,5\pm1,3$	$42,4\pm5,1$	$2,7\pm0,7$	$22,8\pm1,5$	$22, 3 \pm 1, 1$	$2,1\pm0,1$	$497,6\pm21,5$
VM10DE2	$34,2\pm2,1$	$26,0\pm0,9$	$35, 3\pm 4, 5$	$1,7\pm0,4$	$15,3\pm1,0$	$13, 6\pm 0, 6$	$1,4\pm0,1$	$408,5\pm17,3$

Tabelle C.19: Messergebnisse Freiberger, Zwickauer und Vereinigter Mulde

Probe Nr.	0^{238} U	$^{226}\mathrm{Ra}$	$^{210}\mathrm{Pb}$	235 U	$^{228}\mathrm{Ra}$	$^{224}\mathbf{Ra}$	137 Cs	$^{40} m K$
VM21RE	$25, 3\pm 2, 5$	$52, 2\pm 1, 9$	$97,5\pm10,7$	$3,1\pm0,5$	$50,1\pm3,2$	$48, 0\pm 2, 2$	$15,0\pm0,7$	$368,5\pm17,3$
VM23FU	$25,5\pm3,1$	$21,1\pm0,9$	$22,4\pm3,7$	$2,2\pm0,7$	$29,8\pm1,9$	$20,5\pm0,9$	$1,2\pm0,1$	$278,1\pm12,0$
VM31NW	$93,9\pm4,9$	$68, 3\pm 2, 1$	$65, 0\pm 8, 1$	$4,8\pm0,8$	$35,5\pm2,3$	$34, 6\pm1, 7$	$3,8\pm0,3$	$766,9\pm32,1$
VM41EI	$166, 3\pm10, 6$	$113, 2\pm 3, 4$	$116,2\pm13,0$	$8,0\pm0,6$	$51,7\pm3,3$	$46, 6\pm 2, 0$	$8,7\pm0,5$	$711,0\pm 30,8$
VM71SP	$48,9\pm5,2$	$30,9\pm1,2$	$29,4\pm5,5$	$2,4\pm0,3$	$17,6\pm 1,2$	$17, 3 \pm 1, 3$	$1,1\pm0,1$	$231,6\pm10,3$
VM81MS	$102, 7\pm5, 9$	$59,1\pm1,8$	s.u.	$4,9\pm0,5$	$41,8\pm2,8$	$37,1\pm2,2$	$3,2\pm0,2$	$556, 5\pm22, 8$
VM81MS	$95,2\pm4,7$	$59,3\pm2,0$	$53,7\pm6,3$	$5,3\pm0,5$	$42, 3 \pm 2, 7$	$38,7\pm1,5$	$3,0\pm0,1$	$557,9\pm 22,6$
VM91AB1	$78,9\pm5,0$	$76,6\pm2,6$	$72,9\pm 8,2$	$4,5\pm0,9$	$41,8\pm2,6$	$35,0\pm1,4$	$5,3\pm0,2$	$482, 3\pm22, 6$
ZM01TA	$113,9\pm8,9$	$145,0\pm4,9$	$124,6\pm14,5$	$6,1\pm1,1$	$93,2\pm5,8$	$84, 2 \pm 4, 0$	$65,5\pm2,7$	$936, 3\pm40, 4$
ZM01TA	$109,4\pm7,2$	$103, 3\pm3, 5$	$129,9\pm14,5$	$8,5\pm1,0$	$92,0\pm7,0$	$82, 8\pm3, 3$	$64, 4 \pm 2, 6$	$931, 3 \pm 37, 9$
ZM02SH	$327, 2\pm24, 3$	$228, 0\pm 6, 5$	$219, 3 \pm 23, 4$	$17, 3 \pm 1, 1$	$57,0\pm3,7$	$52, 3\pm 2, 9$	$15,4\pm0,9$	$1161, 1 \pm 55, 8$
ZM04WO	$126, 1\pm7, 4$	$124,1\pm4,2$	$112,8\pm12,0$	$6,4\pm0,6$	$43,8\pm2,8$	$43,4\pm1,7$	$6,2\pm0,3$	$1037, 3 \pm 42, 0$
ZM05AU	$291,1\pm19,0$	$278,8\pm8,1$	$206,4\pm25,3$	$16, 5\pm 1, 4$	$93, 6\pm5, 9$	$82, 3\pm 3, 2$	$14,1\pm0,7$	$1158, 7 \pm 48, 2$
ZM08NS	$1025, 9 \pm 43, 9$	$219,9\pm6,1$	$184,5\pm21,0$	$50, 6\pm 3, 1$	$70,1\pm4,7$	$62, 5\pm 2, 4$	$9,4\pm0,5$	$851,8\pm34,7$
ZM81HS	$999,7\pm 38,2$	$263, 2\pm7, 3$	s.u.	$49,9\pm2,6$	$78,2\pm5,0$	$67, 3 \pm 3, 6$	$12,7\pm0,6$	$886, 3\pm 36, 8$
ZM81HS	$968, 2\pm 36, 9$	$266, 6\pm9, 1$	$217,7\pm23,3$	$49,4\pm2,7$	$80,1\pm5,0$	$67, 8\pm 2, 7$	$12, 3\pm0, 6$	$868, 0 \pm 39, 7$
Sedimentfalle	$1134, 0 \pm 47, 9$	$356, 2\pm11, 9$	$260,7\pm27,8$	$59,8\pm3,7$	$84,2\pm5,3$	$75,2\pm4,0$	$14, 3 \pm 0, 7$	$904,9\pm43,9$
ZM10WI	$358, 3\pm20, 4$	$151,8\pm5,2$	$115,7\pm12,8$	$17, 3\pm 1, 5$	$71,4\pm4,6$	$64, 4 \pm 2, 9$	$13, 2 \pm 0, 9$	$844,2\pm35,3$
ZM12ZP	$449,6\pm20,6$	$171, 6\pm 4, 9$	$171, 6\pm 20, 6$	$22,1\pm1,3$	$78,2\pm4,9$	$69,1\pm2,7$	$23, 6 \pm 1, 1$	$708,1\pm30,0$
ZM14OR	$721,2\pm31,0$	$251,8\pm7,3$	s.u.	$35,1\pm2,7$	$72,6\pm4,7$	$66, 3 \pm 3, 5$	$12, 6\pm 0, 6$	$845, 0\pm 35, 1$
ZM14OR	$693, 2\pm26, 7$	$258, 0\pm8, 7$	$208,6\pm22,7$	$34, 1\pm 2, 3$	$73,2\pm4,6$	$67, 2 \pm 2, 7$	$12,9\pm0,6$	$833,5\pm38,5$
ZM16GC	$734,6\pm29,3$	$215,1\pm5,8$	s.u.	$36, 3 \pm 1, 8$	$79,8\pm5,1$	$65,9\pm3,5$	$20,8\pm0,9$	$777, 7 \pm 31, 6$
ZM19KE	$689, 5 \pm 33, 7$	$391, 6\pm13, 2$	$337, 3 \pm 35, 0$	$35,6\pm2,8$	$68,9\pm4,5$	$63, 1\pm 2, 5$	$17,9\pm0,9$	$768, 0 \pm 33, 1$
ZM21AM	$294,8\pm14,5$	$160, 0\pm 5, 4$	$145,9\pm15,7$	$16,9\pm1,8$	$63, 0 \pm 4, 1$	$59,9\pm2,3$	$10,4\pm0,5$	$781,0\pm32,7$
ZM22GÖ	$456, 3\pm17, 8$	$204,8\pm5,7$	s.u.	$22,4\pm2,3$	$75,6\pm4,9$	$64, 0 \pm 3, 6$	$16, 2\pm0, 8$	$737,3\pm30,8$
ZM22GÖ	$446,6\pm18,7$	$205,7\pm6,9$	$192,0\pm21,4$	$23,0\pm1,4$	$72,5\pm4,6$	$66, 1 \pm 2, 5$	$16,4\pm0,7$	$719,8\pm29,7$
ZM24WE	$57, 1 \pm 8, 1$	$61, 7\pm 2, 1$	$64, 6\pm10, 4$	$4,6\pm0,9$	$74, 7\pm 4, 7$	$67, 8\pm 2, 6$	$8,6\pm0,6$	$805, 8 \pm 33, 4$
ZM25LA	$261, 2\pm13, 8$	$172,5\pm6,1$	$172,7\pm19,0$	$14, 1\pm 1, 1$	$59,0\pm3,8$	$55, 0\pm 2, 1$	$11,5\pm0,7$	$710,6\pm29,7$
ZM26SE	$521,3\pm24,7$	$270,5\pm7,7$	$240,2\pm34,3$	$26,5\pm2,7$	$67, 2 \pm 4, 3$	$63, 0 \pm 2, 6$	$13,2\pm0,7$	$691, 1 \pm 28, 1$

Tabelle C.20: Messergebnisse Freiberger, Zwickauer und Vereinigter Mulde Teil 2

က
<u>.</u> 2
H
d)
Ť
-ĭ
2
\geq
ē
÷
. <u>a</u> u
ц
-в
Ę.
Ύ
Ч
Ē
η
<u>ب</u>
ē
Ę
g
-2
· 🔁
⊳
\mathbf{N}
•
2
gei
rgei
ergei
ibergeı
eiberger
Freiberger
Freiberger
se Freiberger
sse Freiberger
iisse Freibergei
onisse Freiberger
ebnisse Freiberger
gebnisse Freiberger
ergebnisse Freiberger
sergebnisse Freiberger
ssergebnisse Freiberger
Iessergebnisse Freiberger
Messergebnisse Freiberger
: Messergebnisse Freiberger
11: Messergebnisse Freiberger
.21: Messergebnisse Freiberger
C.21 : Messergebnisse Freiberger
C.21: Messergebnisse Freiberger
le C.21: Messergebnisse Freiberger
elle C.21: Messergebnisse Freiberger
oelle C.21: Messergebnisse Freiberger
abelle C.21: Messergebnisse Freiberger
Tabelle C.21: Messergebnisse Freiberger

Probe Nr.	${f A}(^{238}{f U})/{f A}(^{226}{f Ra})$	${f A}(^{238}{f U})/{f A}(^{235}{f U})$	${f A}(^{226}{f Ra})/{f A}(^{224}{f Ra})$
FM01ET	$1,0\pm0,4$	$18,4\pm 8,1$	$1, 0 \pm 0, 1$
FM02MA	$1,4\pm0,2$	$30,1\pm7,2$	$1,1\pm0,1$
FM03WK	$1,0\pm0,3$	$19,0\pm7,0$	$1,2\pm0,1$
FM05TE	$1,1\pm0,2$	$21,4\pm6,1$	$1,2\pm0,1$
FM06NG	$1,1\pm0,3$	$19,8\pm7,2$	$1, 1 \pm 0, 1$
FM07TO	$0,8\pm0,1$	$18,6\pm3,6$	$1, 3 \pm 0, 1$
FM09GL	$1,1\pm0,2$	$24,8\pm6,6$	$1, 4 \pm 0, 1$
FM10RÄ	$0,7\pm0,2$	NN#	$1,5\pm0,1$
FM11NO	$1,2\pm0,2$	$25,2\pm4,6$	$1,5\pm0,1$
FM120B	$1,2\pm0,1$	$24, 2 \pm 4, 1$	$1,5\pm0,1$
FM13GV	$1,0\pm0,2$	$22,2\pm 8,3$	$1, 1 \pm 0, 1$
FM14GR	$1,2\pm0,2$	$26, 6\pm5, 5$	$1,7\pm0,1$
FM15HA	$1,2\pm0,2$	$22,3\pm5,7$	$2,0\pm0,1$
FM16CO	$1,3\pm0,2$	$24,8\pm7,4$	$1,5\pm0,1$
FM17HI	$1,1\pm0,2$	$24,1\pm5,3$	$1, 3 \pm 0, 1$
FM17HI	$1,2\pm0,1$	$27,7\pm6,8$	$1, 3 \pm 0, 1$
FM18MU	$0,9\pm0,2$	$15,8\pm4,9$	$1,8\pm0,1$
FM19BE	$1,3\pm0,3$	$26,9\pm10,7$	$1,1\pm0,1$
FM20MD	$1,0\pm0,3$	$24,4\pm7,7$	$1, 3 \pm 0, 1$
FM22RB	$0,9\pm0,3$	$19,6\pm 6,3$	$1, 3 \pm 0, 1$
FM22RB	$0,7\pm0,3$	$13,7\pm7,2$	$1, 3 \pm 0, 1$
FM23HO	$0,6\pm0,2$	$15,8\pm6,3$	$1, 9 \pm 0, 1$
VM05HO	$1,3\pm0,2$	$21,8\pm3,7$	$2,3\pm0,2$
VM10DE2	$1,7\pm0,3$	$26,9\pm 8,7$	$1,9\pm0,1$
VM01KÖ	$1,5\pm0,2$	$19,5\pm2,8$	$2, 3 \pm 0, 1$
VM02GR2	$1,5\pm0,1$	$22,8\pm2,4$	$1,9\pm0,1$
VM21RE	$0,6\pm0,2$	$9,4\pm3,8$	$1,1\pm0,1$
VM23FU	$2,2\pm0,9$	$20,8\pm10,5$	$1,0\pm0,1$
VM31NW	$1,3\pm0,3$	$18,1\pm5,3$	$2,0\pm0,1$
VM41EI	$1,6\pm0,2$	$22,1\pm3,5$	$2,4\pm0,1$

VMT1SP1,5 \pm 0,320,3 \pm 4,81,8 \pm 0,1VMT1SP1,1 \pm 0,219,8 \pm 4,72,2 \pm 0,1VM81MS1,7 \pm 0,219,8 \pm 4,72,5 \pm 0,1VM81MS1,7 \pm 0,218,9 \pm 2,51,5 \pm 0,1VM81MS1,7 \pm 0,218,9 \pm 2,51,8 \pm 0,1VM81MS1,9 \pm 0,316,5 \pm 5,01,8 \pm 0,1VM09RA11,1 2,8 \pm 0,425,0 \pm 7,61,4 \pm 0,1VM09RA11,2 \pm 0,215,5 \pm 5,01,7 \pm 0,1VM09RA21,1 2,2 \pm 0,215,5 \pm 5,01,7 \pm 0,1VM09RA31,1 2,2 \pm 0,215,5 \pm 5,01,7 \pm 0,1ZM01TA1,3 \pm 0,215,5 \pm 5,01,7 \pm 0,1ZM01TA1,3 \pm 0,215,5 \pm 5,01,7 \pm 0,1ZM01TA1,3 \pm 0,215,5 \pm 2,13,5 \pm 0,2ZM01TA1,1 \pm 0,117,8 \pm 2,13,5 \pm 0,2ZM01TA1,1 \pm 0,117,8 \pm 2,13,5 \pm 0,2ZM01TA1,1 \pm 0,117,8 \pm 2,13,8 \pm 0,2ZM01TA1,1 \pm 0,117,8 \pm 2,13,8 \pm 0,2ZM01TA1,1 \pm 0,117,8 \pm 2,13,8 \pm 0,2ZM01TA2,1 \pm 0,221,4 \pm 2,72,4 \pm 0,1ZM12DP2,4 \pm 0,221,4 \pm 1,33,8 \pm 0,2ZM13DR3,7 \pm 0,221,4 \pm 1,33,8 \pm 0,2ZM14DR2,0 \pm 2,2 \pm 1,83,3 \pm 0,2ZM13DR2,1 \pm 2,13,2 \pm 0,2ZM14DR2,1 \pm 2,221,4 \pm 1,3ZM14DR2,1 \pm 2,23,1 \pm 0,2ZM14DR2,2 \pm 4,42,2 \pm 4,4ZM14DR2,2 \pm 4,43,2 \pm 0,2	Probe Nr.	${f A}(^{238}{f U})/{f A}(^{226}{f Ra})$	${f A}(^{238}{f U})/{f A}(^{235}{f U})$	${f A(^{226}{f Ra})/{f A(^{224}{f Ra})}}$																																																																																																				
VMTPO1,1 \pm 0,219,8 \pm 4,72,2 \pm 0,1VM81MS1,8 \pm 0,221,2 \pm 3,01,6 \pm 0,1VM81MS1,7 \pm 0,218,9 \pm 2,51,5 \pm 0,1VM09RA11,9 \pm 0,316,2 \pm 4,42,2 \pm 0,1VM09RA11,8 \pm 0,425,0 \pm 7,61,4 \pm 0,1VM09RA11,3 \pm 0,215,5 \pm 5,01,6 \pm 0,1VM09RA21,2 \pm 0,215,5 \pm 5,01,6 \pm 0,1VM09RA21,3 \pm 0,215,5 \pm 5,01,6 \pm 0,1VM09RA21,3 \pm 0,215,5 \pm 5,01,7 \pm 0,1ZM01TA1,3 \pm 0,215,5 \pm 3,21,7 \pm 0,1ZM01TA1,3 \pm 0,21,3 \pm 0,23,5 \pm 0,2ZM01TA1,1 \pm 0,117,8 \pm 2,43,4 \pm 0,2ZM04WO1,0 \pm 0,117,8 \pm 2,43,4 \pm 0,2ZM05NS2,04 ± 0,22,1 \pm 2,13,8 \pm 0,2ZM05NS2,04 ± 0,22,1 \pm 2,13,8 \pm 0,2ZM05NS2,1 \pm 2,13,8 \pm 0,2ZM14OR2,3 \pm 0,23,3 \pm 0,2ZM14OR2,3 \pm 0,2ZM14OR <t< th=""><th>VM71SP</th><th>$1, 5 \pm 0, 3$</th><th>$20, 3 \pm 4, 8$</th><th>$1, 8 \pm 0, 1$</th></t<>	VM71SP	$1, 5 \pm 0, 3$	$20, 3 \pm 4, 8$	$1, 8 \pm 0, 1$																																																																																																				
VM81MS $1, 8 \pm 0, 2$ $21, 2 \pm 3, 0$ $1, 6 \pm 0, 1$ VM81MS $1, 7 \pm 0, 2$ $18, 9 \pm 2, 5$ $1, 5 \pm 0, 1$ VM09RAU $1, 9 \pm 0, 3$ $16, 2 \pm 4, 4$ $2, 2 \pm 0, 1$ VM09RA1 $1, 8 \pm 0, 4$ $25, 0 \pm 4, 7$ $1, 4 \pm 0, 1$ VM09RA1 $1, 8 \pm 0, 4$ $25, 0 \pm 4, 7$ $1, 4 \pm 0, 1$ VM09RA1 $1, 2 \pm 0, 2$ $15, 5 \pm 3, 2$ $1, 7 \pm 0, 1$ VM09RA1 $1, 2 \pm 0, 2$ $15, 5 \pm 3, 2$ $1, 7 \pm 0, 1$ VM09RA1 $1, 3 \pm 0, 2$ $15, 5 \pm 2, 9$ $4, 4 \pm 0, 3$ VM09RA2 $0, 8 \pm 0, 1$ $1, 3 \pm 0, 2$ $15, 5 \pm 2, 9$ $4, 4 \pm 0, 3$ ZM01TA $1, 3 \pm 0, 2$ $18, 5 \pm 2, 9$ $4, 4 \pm 0, 3$ ZM02KU $1, 1 \pm 0, 1$ $17, 8 \pm 2, 4$ $3, 4 \pm 0, 2$ ZM03NS $4, 4 \pm 0, 2$ $20, 7 \pm 1, 7$ $2, 4 \pm 0, 2$ ZM04WO $1, 1 \pm 0, 1$ $17, 8 \pm 2, 4$ $3, 8 \pm 0, 2$ ZM05NS $2, 4 \pm 0, 2$ $20, 7 \pm 1, 7$ $3, 8 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $20, 7 \pm 1, 7$ $3, 8 \pm 0, 2$ ZM11AR $2, 7 \pm 0, 2$ $21, 4 \pm 2, 7$ $2, 4 \pm 0, 1$ ZM11AR $2, 7 \pm 0, 2$ $2, 7 \pm 0, 2$ $3, 7 \pm 0, 2$ ZM11AR $2, 7 \pm 0, 2$ $2, 1 \pm 2, 6$ $3, 1 \pm 0, 2$ ZM11AR $2, 7 \pm 0, 2$ $2, 1 \pm 1, 8$ $3, 2 \pm 0, 2$ ZM11AR $2, 2 \pm 0, 2$ $2, 2 \pm 1, 4 \pm 2, 7$ $2, 4 \pm 0, 2$ ZM11AR $2, 2 \pm 0, 2$ $2, 2, 2, 1 \pm 2, 6$ $3, 1 \pm 0, 2$ ZM13AR $2, 3 \pm 0, 2$ $2, 2 \pm 0, 1$ $2, 2 \pm 0, 1$ <th>VM7PO</th> <th>$1,1\pm 0,2$</th> <th>$19,8\pm4,7$</th> <th>$2,2\pm0,1$</th>	VM7PO	$1,1\pm 0,2$	$19,8\pm4,7$	$2,2\pm0,1$																																																																																																				
VM81MS $1, 7\pm 0, 2$ $18, 9\pm 2, 5$ $1, 5\pm 0, 1$ VM09RAU $1, 9\pm 0, 3$ $16, 3\pm 2, 9$ $1, 8\pm 0, 1$ VM09RA1 $1, 9\pm 0, 3$ $16, 3\pm 2, 9$ $1, 8\pm 0, 1$ VM09RA1 $1, 8\pm 0, 4$ $25, 0\pm 7, 6$ $1, 4\pm 0, 1$ VM09RA2 $0, 8\pm 0, 1$ $1, 2\pm 0, 2$ $15, 5\pm 5, 0$ $1, 7\pm 0, 1$ VM09RA2 $0, 8\pm 0, 1$ $1, 2\pm 0, 2$ $15, 5\pm 3, 2$ $1, 7\pm 0, 1$ ZM01TA $1, 3\pm 0, 2$ $15, 5\pm 3, 2$ $1, 7\pm 0, 1$ ZM01TA $1, 4\pm 0, 2$ $15, 5\pm 3, 2$ $1, 2\pm 0, 1$ ZM01TA $1, 4\pm 0, 2$ $20, 0\pm 4, 7$ $1, 7\pm 0, 1$ ZM05AU $1, 4\pm 0, 2$ $20, 7\pm 1, 7$ $2, 9\pm 0, 1$ ZM05AU $1, 1\pm 0, 1$ $17, 8\pm 2, 4$ $3, 4\pm 0, 2$ ZM05NS $2, 4\pm 0, 2$ $20, 7\pm 1, 6$ $2, 4\pm 0, 1$ ZM05NI $2, 4\pm 0, 2$ $20, 7\pm 1, 6$ $2, 6\pm 0, 1$ ZM16NR $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM110R $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM110R $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM110R $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM110R $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM110R $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 2\pm 0, 2$ ZM110R $2, 2, 4\pm 0, 1$ $2, 7\pm 2, 3$ $6, 2\pm 0, 1$ ZM110R $2, 3\pm 0, 2$ $21, 4\pm 1, 8$ $3, 2\pm 0, 2$ ZM110R $2, 3\pm 0, 2$ $21, 4\pm 1, 8$ $3, 2\pm 0, 2$ ZM110R $2, 3\pm 0, 2$ $2, 2, 4$	VM81MS	$1,8\pm0,2$	$21,2\pm3,0$	$1,6\pm0,1$																																																																																																				
VM08MU $1, 9 \pm 0, 3$ $16, 3 \pm 2, 9$ $1, 8 \pm 0, 1$ VM09RA1 $0, 9 \pm 0, 2$ $16, 2 \pm 4, 4$ $2, 2, 2 \pm 0, 1$ VM09RA2 $1, 8 \pm 0, 4$ $25, 0 \pm 7, 6$ $1, 4 \pm 0, 1$ VM09RA2 $1, 2 \pm 0, 2$ $15, 5 \pm 5, 0$ $1, 4 \pm 0, 1$ ZM01TA $0, 8 \pm 0, 1$ $0, 8 \pm 0, 1$ $1, 7 \pm 0, 1$ ZM01TA $1, 3 \pm 0, 2$ $15, 5 \pm 3, 2$ $1, 7 \pm 0, 1$ ZM01TA $1, 3 \pm 0, 2$ $15, 5 \pm 3, 2$ $1, 7 \pm 0, 1$ ZM01TA $1, 3 \pm 0, 2$ $1, 7 \pm 0, 2$ $1, 7 \pm 0, 1$ ZM01TA $1, 3 \pm 0, 2$ $1, 7 \pm 0, 2$ $1, 7 \pm 0, 1$ ZM01TA $1, 1 \pm 0, 1$ $1, 7, 8 \pm 2, 4$ $3, 4 \pm 0, 2$ ZM02SH $1, 1 \pm 0, 1$ $17, 8 \pm 2, 4$ $3, 4 \pm 0, 2$ ZM02NI $2, 7 \pm 0, 2$ $20, 7 \pm 1, 7$ $2, 9 \pm 0, 1$ ZM02NI $2, 1 \pm 0, 2$ $20, 7 \pm 1, 7$ $3, 8 \pm 0, 2$ ZM02NI $2, 1 \pm 0, 2$ $2, 7 \pm 0, 1$ $3, 8 \pm 0, 2$ ZM02NI $2, 7 \pm 0, 2$ $20, 7 \pm 1, 7$ $3, 8 \pm 0, 2$ ZM14OR $2, 8 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 2 \pm 0, 2$ ZM14OR $2, 8 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 2 \pm 0, 2$ ZM14OR $2, 8 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 2 \pm 0, 2$ ZM14OR $2, 8 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 2 \pm 0, 2$ ZM14OR $2, 8 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 2 \pm 0, 2$ ZM14OR $2, 8 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 2 \pm 0, 2$ ZM14OR $2, 8 \pm 0, 2$ $20, 7 \pm 2, 3$ $4, 4 \pm 0, 2$ ZM16GC $3, 2 \pm $	VM81MS	$1,7\pm0,2$	$18,9\pm2,5$	$1,5\pm0,1$																																																																																																				
VM91AB1 $0,9\pm0,2$ $16,2\pm4,4$ $2,2\pm0,1$ VM09RA1 $1,8\pm0,4$ $25,0\pm7,6$ $1,4\pm0,1$ VM09RA2 $1,2\pm0,2$ $15,5\pm5,0$ $1,7\pm0,1$ ZM01TA $0,8\pm0,1$ $1,2\pm0,2$ $15,5\pm5,0$ $1,7\pm0,1$ ZM01TA $0,8\pm0,1$ $1,3\pm0,2$ $15,5\pm3,2$ $1,2\pm0,1$ ZM01TA $1,3\pm0,2$ $15,5\pm3,2$ $1,2\pm0,1$ ZM01TA $1,3\pm0,2$ $15,5\pm3,2$ $1,2\pm0,1$ ZM02SH $1,1\pm0,1$ $1,3\pm0,2$ $3,4\pm0,2$ ZM02SH $1,1\pm0,1$ $17,8\pm2,4$ $3,4\pm0,2$ ZM05AU $1,1\pm0,1$ $17,8\pm2,4$ $3,4\pm0,2$ ZM08NS $2,4\pm0,2$ $21,4\pm1,7$ $3,5\pm0,2$ ZM08NS $2,7\pm0,1$ $2,7\pm0,1$ $3,8\pm0,2$ ZM08NS $2,7\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $3,0\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $2,7\pm0,1$ $2,7\pm0,1$ $3,2\pm0,2$ ZM14OR $2,7\pm0,1$ $2,7\pm0,1$ $3,2\pm0,2$ ZM14OR $2,7\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $2,7\pm0,1$ $2,7\pm0,1$ $3,2\pm0,2$ ZM13OR $2,7\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM13CC $2,8\pm0,2$ $2,7\pm0,1$ $3,2\pm0,2$ ZM14OR $2,7\pm0,1$ $2,7\pm0,1$ $2,7\pm0,1$ ZM13CF $2,7\pm0,1$ $2,7\pm0,1$ $2,7\pm0,1$ ZM12C $2,8\pm0,2$ $2,1,4\pm1,9$ $3,2\pm0,2$ ZM14OR $2,7\pm0,2$ $2,1,4\pm1,9$ $3,2\pm0,2$ ZM15C $2,4\pm0,1$ $2,2,2\pm1,4\pm8,7$ $0,9\pm0,2$ ZM22GÖ $2,$	VM08MU	$1,9\pm0,3$	$16, 3\pm 2, 9$	$1,8\pm0,1$																																																																																																				
VM09RA1 $1, 8 \pm 0, 4$ $25, 0 \pm 7, 6$ $1, 4 \pm 0, 1$ VM09RA2 $1, 2 \pm 0, 2$ $15, 5 \pm 5, 0$ $1, 6 \pm 0, 1$ VM09RA2 $1, 2 \pm 0, 2$ $15, 5 \pm 5, 0$ $1, 7 \pm 0, 1$ ZM01TA $0, 8 \pm 0, 1$ $2, 0, 0 \pm 4, 7$ $1, 7 \pm 0, 1$ ZM01TA $1, 3 \pm 0, 2$ $15, 5 \pm 3, 2$ $1, 2 \pm 0, 1$ ZM01SH $1, 4 \pm 0, 2$ $18, 5 \pm 2, 9$ $4, 4 \pm 0, 3$ ZM02SH $1, 1 \pm 0, 1$ $1, 1 \pm 0, 1$ $17, 8 \pm 2, 4$ $3, 4 \pm 0, 2$ ZM03NS $4, 8 \pm 0, 2$ $2, 14 \pm 1, 7$ $3, 5 \pm 0, 2$ ZM16NS $2, 4 \pm 0, 2$ $21, 4 \pm 2, 7$ $2, 4 \pm 0, 1$ ZM16NS $2, 7 \pm 0, 2$ $21, 4 \pm 1, 7$ $3, 8 \pm 0, 2$ ZM14OR $3, 0 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 3 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 1$ $2, 7 \pm 0, 1$ $3, 2 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 1$ $2, 7 \pm 0, 1$ $3, 2 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 1$ $2, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM14OR $2, 7 \pm 0, 2$ $2, 1, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $2, 2, 2, 1 \pm 3, 4$ $2, 7 \pm 0, 1$	VM91AB1	$0,9\pm0,2$	$16,2\pm4,4$	$2,2\pm0,1$																																																																																																				
VM09RA2 $1, 2\pm 0, 2$ $15, 5\pm 5, 0$ $1, 6\pm 0, 1$ ZM01TA $0, 8\pm 0, 1$ $20, 0\pm 4, 7$ $1, 7\pm 0, 1$ ZM01TA $0, 8\pm 0, 1$ $1, 3\pm 0, 2$ $1, 7\pm 0, 1$ ZM01TA $1, 3\pm 0, 2$ $15, 5\pm 3, 2$ $1, 2\pm 0, 1$ ZM02SH $1, 0\pm 0, 1$ $1, 3\pm 0, 2$ $15, 5\pm 3, 2$ $1, 2\pm 0, 1$ ZM02SH $1, 0\pm 0, 1$ $1, 4\pm 0, 2$ $18, 5\pm 2, 9$ $4, 4\pm 0, 3$ ZM02SH $1, 1\pm 0, 1$ $17, 8\pm 2, 4$ $3, 4\pm 0, 2$ ZM04WO $1, 1\pm 0, 1$ $17, 8\pm 2, 4$ $3, 4\pm 0, 2$ ZM05AU $1, 1\pm 0, 1$ $17, 8\pm 2, 1$ $3, 8\pm 0, 2$ ZM05AU $2, 4\pm 0, 2$ $21, 4\pm 1, 7$ $3, 8\pm 0, 2$ ZM08NS $2, 7\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM14OR $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 3\pm 0, 2$ ZM14OR $2, 4\pm 0, 2$ $21, 4\pm 1, 8$ $3, 3\pm 0, 2$ ZM14OR $2, 3\pm 0, 2$ $21, 4\pm 1, 8$ $3, 3\pm 0, 2$ ZM14OR $2, 7\pm 0, 1$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM14OR $2, 3\pm 0, 2$ $21, 4\pm 1, 8$ $3, 3\pm 0, 2$ ZM14GC $3, 7\pm 0, 2$ $21, 4\pm 1, 8$ $3, 3\pm 0, 2$ ZM14GC $2, 3\pm 0, 2$ $21, 4\pm 1, 8$ $3, 3\pm 0, 2$ ZM14GC $2, 3\pm 0, 2$ $21, 4\pm 1, 8$ $3, 1\pm 0, 2$ ZM14GC $2, 2\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM14GC $2, 3\pm 0, 2$ $21, 3\pm 1, 7$ $22, 2\pm 0, 3$ ZM12GO $2, 4\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM22GO $2, 4\pm 0, 2$ $21, 2\pm 2, 4\pm $	VM09RA1	$1,8\pm0,4$	$25,0\pm7,6$	$1, 4 \pm 0, 1$																																																																																																				
ZM01TA $0, 8\pm 0, 1$ $20, 0\pm 4, 7$ $1, 7\pm 0, 1$ ZM01TA $1, 3\pm 0, 2$ $15, 5\pm 3, 2$ $1, 7\pm 0, 1$ ZM02SH $1, 3\pm 0, 2$ $15, 5\pm 3, 2$ $1, 2\pm 0, 1$ ZM02SH $1, 4\pm 0, 2$ $18, 5\pm 2, 9$ $4, 4\pm 0, 3$ ZM02SU $1, 0\pm 0, 1$ $1, 3\pm 0, 2$ $1, 2, 9\pm 0, 1$ ZM05AU $1, 1\pm 0, 1$ $17, 8\pm 2, 4$ $3, 4\pm 0, 2$ ZM05AU $1, 1\pm 0, 1$ $17, 8\pm 2, 4$ $3, 4\pm 0, 2$ ZM05AU $1, 1\pm 0, 1$ $17, 8\pm 2, 4$ $3, 4\pm 0, 2$ ZM05AU $2, 4\pm 0, 2$ $20, 7\pm 1, 7$ $3, 8\pm 0, 2$ ZM13ZP $2, 7\pm 0, 2$ $20, 7\pm 1, 6$ $3, 8\pm 0, 2$ ZM14OR $3, 0\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM14C $3, 7\pm 0, 3$ $21, 3\pm 2, 1$ $3, 8\pm 0, 2$ ZM16GC $3, 7\pm 0, 2$ $21, 4\pm 1, 8$ $3, 3\pm 0, 2$ ZM16GC $3, 7\pm 0, 2$ $21, 3\pm 3, 4$ $2, 7\pm 0, 1$ ZM13ZP $2, 7\pm 0, 1$ $2, 22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM16GC $3, 7\pm 0, 3$ $21, 3\pm 3, 4$ $2, 7\pm 0, 1$ ZM13KE $2, 3\pm 0, 2$ $2, 4\pm 0, 1$ $3, 2\pm 0, 2$ ZM19KE $2, 2\pm 0, 3$ $2, 2, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM19KE $2, 7\pm 0, 3$ $2, 7\pm 2, 2$ $3, 2\pm 0, 2$ ZM19KE $2, 3\pm 0, 2$ $2, 2, 4\pm 8, 7$ $0, 9\pm 0, 2$ ZM19KE $2, 4\pm 0, 1$ $2, 2, 4\pm 8, 7$ $0, 9\pm 0, 2$ ZM19KE $2, 4\pm 0, 1$ $2, 2, 4\pm 8, 7$ $0, 9\pm 0, 2$ ZM25LA $1, 7\pm 0, 2$ $2, 4\pm 8, 7$ $0, 9\pm 0, 2$	VM09RA2	$1,2\pm0,2$	$15,5\pm5,0$	$1,6\pm0,1$																																																																																																				
ZM01TA $1, 3 \pm 0, 2$ $15, 5 \pm 3, 2$ $1, 2 \pm 0, 1$ ZM02SH $1, 4 \pm 0, 2$ $18, 5 \pm 2, 9$ $4, 4 \pm 0, 3$ ZM02SH $1, 0 \pm 0, 1$ $1, 0 \pm 0, 1$ $19, 8 \pm 3, 1$ $2, 9 \pm 0, 1$ ZM05AU $1, 1 \pm 0, 1$ $17, 8 \pm 2, 4$ $3, 4 \pm 0, 2$ ZM08NS $4, 8 \pm 0, 3$ $20, 7 \pm 1, 7$ $3, 4 \pm 0, 2$ ZM08NS $4, 8 \pm 0, 3$ $20, 7 \pm 1, 7$ $2, 4 \pm 0, 1$ ZM08NS $2, 4 \pm 0, 2$ $21, 4 \pm 2, 7$ $2, 4 \pm 0, 1$ ZM08NS $2, 7 \pm 0, 2$ $21, 4 \pm 2, 7$ $2, 4 \pm 0, 1$ ZM12RP $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM14OR $3, 0 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM14OR $3, 0 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 1$ $22, 2 \pm 1, 8$ $3, 1 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 1$ $22, 2 \pm 1, 8$ $3, 1 \pm 0, 2$ ZM14OR $2, 7 \pm 0, 1$ $2, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM14OR $2, 7 \pm 0, 1$ $2, 2 \pm 4 \pm 0, 1$ $2, 7 \pm 0, 1$ ZM24WE $1, 9 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM24WE $3, 9 \pm 0, 2$ $21, 2 \pm 1, 4 \pm 0, 2$ $3, 9 \pm 0, 2$ <tr <="" th=""><th>ZM01TA</th><th>$0,8\pm0,1$</th><th>$20,0\pm4,7$</th><th>$1,7\pm0,1$</th></tr> <tr><th>ZM02SH$1, 4\pm0, 2$$18, 5\pm2, 9$$4, 4\pm0, 3$ZM04WO$1, 0\pm0, 1$$19, 8\pm3, 1$$2, 9\pm0, 1$ZM05AU$1, 1\pm0, 1$$17, 8\pm2, 4$$3, 4\pm0, 2$ZM08NS$2, 4\pm0, 2$$20, 7\pm1, 7$$3, 5\pm0, 2$ZM08NS$2, 4\pm0, 2$$20, 7\pm1, 6$$2, 5\pm0, 1$ZM10WI$2, 7\pm0, 2$$20, 7\pm1, 6$$2, 5\pm0, 1$ZM14OR$3, 0\pm0, 2$$21, 4\pm2, 7$$2, 4\pm0, 1$ZM14OR$3, 7\pm0, 3$$20, 7\pm1, 6$$3, 8\pm0, 2$ZM14OR$3, 7\pm0, 3$$22, 2\pm1, 8$$3, 3\pm0, 2$ZM14OR$3, 7\pm0, 3$$22, 2\pm1, 8$$3, 3\pm0, 2$ZM14OR$2, 8\pm0, 2$$21, 4\pm1, 8$$3, 8\pm0, 2$ZM14OR$2, 8\pm0, 2$$21, 4\pm1, 8$$3, 3\pm0, 2$ZM14OR$2, 7\pm0, 3$$22, 2\pm1, 8$$3, 2\pm0, 2$ZM14OR$2, 7\pm0, 3$$22, 2\pm1, 8$$3, 3\pm0, 2$ZM14OR$2, 7\pm0, 3$$21, 8\pm2, 1$$3, 3\pm0, 2$ZM14OR$2, 7\pm2, 3$$6, 2\pm0, 1$ZM15KE$2, 3\pm0, 3$$21, 8\pm3, 4$$2, 7\pm0, 1$ZM15KE$2, 3\pm0, 3$$21, 8\pm1, 7$$0, 9\pm0, 2$ZM22GÖ$2, 4\pm0, 1$$22, 1\pm2, 6$$3, 1\pm0, 2$ZM24WE$1, 9\pm0, 2$$21, 8\pm1, 7$$0, 9\pm0, 2$ZM25KE$1, 9\pm0, 1$$19\pm0, 2$$21, 8\pm1, 7$ZM25KE$3, 9\pm0, 2$$21, 8\pm1, 7$$3, 9\pm0, 2$ZM25KE$3, 9\pm0, 2$$21, 3\pm1, 6$$3, 9\pm0, 2$ZM281KS$3, 9\pm0, 2$$20, 3\pm1, 8$$3, 9\pm0, 2$ZM81KS<th>ZM01TA</th><th>$1,3\pm0,2$</th><th>$15,5\pm3,2$</th><th>$1,2\pm0,1$</th></th></tr> <tr><th>ZM04WO$1,0\pm0,1$$19,8\pm3,1$$2,9\pm0,1$ZM05AU$1,1\pm0,1$$17,8\pm2,4$$3,4\pm0,2$ZM08NS$4,8\pm0,3$$20,7\pm1,7$$3,5\pm0,2$ZM08NS$2,4\pm0,2$$21,4\pm2,7$$2,4\pm0,1$ZM10WI$2,7\pm0,2$$20,7\pm1,6$$2,5\pm0,1$ZM13ZP$3,0\pm0,2$$21,8\pm2,1$$3,8\pm0,2$ZM14OR$3,0\pm0,2$$21,8\pm2,1$$3,8\pm0,2$ZM14OR$2,7\pm0,3$$22,2\pm1,8$$3,3\pm0,2$ZM14OR$2,8\pm0,2$$21,4\pm1,8$$3,8\pm0,2$ZM14OR$2,7\pm0,3$$22,2\pm1,8$$3,3\pm0,2$ZM14OR$2,7\pm0,3$$20,7\pm2,3$$6,2\pm0,3$ZM19KE$1,9\pm0,2$$21,4\pm1,8$$3,3\pm0,2$ZM19KE$2,7\pm0,3$$20,7\pm2,3$$6,2\pm0,3$ZM19KE$2,7\pm0,3$$20,7\pm2,3$$6,2\pm0,3$ZM19KE$2,7\pm0,3$$21,8\pm3,4$$2,7\pm0,3$ZM22GÖ$2,4\pm0,1$$22,1\pm4,8,7$$0,9\pm0,2$ZM22LA$1,9\pm0,2$$22,4\pm8,7$$0,9\pm0,0$ZM23LA$1,9\pm0,2$$23,7\pm2,9$$3,1\pm0,2$ZM24WE$1,9\pm0,2$$23,7\pm2,9$$3,1\pm0,2$ZM25LA$1,9\pm0,2$$23,7\pm2,9$$3,1\pm0,2$ZM25LA$1,9\pm0,2$$23,7\pm2,9$$3,1\pm0,2$ZM25LA$1,9\pm0,2$$23,7\pm2,9$$3,1\pm0,2$ZM25HE$3,9\pm0,2$$23,7\pm2,9$$3,1\pm0,2$ZM26KE$4,1\pm0,3$$21,8\pm1,7$$3,9\pm0,2$ZM26KE$3,9\pm0,2$$21,3\pm1,6$$3,9\pm0,2$ZM81HS$3,9\pm0,2$$21,3\pm1,6$</th><th>ZM02SH</th><th>$1,4\pm0,2$</th><th>$18,5\pm2,9$</th><th>$4,4\pm0,3$</th></tr> <tr><th>ZM05AU$1, 1\pm 0, 1$$1, 7, 8\pm 2, 4$$3, 4\pm 0, 2$ZM08NS$4, 8\pm 0, 3$$20, 7\pm 1, 7$$3, 5\pm 0, 2$ZM08NS$4, 8\pm 0, 3$$20, 7\pm 1, 6$$3, 5\pm 0, 1$ZM10WI$2, 7\pm 0, 2$$20, 7\pm 1, 6$$2, 5\pm 0, 1$ZM14OR$3, 0\pm 0, 2$$21, 4\pm 1, 8$$3, 8\pm 0, 2$ZM14OR$3, 7\pm 0, 3$$22, 2\pm 1, 8$$3, 3\pm 0, 2$ZM14OR$3, 7\pm 0, 3$$22, 2\pm 1, 8$$3, 3\pm 0, 2$ZM14OR$2, 8\pm 0, 2$$21, 4\pm 1, 8$$3, 8\pm 0, 2$ZM14OR$2, 3, 7\pm 0, 3$$22, 2\pm 1, 8$$3, 3\pm 0, 2$ZM16GC$3, 7\pm 0, 3$$22, 2\pm 1, 8$$3, 3\pm 0, 2$ZM19KE$1, 9\pm 0, 2$$20, 7\pm 2, 3$$6, 2\pm 0, 1$ZM19KE$2, 3\pm 0, 3$$22, 2\pm 1, 8$$3, 3\pm 0, 2$ZM21AM$2, 3\pm 0, 3$$21, 8\pm 3, 4$$2, 7\pm 0, 1$ZM22GÖ$2, 4\pm 0, 1$$22, 1\pm 2, 6$$3, 1\pm 0, 2$ZM21AWE$1, 7\pm 0, 6$$22, 4\pm 8, 7$$0, 9\pm 0, 0$ZM21AWE$1, 9\pm 0, 2$$21, 4\pm 1, 9$$3, 1\pm 0, 2$ZM21AWE$1, 9\pm 0, 2$$21, 4\pm 1, 9$$3, 1\pm 0, 2$ZM21AWE$1, 9\pm 0, 2$$21, 4\pm 1, 9$$3, 1\pm 0, 2$ZM21AWE$1, 9\pm 0, 2$$21, 4\pm 1, 9$$3, 1\pm 0, 2$ZM21AWE$1, 9\pm 0, 2$$21, 4\pm 1, 9$$3, 1\pm 0, 2$ZM21KS$3, 9\pm 0, 2$$21, 4\pm 1, 9$$3, 9\pm 0, 2$ZM21KS$3, 9\pm 0, 2$$21, 3\pm 1, 6$$3, 9\pm 0, 2$ZM81HS$3, 4\pm 0, 2$$21, 3\pm 1, 7$$3, 9\pm 0, 2$<t< th=""><th>ZM04WO</th><th>$1,0\pm0,1$</th><th>$19,8\pm3,1$</th><th>$2,9\pm0,1$</th></t<></th></tr> <tr><th>ZM08NS$4,8\pm0,3$$20,7\pm1,7$$3,5\pm0,2$ZM10WI$2,4\pm0,2$$21,4\pm2,7$$3,5\pm0,1$ZM12ZP$2,7\pm0,2$$20,7\pm1,6$$2,5\pm0,1$ZM14OR$3,0\pm0,2$$21,4\pm1,8$$3,8\pm0,2$ZM14OR$3,0\pm0,2$$21,4\pm1,8$$3,8\pm0,2$ZM14OR$3,0\pm0,2$$21,4\pm1,8$$3,8\pm0,2$ZM14OR$3,7\pm0,3$$22,2\pm1,8$$3,3\pm0,2$ZM14OR$2,8\pm0,2$$21,4\pm1,8$$3,3\pm0,2$ZM19KE$1,9\pm0,2$$20,7\pm2,3$$6,2\pm0,3$ZM19KE$2,3\pm0,3$$21,8\pm3,4$$2,7\pm0,1$ZM21AM$2,3\pm0,3$$21,8\pm3,4$$2,7\pm0,1$ZM21AM$2,3\pm0,3$$21,4\pm1,9$$3,1\pm0,2$ZM21AM$2,3\pm0,3$$21,4\pm1,9$$3,1\pm0,2$ZM22GÖ$2,4\pm0,1$$22,1\pm2,6$$3,2\pm0,2$ZM22GÖ$2,4\pm0,1$$22,1\pm2,6$$3,2\pm0,2$ZM23EE$1,9\pm0,2$$23,4\pm0,1$$22,1\pm2,6$$3,1\pm0,2$ZM25LA$1,9\pm0,2$$23,4\pm0,2$$23,7\pm2,9$$3,1\pm0,2$ZM25KE$4,1\pm0,3$$21,8\pm1,7$$3,9\pm0,2$ZM26KE$4,1\pm0,3$$21,8\pm1,7$$3,9\pm0,2$ZM81HS$3,9\pm0,2$$20,3\pm1,8$$4,7\pm0,3$ZM81HS$3,4\pm0,2$$20,3\pm1,8$$4,7\pm0,3$ZM81HS$3,9\pm0,2$$20,3\pm1,8$$4,7\pm0,3$</th><th>ZM05AU</th><th>$1,1\pm0,1$</th><th>$17,8\pm2,4$</th><th>$3,4\pm0,2$</th></tr> <tr><th>ZM10W1$2, 4 \pm 0, 2$$21, 4 \pm 2, 7$$2, 4 \pm 0, 1$ZM12ZP$2, 7 \pm 0, 2$$20, 7 \pm 1, 6$$2, 5 \pm 0, 1$ZM14OR$3, 0 \pm 0, 2$$20, 7 \pm 1, 6$$3, 8 \pm 0, 2$ZM14OR$3, 0 \pm 0, 2$$21, 8 \pm 2, 1$$3, 8 \pm 0, 2$ZM14OR$3, 0 \pm 0, 2$$21, 4 \pm 1, 8$$3, 8 \pm 0, 2$ZM16GC$3, 7 \pm 0, 3$$22, 2 \pm 1, 8$$3, 3 \pm 0, 2$ZM19KE$1, 9 \pm 0, 2$$20, 7 \pm 2, 3$$6, 2 \pm 0, 3$ZM19KE$1, 9 \pm 0, 2$$20, 7 \pm 2, 3$$6, 2 \pm 0, 3$ZM19KE$2, 3 \pm 0, 3$$21, 8 \pm 3, 4$$2, 7 \pm 0, 1$ZM21AM$2, 3 \pm 0, 3$$21, 8 \pm 3, 4$$2, 7 \pm 0, 1$ZM22GO$2, 4 \pm 0, 1$$22, 1 \pm 2, 6$$3, 1 \pm 0, 2$ZM21AM$2, 3 \pm 0, 2$$21, 4 \pm 1, 9$$3, 1 \pm 0, 2$ZM22GO$2, 4 \pm 0, 1$$22, 1 \pm 2, 6$$3, 1 \pm 0, 2$ZM22GO$2, 4 \pm 0, 2$$21, 4 \pm 1, 9$$3, 1 \pm 0, 2$ZM21AW$1, 9 \pm 0, 2$$21, 4 \pm 1, 9$$3, 1 \pm 0, 2$ZM22GO$2, 4 \pm 0, 2$$21, 4 \pm 1, 9$$3, 1 \pm 0, 2$ZM21AWE$1, 9 \pm 0, 2$$23, 4 \pm 2, 4$$4, 3 \pm 0, 2$ZM21AWE$1, 9 \pm 0, 2$$23, 4 \pm 2, 4$$4, 3 \pm 0, 2$ZM21AWE$1, 9 \pm 0, 2$$23, 4 \pm 2, 4$$4, 3 \pm 0, 2$ZM21AWE$1, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 1 \pm 0, 2$ZM21AWE$1, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 1 \pm 0, 2$ZM21AWE$3, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 9 \pm 0, 2$ZM21HS$3, 4$</th><th>ZM08NS</th><th>$4,8\pm0,3$</th><th>$20,7\pm1,7$</th><th>$3,5\pm0,2$</th></tr> <tr><th></th><th>ZM10WI</th><th>$2,4\pm0,2$</th><th>$21,4\pm2,7$</th><th>$2,4\pm0,1$</th></tr> <tr><th></th><th>ZM12ZP</th><th>$2,7\pm0,2$</th><th>$20,7\pm1,6$</th><th>$2,5\pm0,1$</th></tr> <tr><th></th><th>ZM140R</th><th>$3,0\pm0,2$</th><th>$21,8\pm2,1$</th><th>$3,8\pm0,2$</th></tr> <tr><th>ZM16GC$3, 7 \pm 0, 3$$22, 2 \pm 1, 8$$3, 3 \pm 0, 2$ZM19KE$1, 9 \pm 0, 2$$20, 7 \pm 2, 3$$6, 2 \pm 0, 3$ZM19KE$1, 9 \pm 0, 2$$20, 7 \pm 2, 3$$6, 2 \pm 0, 3$ZM21AM$2, 3 \pm 0, 3$$2, 3 \pm 0, 1$$2, 7 \pm 0, 1$ZM22GÖ$2, 4 \pm 0, 1$$22, 1 \pm 2, 6$$3, 2 \pm 0, 2$ZM22GÖ$2, 4 \pm 0, 2$$21, 4 \pm 1, 9$$3, 1 \pm 0, 2$ZM22GÓ$2, 4 \pm 0, 2$$22, 4 \pm 8, 7$$0, 9 \pm 0, 0$ZM24WE$1, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 1 \pm 0, 2$ZM25LA$1, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 1 \pm 0, 2$ZM25LA$1, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 1 \pm 0, 2$ZM25LA$1, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 1 \pm 0, 2$ZM25LA$1, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 1 \pm 0, 2$ZM31HS$3, 9 \pm 0, 2$$23, 7 \pm 2, 9$$3, 9 \pm 0, 2$ZM81HS$3, 9 \pm 0, 2$$20, 3 \pm 1, 7$$3, 9 \pm 0, 2$Zoller faile Hartenstein$3, 4 \pm 0, 2$$20, 3 \pm 1, 8$$4, 7 \pm 0, 3$</th><th>ZM140R</th><th>$2,8\pm0,2$</th><th>$21,4\pm1,8$</th><th>$3,8\pm0,2$</th></tr> <tr><th></th><th>ZM16GC</th><th>$3,7\pm0,3$</th><th>$22,2\pm1,8$</th><th>$3,3\pm0,2$</th></tr> <tr><th>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</th><th>ZM19KE</th><th>$1,9\pm0,2$</th><th>$20,7\pm2,3$</th><th>$6,2\pm0,3$</th></tr> <tr><th></th><th>ZM21AM</th><th>$2,3\pm0,3$</th><th>$21,8\pm3,4$</th><th>$2,7\pm0,1$</th></tr> <tr><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>ZM22GÖ</th><th>$2,4\pm0,1$</th><th>$22,1\pm2,6$</th><th>$3,2\pm0,2$</th></tr> <tr><th>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</th><th>ZM22GÖ</th><th>$2,4\pm0,2$</th><th>$21,4\pm1,9$</th><th>$3,1\pm0,2$</th></tr> <tr><th></th><th>$\mathbf{ZM24WE}$</th><th>$1,7\pm0,6$</th><th>$22,4\pm 8,7$</th><th>$0,9\pm0,0$</th></tr> <tr><th></th><th>ZM25LA</th><th>$1,9\pm0,2$</th><th>$23,7\pm2,9$</th><th>$3,1\pm0,2$</th></tr> <tr><th>ZM81HS$4, 1 \pm 0, 3$$21, 8 \pm 1, 7$$3, 9 \pm 0, 2$ZM81HS$3, 9 \pm 0, 2$$21, 3 \pm 1, 6$$3, 9 \pm 0, 2$Sedimentfalle Hartenstein$3, 4 \pm 0, 2$$20, 3 \pm 1, 8$$4, 7 \pm 0, 3$</th><th>ZM26SE</th><th>$1,9\pm0,1$</th><th>$19,8\pm2,4$</th><th>$4, 3 \pm 0, 2$</th></tr> <tr><th>ZM81HS $3,9\pm0,2$ $21,3\pm1,6$ $3,9\pm0,2$ Sedimentfalle Hartenstein $3,4\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$</th><th>ZM81HS</th><th>$4, 1 \pm 0, 3$</th><th>$21,8\pm1,7$</th><th>$3,9\pm0,2$</th></tr> <tr><th>Sedimentfalle Hartenstein $3, 4 \pm 0, 2$ $20, 3 \pm 1, 8$ $4, 7 \pm 0, 3$</th><th>ZM81HS</th><th>$3,9\pm0,2$</th><th>$21,3\pm1,6$</th><th>$3,9\pm0,2$</th></tr> <tr><th></th><th>Sedimentfalle Hartenstein</th><th>$3,4\pm0,2$</th><th>$20, 3 \pm 1, 8$</th><th>$4, 7 \pm 0, 3$</th></tr>	ZM01TA	$0,8\pm0,1$	$20,0\pm4,7$	$1,7\pm0,1$	ZM02SH $1, 4\pm0, 2$ $18, 5\pm2, 9$ $4, 4\pm0, 3$ ZM04WO $1, 0\pm0, 1$ $19, 8\pm3, 1$ $2, 9\pm0, 1$ ZM05AU $1, 1\pm0, 1$ $17, 8\pm2, 4$ $3, 4\pm0, 2$ ZM08NS $2, 4\pm0, 2$ $20, 7\pm1, 7$ $3, 5\pm0, 2$ ZM08NS $2, 4\pm0, 2$ $20, 7\pm1, 6$ $2, 5\pm0, 1$ ZM10WI $2, 7\pm0, 2$ $20, 7\pm1, 6$ $2, 5\pm0, 1$ ZM14OR $3, 0\pm0, 2$ $21, 4\pm2, 7$ $2, 4\pm0, 1$ ZM14OR $3, 7\pm0, 3$ $20, 7\pm1, 6$ $3, 8\pm0, 2$ ZM14OR $3, 7\pm0, 3$ $22, 2\pm1, 8$ $3, 3\pm0, 2$ ZM14OR $3, 7\pm0, 3$ $22, 2\pm1, 8$ $3, 3\pm0, 2$ ZM14OR $2, 8\pm0, 2$ $21, 4\pm1, 8$ $3, 8\pm0, 2$ ZM14OR $2, 8\pm0, 2$ $21, 4\pm1, 8$ $3, 3\pm0, 2$ ZM14OR $2, 7\pm0, 3$ $22, 2\pm1, 8$ $3, 2\pm0, 2$ ZM14OR $2, 7\pm0, 3$ $22, 2\pm1, 8$ $3, 3\pm0, 2$ ZM14OR $2, 7\pm0, 3$ $21, 8\pm2, 1$ $3, 3\pm0, 2$ ZM14OR $2, 7\pm2, 3$ $6, 2\pm0, 1$ ZM15KE $2, 3\pm0, 3$ $21, 8\pm3, 4$ $2, 7\pm0, 1$ ZM15KE $2, 3\pm0, 3$ $21, 8\pm1, 7$ $0, 9\pm0, 2$ ZM22GÖ $2, 4\pm0, 1$ $22, 1\pm2, 6$ $3, 1\pm0, 2$ ZM24WE $1, 9\pm0, 2$ $21, 8\pm1, 7$ $0, 9\pm0, 2$ ZM25KE $1, 9\pm0, 1$ $19\pm0, 2$ $21, 8\pm1, 7$ ZM25KE $3, 9\pm0, 2$ $21, 8\pm1, 7$ $3, 9\pm0, 2$ ZM25KE $3, 9\pm0, 2$ $21, 3\pm1, 6$ $3, 9\pm0, 2$ ZM281KS $3, 9\pm0, 2$ $20, 3\pm1, 8$ $3, 9\pm0, 2$ ZM81KS <th>ZM01TA</th> <th>$1,3\pm0,2$</th> <th>$15,5\pm3,2$</th> <th>$1,2\pm0,1$</th>	ZM01TA	$1,3\pm0,2$	$15,5\pm3,2$	$1,2\pm0,1$	ZM04WO $1,0\pm0,1$ $19,8\pm3,1$ $2,9\pm0,1$ ZM05AU $1,1\pm0,1$ $17,8\pm2,4$ $3,4\pm0,2$ ZM08NS $4,8\pm0,3$ $20,7\pm1,7$ $3,5\pm0,2$ ZM08NS $2,4\pm0,2$ $21,4\pm2,7$ $2,4\pm0,1$ ZM10WI $2,7\pm0,2$ $20,7\pm1,6$ $2,5\pm0,1$ ZM13ZP $3,0\pm0,2$ $21,8\pm2,1$ $3,8\pm0,2$ ZM14OR $3,0\pm0,2$ $21,8\pm2,1$ $3,8\pm0,2$ ZM14OR $2,7\pm0,3$ $22,2\pm1,8$ $3,3\pm0,2$ ZM14OR $2,8\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $2,7\pm0,3$ $22,2\pm1,8$ $3,3\pm0,2$ ZM14OR $2,7\pm0,3$ $20,7\pm2,3$ $6,2\pm0,3$ ZM19KE $1,9\pm0,2$ $21,4\pm1,8$ $3,3\pm0,2$ ZM19KE $2,7\pm0,3$ $20,7\pm2,3$ $6,2\pm0,3$ ZM19KE $2,7\pm0,3$ $20,7\pm2,3$ $6,2\pm0,3$ ZM19KE $2,7\pm0,3$ $21,8\pm3,4$ $2,7\pm0,3$ ZM22GÖ $2,4\pm0,1$ $22,1\pm4,8,7$ $0,9\pm0,2$ ZM22LA $1,9\pm0,2$ $22,4\pm8,7$ $0,9\pm0,0$ ZM23LA $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM24WE $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25LA $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25LA $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25LA $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25HE $3,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM26KE $4,1\pm0,3$ $21,8\pm1,7$ $3,9\pm0,2$ ZM26KE $3,9\pm0,2$ $21,3\pm1,6$ $3,9\pm0,2$ ZM81HS $3,9\pm0,2$ $21,3\pm1,6$	ZM02SH	$1,4\pm0,2$	$18,5\pm2,9$	$4,4\pm0,3$	ZM05AU $1, 1\pm 0, 1$ $1, 7, 8\pm 2, 4$ $3, 4\pm 0, 2$ ZM08NS $4, 8\pm 0, 3$ $20, 7\pm 1, 7$ $3, 5\pm 0, 2$ ZM08NS $4, 8\pm 0, 3$ $20, 7\pm 1, 6$ $3, 5\pm 0, 1$ ZM10WI $2, 7\pm 0, 2$ $20, 7\pm 1, 6$ $2, 5\pm 0, 1$ ZM14OR $3, 0\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM14OR $3, 7\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM14OR $3, 7\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM14OR $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM14OR $2, 3, 7\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM16GC $3, 7\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM19KE $1, 9\pm 0, 2$ $20, 7\pm 2, 3$ $6, 2\pm 0, 1$ ZM19KE $2, 3\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM21AM $2, 3\pm 0, 3$ $21, 8\pm 3, 4$ $2, 7\pm 0, 1$ ZM22GÖ $2, 4\pm 0, 1$ $22, 1\pm 2, 6$ $3, 1\pm 0, 2$ ZM21AWE $1, 7\pm 0, 6$ $22, 4\pm 8, 7$ $0, 9\pm 0, 0$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21KS $3, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 9\pm 0, 2$ ZM21KS $3, 9\pm 0, 2$ $21, 3\pm 1, 6$ $3, 9\pm 0, 2$ ZM81HS $3, 4\pm 0, 2$ $21, 3\pm 1, 7$ $3, 9\pm 0, 2$ <t< th=""><th>ZM04WO</th><th>$1,0\pm0,1$</th><th>$19,8\pm3,1$</th><th>$2,9\pm0,1$</th></t<>	ZM04WO	$1,0\pm0,1$	$19,8\pm3,1$	$2,9\pm0,1$	ZM08NS $4,8\pm0,3$ $20,7\pm1,7$ $3,5\pm0,2$ ZM10WI $2,4\pm0,2$ $21,4\pm2,7$ $3,5\pm0,1$ ZM12ZP $2,7\pm0,2$ $20,7\pm1,6$ $2,5\pm0,1$ ZM14OR $3,0\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $3,0\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $3,0\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $3,7\pm0,3$ $22,2\pm1,8$ $3,3\pm0,2$ ZM14OR $2,8\pm0,2$ $21,4\pm1,8$ $3,3\pm0,2$ ZM19KE $1,9\pm0,2$ $20,7\pm2,3$ $6,2\pm0,3$ ZM19KE $2,3\pm0,3$ $21,8\pm3,4$ $2,7\pm0,1$ ZM21AM $2,3\pm0,3$ $21,8\pm3,4$ $2,7\pm0,1$ ZM21AM $2,3\pm0,3$ $21,4\pm1,9$ $3,1\pm0,2$ ZM21AM $2,3\pm0,3$ $21,4\pm1,9$ $3,1\pm0,2$ ZM22GÖ $2,4\pm0,1$ $22,1\pm2,6$ $3,2\pm0,2$ ZM22GÖ $2,4\pm0,1$ $22,1\pm2,6$ $3,2\pm0,2$ ZM23EE $1,9\pm0,2$ $23,4\pm0,1$ $22,1\pm2,6$ $3,1\pm0,2$ ZM25LA $1,9\pm0,2$ $23,4\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25KE $4,1\pm0,3$ $21,8\pm1,7$ $3,9\pm0,2$ ZM26KE $4,1\pm0,3$ $21,8\pm1,7$ $3,9\pm0,2$ ZM81HS $3,9\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$ ZM81HS $3,4\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$ ZM81HS $3,9\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$	ZM05AU	$1,1\pm0,1$	$17,8\pm2,4$	$3,4\pm0,2$	ZM10W1 $2, 4 \pm 0, 2$ $21, 4 \pm 2, 7$ $2, 4 \pm 0, 1$ ZM12ZP $2, 7 \pm 0, 2$ $20, 7 \pm 1, 6$ $2, 5 \pm 0, 1$ ZM14OR $3, 0 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 8 \pm 0, 2$ ZM14OR $3, 0 \pm 0, 2$ $21, 8 \pm 2, 1$ $3, 8 \pm 0, 2$ ZM14OR $3, 0 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM16GC $3, 7 \pm 0, 3$ $22, 2 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM19KE $1, 9 \pm 0, 2$ $20, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM19KE $1, 9 \pm 0, 2$ $20, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM19KE $2, 3 \pm 0, 3$ $21, 8 \pm 3, 4$ $2, 7 \pm 0, 1$ ZM21AM $2, 3 \pm 0, 3$ $21, 8 \pm 3, 4$ $2, 7 \pm 0, 1$ ZM22GO $2, 4 \pm 0, 1$ $22, 1 \pm 2, 6$ $3, 1 \pm 0, 2$ ZM21AM $2, 3 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM22GO $2, 4 \pm 0, 1$ $22, 1 \pm 2, 6$ $3, 1 \pm 0, 2$ ZM22GO $2, 4 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM21AW $1, 9 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM22GO $2, 4 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 4 \pm 2, 4$ $4, 3 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 4 \pm 2, 4$ $4, 3 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 4 \pm 2, 4$ $4, 3 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM21AWE $3, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 9 \pm 0, 2$ ZM21HS $3, 4 $	ZM08NS	$4,8\pm0,3$	$20,7\pm1,7$	$3,5\pm0,2$		ZM10WI	$2,4\pm0,2$	$21,4\pm2,7$	$2,4\pm0,1$		ZM12ZP	$2,7\pm0,2$	$20,7\pm1,6$	$2,5\pm0,1$		ZM140R	$3,0\pm0,2$	$21,8\pm2,1$	$3,8\pm0,2$	ZM16GC $3, 7 \pm 0, 3$ $22, 2 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM19KE $1, 9 \pm 0, 2$ $20, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM19KE $1, 9 \pm 0, 2$ $20, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM21AM $2, 3 \pm 0, 3$ $2, 3 \pm 0, 1$ $2, 7 \pm 0, 1$ ZM22GÖ $2, 4 \pm 0, 1$ $22, 1 \pm 2, 6$ $3, 2 \pm 0, 2$ ZM22GÖ $2, 4 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM22GÓ $2, 4 \pm 0, 2$ $22, 4 \pm 8, 7$ $0, 9 \pm 0, 0$ ZM24WE $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM25LA $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM25LA $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM25LA $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM25LA $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM31HS $3, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 9 \pm 0, 2$ ZM81HS $3, 9 \pm 0, 2$ $20, 3 \pm 1, 7$ $3, 9 \pm 0, 2$ Zoller faile Hartenstein $3, 4 \pm 0, 2$ $20, 3 \pm 1, 8$ $4, 7 \pm 0, 3$	ZM140R	$2,8\pm0,2$	$21,4\pm1,8$	$3,8\pm0,2$		ZM16GC	$3,7\pm0,3$	$22,2\pm1,8$	$3,3\pm0,2$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ZM19KE	$1,9\pm0,2$	$20,7\pm2,3$	$6,2\pm0,3$		ZM21AM	$2,3\pm0,3$	$21,8\pm3,4$	$2,7\pm0,1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZM22GÖ	$2,4\pm0,1$	$22,1\pm2,6$	$3,2\pm0,2$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ZM22GÖ	$2,4\pm0,2$	$21,4\pm1,9$	$3,1\pm0,2$		$\mathbf{ZM24WE}$	$1,7\pm0,6$	$22,4\pm 8,7$	$0,9\pm0,0$		ZM25LA	$1,9\pm0,2$	$23,7\pm2,9$	$3,1\pm0,2$	ZM81HS $4, 1 \pm 0, 3$ $21, 8 \pm 1, 7$ $3, 9 \pm 0, 2$ ZM81HS $3, 9 \pm 0, 2$ $21, 3 \pm 1, 6$ $3, 9 \pm 0, 2$ Sedimentfalle Hartenstein $3, 4 \pm 0, 2$ $20, 3 \pm 1, 8$ $4, 7 \pm 0, 3$	ZM26SE	$1,9\pm0,1$	$19,8\pm2,4$	$4, 3 \pm 0, 2$	ZM81HS $3,9\pm0,2$ $21,3\pm1,6$ $3,9\pm0,2$ Sedimentfalle Hartenstein $3,4\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$	ZM81HS	$4, 1 \pm 0, 3$	$21,8\pm1,7$	$3,9\pm0,2$	Sedimentfalle Hartenstein $3, 4 \pm 0, 2$ $20, 3 \pm 1, 8$ $4, 7 \pm 0, 3$	ZM81HS	$3,9\pm0,2$	$21,3\pm1,6$	$3,9\pm0,2$		Sedimentfalle Hartenstein	$3,4\pm0,2$	$20, 3 \pm 1, 8$	$4, 7 \pm 0, 3$
ZM01TA	$0,8\pm0,1$	$20,0\pm4,7$	$1,7\pm0,1$																																																																																																					
ZM02SH $1, 4\pm0, 2$ $18, 5\pm2, 9$ $4, 4\pm0, 3$ ZM04WO $1, 0\pm0, 1$ $19, 8\pm3, 1$ $2, 9\pm0, 1$ ZM05AU $1, 1\pm0, 1$ $17, 8\pm2, 4$ $3, 4\pm0, 2$ ZM08NS $2, 4\pm0, 2$ $20, 7\pm1, 7$ $3, 5\pm0, 2$ ZM08NS $2, 4\pm0, 2$ $20, 7\pm1, 6$ $2, 5\pm0, 1$ ZM10WI $2, 7\pm0, 2$ $20, 7\pm1, 6$ $2, 5\pm0, 1$ ZM14OR $3, 0\pm0, 2$ $21, 4\pm2, 7$ $2, 4\pm0, 1$ ZM14OR $3, 7\pm0, 3$ $20, 7\pm1, 6$ $3, 8\pm0, 2$ ZM14OR $3, 7\pm0, 3$ $22, 2\pm1, 8$ $3, 3\pm0, 2$ ZM14OR $3, 7\pm0, 3$ $22, 2\pm1, 8$ $3, 3\pm0, 2$ ZM14OR $2, 8\pm0, 2$ $21, 4\pm1, 8$ $3, 8\pm0, 2$ ZM14OR $2, 8\pm0, 2$ $21, 4\pm1, 8$ $3, 3\pm0, 2$ ZM14OR $2, 7\pm0, 3$ $22, 2\pm1, 8$ $3, 2\pm0, 2$ ZM14OR $2, 7\pm0, 3$ $22, 2\pm1, 8$ $3, 3\pm0, 2$ ZM14OR $2, 7\pm0, 3$ $21, 8\pm2, 1$ $3, 3\pm0, 2$ ZM14OR $2, 7\pm2, 3$ $6, 2\pm0, 1$ ZM15KE $2, 3\pm0, 3$ $21, 8\pm3, 4$ $2, 7\pm0, 1$ ZM15KE $2, 3\pm0, 3$ $21, 8\pm1, 7$ $0, 9\pm0, 2$ ZM22GÖ $2, 4\pm0, 1$ $22, 1\pm2, 6$ $3, 1\pm0, 2$ ZM24WE $1, 9\pm0, 2$ $21, 8\pm1, 7$ $0, 9\pm0, 2$ ZM25KE $1, 9\pm0, 1$ $19\pm0, 2$ $21, 8\pm1, 7$ ZM25KE $3, 9\pm0, 2$ $21, 8\pm1, 7$ $3, 9\pm0, 2$ ZM25KE $3, 9\pm0, 2$ $21, 3\pm1, 6$ $3, 9\pm0, 2$ ZM281KS $3, 9\pm0, 2$ $20, 3\pm1, 8$ $3, 9\pm0, 2$ ZM81KS <th>ZM01TA</th> <th>$1,3\pm0,2$</th> <th>$15,5\pm3,2$</th> <th>$1,2\pm0,1$</th>	ZM01TA	$1,3\pm0,2$	$15,5\pm3,2$	$1,2\pm0,1$																																																																																																				
ZM04WO $1,0\pm0,1$ $19,8\pm3,1$ $2,9\pm0,1$ ZM05AU $1,1\pm0,1$ $17,8\pm2,4$ $3,4\pm0,2$ ZM08NS $4,8\pm0,3$ $20,7\pm1,7$ $3,5\pm0,2$ ZM08NS $2,4\pm0,2$ $21,4\pm2,7$ $2,4\pm0,1$ ZM10WI $2,7\pm0,2$ $20,7\pm1,6$ $2,5\pm0,1$ ZM13ZP $3,0\pm0,2$ $21,8\pm2,1$ $3,8\pm0,2$ ZM14OR $3,0\pm0,2$ $21,8\pm2,1$ $3,8\pm0,2$ ZM14OR $2,7\pm0,3$ $22,2\pm1,8$ $3,3\pm0,2$ ZM14OR $2,8\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $2,7\pm0,3$ $22,2\pm1,8$ $3,3\pm0,2$ ZM14OR $2,7\pm0,3$ $20,7\pm2,3$ $6,2\pm0,3$ ZM19KE $1,9\pm0,2$ $21,4\pm1,8$ $3,3\pm0,2$ ZM19KE $2,7\pm0,3$ $20,7\pm2,3$ $6,2\pm0,3$ ZM19KE $2,7\pm0,3$ $20,7\pm2,3$ $6,2\pm0,3$ ZM19KE $2,7\pm0,3$ $21,8\pm3,4$ $2,7\pm0,3$ ZM22GÖ $2,4\pm0,1$ $22,1\pm4,8,7$ $0,9\pm0,2$ ZM22LA $1,9\pm0,2$ $22,4\pm8,7$ $0,9\pm0,0$ ZM23LA $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM24WE $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25LA $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25LA $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25LA $1,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25HE $3,9\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM26KE $4,1\pm0,3$ $21,8\pm1,7$ $3,9\pm0,2$ ZM26KE $3,9\pm0,2$ $21,3\pm1,6$ $3,9\pm0,2$ ZM81HS $3,9\pm0,2$ $21,3\pm1,6$	ZM02SH	$1,4\pm0,2$	$18,5\pm2,9$	$4,4\pm0,3$																																																																																																				
ZM05AU $1, 1\pm 0, 1$ $1, 7, 8\pm 2, 4$ $3, 4\pm 0, 2$ ZM08NS $4, 8\pm 0, 3$ $20, 7\pm 1, 7$ $3, 5\pm 0, 2$ ZM08NS $4, 8\pm 0, 3$ $20, 7\pm 1, 6$ $3, 5\pm 0, 1$ ZM10WI $2, 7\pm 0, 2$ $20, 7\pm 1, 6$ $2, 5\pm 0, 1$ ZM14OR $3, 0\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM14OR $3, 7\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM14OR $3, 7\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM14OR $2, 8\pm 0, 2$ $21, 4\pm 1, 8$ $3, 8\pm 0, 2$ ZM14OR $2, 3, 7\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM16GC $3, 7\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM19KE $1, 9\pm 0, 2$ $20, 7\pm 2, 3$ $6, 2\pm 0, 1$ ZM19KE $2, 3\pm 0, 3$ $22, 2\pm 1, 8$ $3, 3\pm 0, 2$ ZM21AM $2, 3\pm 0, 3$ $21, 8\pm 3, 4$ $2, 7\pm 0, 1$ ZM22GÖ $2, 4\pm 0, 1$ $22, 1\pm 2, 6$ $3, 1\pm 0, 2$ ZM21AWE $1, 7\pm 0, 6$ $22, 4\pm 8, 7$ $0, 9\pm 0, 0$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21AWE $1, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 1\pm 0, 2$ ZM21KS $3, 9\pm 0, 2$ $21, 4\pm 1, 9$ $3, 9\pm 0, 2$ ZM21KS $3, 9\pm 0, 2$ $21, 3\pm 1, 6$ $3, 9\pm 0, 2$ ZM81HS $3, 4\pm 0, 2$ $21, 3\pm 1, 7$ $3, 9\pm 0, 2$ <t< th=""><th>ZM04WO</th><th>$1,0\pm0,1$</th><th>$19,8\pm3,1$</th><th>$2,9\pm0,1$</th></t<>	ZM04WO	$1,0\pm0,1$	$19,8\pm3,1$	$2,9\pm0,1$																																																																																																				
ZM08NS $4,8\pm0,3$ $20,7\pm1,7$ $3,5\pm0,2$ ZM10WI $2,4\pm0,2$ $21,4\pm2,7$ $3,5\pm0,1$ ZM12ZP $2,7\pm0,2$ $20,7\pm1,6$ $2,5\pm0,1$ ZM14OR $3,0\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $3,0\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $3,0\pm0,2$ $21,4\pm1,8$ $3,8\pm0,2$ ZM14OR $3,7\pm0,3$ $22,2\pm1,8$ $3,3\pm0,2$ ZM14OR $2,8\pm0,2$ $21,4\pm1,8$ $3,3\pm0,2$ ZM19KE $1,9\pm0,2$ $20,7\pm2,3$ $6,2\pm0,3$ ZM19KE $2,3\pm0,3$ $21,8\pm3,4$ $2,7\pm0,1$ ZM21AM $2,3\pm0,3$ $21,8\pm3,4$ $2,7\pm0,1$ ZM21AM $2,3\pm0,3$ $21,4\pm1,9$ $3,1\pm0,2$ ZM21AM $2,3\pm0,3$ $21,4\pm1,9$ $3,1\pm0,2$ ZM22GÖ $2,4\pm0,1$ $22,1\pm2,6$ $3,2\pm0,2$ ZM22GÖ $2,4\pm0,1$ $22,1\pm2,6$ $3,2\pm0,2$ ZM23EE $1,9\pm0,2$ $23,4\pm0,1$ $22,1\pm2,6$ $3,1\pm0,2$ ZM25LA $1,9\pm0,2$ $23,4\pm0,2$ $23,7\pm2,9$ $3,1\pm0,2$ ZM25KE $4,1\pm0,3$ $21,8\pm1,7$ $3,9\pm0,2$ ZM26KE $4,1\pm0,3$ $21,8\pm1,7$ $3,9\pm0,2$ ZM81HS $3,9\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$ ZM81HS $3,4\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$ ZM81HS $3,9\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$	ZM05AU	$1,1\pm0,1$	$17,8\pm2,4$	$3,4\pm0,2$																																																																																																				
ZM10W1 $2, 4 \pm 0, 2$ $21, 4 \pm 2, 7$ $2, 4 \pm 0, 1$ ZM12ZP $2, 7 \pm 0, 2$ $20, 7 \pm 1, 6$ $2, 5 \pm 0, 1$ ZM14OR $3, 0 \pm 0, 2$ $20, 7 \pm 1, 6$ $3, 8 \pm 0, 2$ ZM14OR $3, 0 \pm 0, 2$ $21, 8 \pm 2, 1$ $3, 8 \pm 0, 2$ ZM14OR $3, 0 \pm 0, 2$ $21, 4 \pm 1, 8$ $3, 8 \pm 0, 2$ ZM16GC $3, 7 \pm 0, 3$ $22, 2 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM19KE $1, 9 \pm 0, 2$ $20, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM19KE $1, 9 \pm 0, 2$ $20, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM19KE $2, 3 \pm 0, 3$ $21, 8 \pm 3, 4$ $2, 7 \pm 0, 1$ ZM21AM $2, 3 \pm 0, 3$ $21, 8 \pm 3, 4$ $2, 7 \pm 0, 1$ ZM22GO $2, 4 \pm 0, 1$ $22, 1 \pm 2, 6$ $3, 1 \pm 0, 2$ ZM21AM $2, 3 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM22GO $2, 4 \pm 0, 1$ $22, 1 \pm 2, 6$ $3, 1 \pm 0, 2$ ZM22GO $2, 4 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM21AW $1, 9 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM22GO $2, 4 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 4 \pm 2, 4$ $4, 3 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 4 \pm 2, 4$ $4, 3 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 4 \pm 2, 4$ $4, 3 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM21AWE $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM21AWE $3, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 9 \pm 0, 2$ ZM21HS $3, 4 $	ZM08NS	$4,8\pm0,3$	$20,7\pm1,7$	$3,5\pm0,2$																																																																																																				
	ZM10WI	$2,4\pm0,2$	$21,4\pm2,7$	$2,4\pm0,1$																																																																																																				
	ZM12ZP	$2,7\pm0,2$	$20,7\pm1,6$	$2,5\pm0,1$																																																																																																				
	ZM140R	$3,0\pm0,2$	$21,8\pm2,1$	$3,8\pm0,2$																																																																																																				
ZM16GC $3, 7 \pm 0, 3$ $22, 2 \pm 1, 8$ $3, 3 \pm 0, 2$ ZM19KE $1, 9 \pm 0, 2$ $20, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM19KE $1, 9 \pm 0, 2$ $20, 7 \pm 2, 3$ $6, 2 \pm 0, 3$ ZM21AM $2, 3 \pm 0, 3$ $2, 3 \pm 0, 1$ $2, 7 \pm 0, 1$ ZM22GÖ $2, 4 \pm 0, 1$ $22, 1 \pm 2, 6$ $3, 2 \pm 0, 2$ ZM22GÖ $2, 4 \pm 0, 2$ $21, 4 \pm 1, 9$ $3, 1 \pm 0, 2$ ZM22GÓ $2, 4 \pm 0, 2$ $22, 4 \pm 8, 7$ $0, 9 \pm 0, 0$ ZM24WE $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM25LA $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM25LA $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM25LA $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM25LA $1, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 1 \pm 0, 2$ ZM31HS $3, 9 \pm 0, 2$ $23, 7 \pm 2, 9$ $3, 9 \pm 0, 2$ ZM81HS $3, 9 \pm 0, 2$ $20, 3 \pm 1, 7$ $3, 9 \pm 0, 2$ Zoller faile Hartenstein $3, 4 \pm 0, 2$ $20, 3 \pm 1, 8$ $4, 7 \pm 0, 3$	ZM140R	$2,8\pm0,2$	$21,4\pm1,8$	$3,8\pm0,2$																																																																																																				
	ZM16GC	$3,7\pm0,3$	$22,2\pm1,8$	$3,3\pm0,2$																																																																																																				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ZM19KE	$1,9\pm0,2$	$20,7\pm2,3$	$6,2\pm0,3$																																																																																																				
	ZM21AM	$2,3\pm0,3$	$21,8\pm3,4$	$2,7\pm0,1$																																																																																																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZM22GÖ	$2,4\pm0,1$	$22,1\pm2,6$	$3,2\pm0,2$																																																																																																				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ZM22GÖ	$2,4\pm0,2$	$21,4\pm1,9$	$3,1\pm0,2$																																																																																																				
	$\mathbf{ZM24WE}$	$1,7\pm0,6$	$22,4\pm 8,7$	$0,9\pm0,0$																																																																																																				
	ZM25LA	$1,9\pm0,2$	$23,7\pm2,9$	$3,1\pm0,2$																																																																																																				
ZM81HS $4, 1 \pm 0, 3$ $21, 8 \pm 1, 7$ $3, 9 \pm 0, 2$ ZM81HS $3, 9 \pm 0, 2$ $21, 3 \pm 1, 6$ $3, 9 \pm 0, 2$ Sedimentfalle Hartenstein $3, 4 \pm 0, 2$ $20, 3 \pm 1, 8$ $4, 7 \pm 0, 3$	ZM26SE	$1,9\pm0,1$	$19,8\pm2,4$	$4, 3 \pm 0, 2$																																																																																																				
ZM81HS $3,9\pm0,2$ $21,3\pm1,6$ $3,9\pm0,2$ Sedimentfalle Hartenstein $3,4\pm0,2$ $20,3\pm1,8$ $4,7\pm0,3$	ZM81HS	$4, 1 \pm 0, 3$	$21,8\pm1,7$	$3,9\pm0,2$																																																																																																				
Sedimentfalle Hartenstein $3, 4 \pm 0, 2$ $20, 3 \pm 1, 8$ $4, 7 \pm 0, 3$	ZM81HS	$3,9\pm0,2$	$21,3\pm1,6$	$3,9\pm0,2$																																																																																																				
	Sedimentfalle Hartenstein	$3,4\pm0,2$	$20, 3 \pm 1, 8$	$4, 7 \pm 0, 3$																																																																																																				

Tabelle C.22: Messergebnisse Freiberger, Zwickauer und Vereinigter Mulde Teil 4

- 85.6	:	Tabelle C.	23: Literatu	rwerte Mul	desystem	4045 4	37 ~
1007	J Lit.	²²⁰ Ra Lit.	²¹⁰ Pb Lit.	²⁰⁰ Lit.	224 Ra Lit.	⁴⁰ K Lit.	¹³ , Cs Lit.
	180	68	NN#	×	45	560	14
	NN #	54	NN#	NN#	09	550	NN#
	130	60	NN#	9	68	490	23
	90	39	NN#	4	42	710	2
	NN #	62	98	NN#	61	580	16
	70	110	86	33	50	730	20
	NN#	NN#	86	NN#	29	640	17
	88	92	NN#	4	75	069	19
	00	55	NN#	4	46	660	15
	154	90	123	2	75	600	21
	NN#	87	NN#	4	09	650	15
	180	80	76	×	51	290	13
	90	66	NN#	4	50	610	16
	100	54	NN#	5	31	660	6
	62	57	NN#	3	44	710	15
	NN#	53	09	2	45	022	11
	110	52	NN#	5	61	770	3
	75	53	86	c.	53	200	14
	80	37	NN#	4	36	800	6
	130	64	NN#	9	42	940	28
	680	200	NN#	31	55	620	NN#
	750	185	NN#	32	62	520	27
	260	134	26	12	36	670	5
	370	140	120	22	58	570	21
	170	110	92	6	27	560	NN#
	200	95	91	6	24	570	4
	20	22	NN#	ç	12	420	e C

	137 Cs Lit.	NN#	NN #	29	6	NN#	6	NN#	95	48	22	31	36	39	57	56	64	29	30	54	32	22	34	39
	40 K Lit.	NN#	NN#	670	690	NN #	480	580	1.020	880	1.060	006	730	690	670	730	630	610	460	660	740	610	550	790
rstem Teil 2	224 Ra Lit.	NN#	NN #	87	47	NN#	46	22	55	76	130	58	69	83	62	140	78	62	52	90	69	09	09	80
te Muldesy	²³⁵ U Lit.	NN#	NN#	32	9	NN#	NN#	က	2	59	21	20	82	96	37	120	57	53	45	43	33	35	33	60
Literaturwer	²¹⁰ Pb Lit.	NN#	NN#	221	NN#	NN#	31	NN#	NN#	390	NN#	135	360	310	NN#	270	170	270	270	270	270	260	210	NN#
belle C.24:]	²²⁶ Ra Lit.	NN#	NN#	210	111	NN#	140	47	63	330	240	250	350	340	210	420	290	330	282	330	168	250	230	370
Ta	²³⁸ U Lit.	NN#	NN#	200	140	NN#	680	09	150	910	430	440	1.700	1.900	690	3.000	1.260	1.500	1.100	1.190	730	006	730	1.200
	Probe Nr.	VM21RE	VM23FU	VM31NW	VM41EI	VM71SP	VM81MS	VM91AB1	ZM01TA	ZM02SH	ZM04WO	ZM05AU	ZM08NS	ZM10WI	ZM12ZP	ZM14OR	ZM16GC	ZM19KE	ZM21AM	ZM22GÖ	ZM24WE	ZM25LA	ZM26SE	ZM81HS

Punkt Nr.	Verdachtsfläche
7002010	7
403629637	9
7112004	9
9004094	9
9004098	9
9004103	9
9003215	$11 {+} 12$
9003022	13
9003029	13
9004091	13
7162001	14
7162008	14
9003057	15
9003045	17
9003046	17
50001001	18
11342024	18a
50000360	21
9001047	21
9001048	21
9001052	21

Tabelle C.25: Übersicht über die beprobten geogenen Punkte in den VF

ProbenNr.	Beschreibung	Rechtswert	Hochwert
7.002.010	Haarbach im Anstrom bergbaulicher Objekte	4518181	5595574
7.112.004	Waldkirchen Waldkirchner Bach, nach Abstrom der Drainage des Sportplatzes	4526670	5605875
9.004.094	Lengenfeld, Stadt Plohnbach, in Plohn nach Zufluß aus dem Dorfteich	4528500	5604437
9.004.098	Lengenfeld, Stadt Freibach (Zufluß z. Plohnbach) nördl. der IAA	4528500	5606425
9.004.103	Lengenfeld, Stadt Goeltzsch in Lengenfeld südl. der B 94 (Polenzstr.), ca. 50 m vor Bahnbrücke	4526400	5604488
403.629.637	Lengenfeld, Stadt Göltzsch ca. 50 m stromab der Brücke von Neuhütte	4527240	5602080
9.003.215	Reinsdorfer Bach bei Zwickau	4535930	5619270
9.003.022	liegt in Sachsen Zwickauer Mulde vor Tannenbergsthal	4532065	5590892
9.003.029	liegt in Sachsen Wilzsch oberhalb Wilzschhaus	4537240	5593032
9.004.091	liegt in Sachsen Wernesbach, Wernesgruen	4532950	5598588
7.162.001	Lindenau W 1 - Lindenauer Bach - Anstrom TF 5	4544070	5606130
7.162.008	Zschorlau W 8 - Goldbächel	4544110	5602250
9.003.057	Loeßnitzbach in Schlema	4549180	5607450
9.003.045	Mittweida in Raschau	4558795	5599810
9.003.046	Große Mittweida in Schwarzenberg	4556670	5600805
50.001.001	Sehma, Eintritt ins Messgebiet	4570997	5602918
11.342.024	Oberwiesenthal, Kurort, Stadt Pöhlbach am Eintritt in die TF 5	4572470	5590500
9.001.047	Rabenau Oelsabach Rabenau	5404325	5648485
9.001.048	Rabenau Rote Weißeritz nahe Rabenauer Muehle	5404235	5648385
9.001.052	Freital, Stadt Rote Weißeritz in Freital	5403610	5650190
50.000.360	Freital. Stadt Wiederitz. nach Einmündung Wurgwitzer Bach	5403350	5655170

Tabelle C.26: Geogene Punkte in den Verdachtsflächen

ProbenNr.	Volumen in L	T in °C	μd	EH in mV	κ in $\mu S \ cm^{-1}$	ODL in nSv h ⁻¹	$\mathbf{m}_{\mathrm{Marinelli}}$	$\mathbf{m}_{\mathrm{Petri}}$	$\rho \text{ in g cm}^{-3}$
7.002.010	4	20,9	6,87	188	287	₩NV	496,5		0,9
7.112.004	4	9,9	7,12	166	453	193	750,8		1,3
9.004.094	5	14,4	2	43	256	NN#		102,0	1,275
9.004.098	4	6	6,81	115	318	220	608, 6		1,1
9.004.103	4	13,5	7,87	185	315	233	809,9		1,4
403.629.637	4	10	7,5	193	451	166	796,8		1,4
9.003.215	4	12,7	7,86	145	1163	207	725,1		1,3
9.003.022	4	NN#	NN #	∦NV	119	158	744,5		1,3
9.003.029	4	NN#	NN#	NN#	106	227	794,6		1,4
9.004.091	4	NN#	NN#	×NN#	284	185	718,7		1,3
7.162.001	4	NN#	NN#	NN#	NN#	NN#	667, 5		1,2
7.162.008	2	13	NN#	124	129	170	861,1		1,5
9.003.057	4	15,0	7,52	195	365	194	821,8		1,5
9.003.045	4	NN#	8,14	10	194	149	725,1		1,3
9.003.046	4	NN#	8,21	×	229	169		109,8	1,4
50.001.001	4	14,5	7,75	184	294	172	831,3		1,5
11.342.024	4	11	7,86	148	209	172	879,7		1,6
9.001.047	4	18,2	7,82	220	∦NV	178		99,6	1,2
9.001.048	4	16,8	7,82	114	NN#	246	590,8		1,1
9.001.052	5	17,5	7,87	260	352	216	814,4		1,5
50.000.360	4	17,7	8,5	151	633	₩NV	860,7		1,5

Tabelle C.27: Feldparameter der geogenen Punkte in den VF

	U-238 gemittelt	Ra-226	Pb-210	U-235	Ra-228	$\operatorname{Ra-224}$	Cs-137	K-40
7.002.010	$84, 2\pm 6, 6$	$126,9\pm4,3$	$122, 4 \pm 14, 0$	$5, 3 \pm 0, 8$	$71,6\pm4,5$	$70,0\pm2,9$	$12,9\pm0,5$	$976,1\pm46,1$
7.112.004	$71,8\pm6,3$	$92,0\pm2,6$	$90,9\pm9,2$	$3,9\pm0,7$	$74,1\pm4,7$	$66, 1 \pm 2, 6$	$27,4\pm1,2$	$858, 5\pm 35, 2$
9.004.094	$308,1\pm16,0$	$254,0\pm8,4$	$202,9\pm20,9$	$39,6\pm2,0$	$239,5\pm14,7$	$175, 3\pm 6, 7$	$44,2\pm1,9$	$843, 3\pm 34, 5$
9004094 2	$325, 7 \pm 14, 9$	$251,7\pm8,7$	$221, 0 \pm 24, 0$	$37, 3\pm 2, 0$	$236, 6 \pm 14, 8$	$171,4\pm7,3$	$43,5\pm2,0$	$878, 8 \pm 39, 4$
9.004.098	$184, 4\pm9, 8$	$141, 5\pm3, 9$	$102,4\pm10,4$	$9,4\pm1,3$	$123, 3\pm7, 7$	$104, 0\pm6, 1$	$29,7\pm1,4$	$979,2\pm40,2$
9.004.103	$81,2\pm5,0$	$93, 6\pm3, 3$	$93,7\pm10,2$	$4,5\pm0,7$	$87,2\pm5,6$	$81, 3\pm 3, 1$	$31,2\pm1,4$	$847,9\pm35,0$
403.629.637	$64,4\pm4,2$	$74,1\pm2,3$	$59,6\pm6,9$	$3,5\pm0,6$	$73, 7\pm4, 8$	$69,9\pm2,9$	$18, 0 \pm 0, 9$	$877,9\pm 35,9$
9.003.215	$54, 6\pm 4, 1$	$62,2\pm2,1$	$59,7\pm6,9$	$3,5\pm0,6$	$47,8\pm3,2$	$47,1\pm1,9$	$8,5\pm0,5$	$653, 7\pm27, 3$
9.003.022	$112,9\pm5,9$	$101,1\pm3,5$	$100,9\pm12,1$	$6,0\pm0,8$	$72,2\pm4,5$	$61, 1 \pm 2, 6$	$56, 1 \pm 2, 4$	$970,8\pm44,4$
9.003.029	$199,7\pm10,1$	$198, 0 \pm 5, 4$	$168,9\pm18,8$	$11,1\pm1,1$	$60, 5 \pm 3, 9$	$50,4\pm2,2$	$10, 3 \pm 0, 5$	$1.161, 3 \pm 48, 7$
9.004.091	$85,0\pm5,2$	$111,4\pm3,8$	$90,1\pm9,6$	$5,3\pm1,2$	$70,4\pm4,5$	$62,7\pm2,5$	$12,0\pm0,5$	$978,2\pm40,4$
7.162.001	$57,0\pm4,5$	$85,0\pm3,0$	$81,5\pm9,0$	$4,1\pm0,6$	$79,8\pm5,1$	$73,1\pm3,0$	$11, 6 \pm 0, 5$	$946,1\pm38,3$
7.162.008	$94, 3\pm 5, 1$	$101,9\pm3,0$	$83,6\pm9,2$	$4,9\pm0,8$	$55,9\pm3,6$	$54, 2\pm 2, 5$	$5,4\pm0,4$	$1.083, 3 \pm 45, 0$
9.003.057	$56,9\pm3,4$	$65, 2\pm1, 8$	$62,2\pm 6,2$	$3,1\pm0,8$	$46,7\pm3,1$	$43,7\pm1,8$	$6,1\pm0,4$	$678,4\pm27,7$
9.003.045	$65,5\pm4,6$	$83,7\pm2,9$	$119,7\pm12,5$	$3,5\pm1,4$	$68, 3 \pm 4, 4$	$58,4\pm2,4$	$9,8\pm0,6$	$727,9\pm30,7$
9.003.046	$187,0\pm11,8$	$102, 4 \pm 3, 6$	$134, 0 \pm 14, 9$	$12,1\pm1,0$	$73,9\pm4,7$	$66, 3 \pm 2, 8$	$10,6\pm0,5$	$747,2\pm34,2$
50.001.001	$45,7\pm2,8$	$59,7\pm1,7$	$57,2\pm 6,1$	$2,6\pm0,4$	$43,7\pm2,9$	$37,2\pm1,4$	$4,8\pm0,4$	$734,6\pm30,1$
9.001.047	$60,6\pm8,9$	$152,0\pm5,3$	$126,7\pm13,2$	$4,3\pm1,0$	$60,9\pm3,9$	$50,1\pm2,0$	$8,2\pm0,4$	$512,0\pm21,3$
9.001.048	$127, 4 \pm 7, 4$	$187,8\pm5,6$	$141, 0 \pm 14, 8$	$7,1\pm0,7$	$154, 6\pm9, 6$	$123, 2\pm4, 9$	$8,8\pm0,5$	$897, 4 \pm 36, 9$
9.001.052	$66,8\pm3,7$	$84,7\pm2,5$	$76,6\pm9,2$	$3,4\pm0,8$	$65,1\pm4,2$	$56, 0\pm 2, 4$	$3,2\pm0,3$	$676, 6\pm 27, 8$
50.000.360	$52,7\pm3,5$	$53, 5\pm 1, 7$	$56,4\pm5,8$	$2,5\pm0,3$	$46,2\pm3,0$	$43,4\pm2,0$	$2,6\pm0,3$	$655,8\pm27,6$
11.342.024	$77,5\pm5,4$	$64, 1 \pm 2, 2$	$52, 2\pm 6, 3$	$3,8\pm0,5$	$37,9\pm2,4$	$36, 6\pm1, 4$	$4,9\pm0,2$	$647, 3\pm 26, 6$

Tabelle C.28: Messergebnisse für die geogenen Punkte in den Verdachtsflächen

TAUGUE	-control .cz.	unu Liveravur w	er ve rur are geoge	m t mana		. 1 ^ 11
	\mathbf{U}/\mathbf{Ra}	U-238/U-235	m Ra-226/Ra-224	U-238	Ra-226	Pb-210
7.002.010	$0,8\pm0,2$	$18,8\pm4,9$	$1, 8 \pm 0, 1$	91	58,	110
7.112.004	$0,8\pm0,2$	$19,2\pm4,9$	$1,4\pm0,1$	74	61,	65
9.004.094	$1,5\pm0,2$	$9,7\pm1,2$	$1,4\pm0,1$	56	52,	45
9004094 2	$1,5\pm0,1$	$10,0\pm0,9$	$1, 5 \pm 0, 1$	56	52,	45
9.004.098	$1, 3 \pm 0, 1$	$20,4\pm3,2$	$1,4\pm0,1$	74	71,	58
9.004.103	$1,1\pm0,3$	$23,6\pm6,4$	$1,2\pm0,1$	75	70,	61
403.629.637	$1,1\pm0,2$	$23,4\pm6,2$	$1, 1 \pm 0, 1$	22	50,	NN#
9.003.215	$1,2\pm0,3$	$21,1\pm6,2$	$1, 3 \pm 0, 1$	00	84,	56
9.003.022	$1, 3 \pm 0, 1$	$21,3\pm3,6$	$1,7\pm0,1$	95	105,	49
9.003.029	$1,0\pm0,1$	$17,4\pm3,0$	$3,9\pm0,2$	139	131,	73
9.004.091	$1,1\pm0,2$	$23,0\pm6,6$	$1,8\pm0,1$	32	36,	25
7.162.001	$0,7\pm0,2$	$15,4\pm5,4$	$1,2\pm0,1$	60	54,	55
7.162.008	$0,8\pm0,2$	$17,6\pm4,8$	$1, 9 \pm 0, 1$	151	128,	120
9.003.057	$0,8\pm0,2$	$16,6\pm6,4$	$1,5\pm0,1$	74	75,	16
9.003.045	$1,0\pm0,2$	$22,6\pm9,8$	$1,4\pm0,1$	60	49,	43
9.003.046	$2,0\pm0,3$	$17,2\pm2,6$	$1,5\pm0,1$	58	62,	41
50.001.001	$1,2\pm0,2$	$28,4\pm6,6$	$1,6\pm0,1$	48	60	49
9.001.047	$0,7\pm0,2$	$24,6\pm9,4$	$3,0\pm0,2$	33	39,	31
9.001.048	$0,7\pm0,2$	$18,4\pm4,7$	$1,5\pm0,1$	48	58,	13
9.001.052	$0,9\pm0,2$	$22,7\pm6,4$	$1,5\pm0,1$	40	42,	31
50.000.360	$1,0\pm0,2$	$21,6\pm5,0$	$1,2\pm0,1$	44	50,	50
11.342.024	$1, 3 \pm 0, 3$	$22,9\pm5,1$	$1,8\pm0,1$	95	50,	60

Ę	́т >
-	den
	Ц
	kte
ſ	Lun
	geogenen
;	dle
:	IUr
	Literaturwerte
-	und
Ļ	INIess-
	C.29:
	abelle
E	-

Probe Nr.	Beschreibung	Rechtswert	Hochwert
7.112.001	Lengenfeld, Göltzsch, Wehr nach Zufluß Waldkirchener Bach	4526025	5604880
7.112.002	Lengenfeld, Stadt Plohnbach, ca. 20 m südlich der Brücke der B 94 (Polenzstr.)	4526365	5604785
7.112.004	Waldkirchen Waldkirchner Bach, nach Abstrom der Drainage des Sportplatzes	4526670	5605875
9.004.094	Lengenfeld, Plohnbach, in Plohn nach Zufluß aus dem Dorfteich	4528500	5604437
9.004.098	Lengenfeld, Freibach (Zufluß z. Plohnbach) nördl. der IAA	4528500	5606425
9.004.103	Lengenfeld, Göltzsch in Lengenfeld südl. der B 94 (Polenzstr.), ca. 50 m vor Bahnbrücke	4526400	5604488
403.628.027	Lengenfeld, Freibach (Zufluß z. Plohnbach) am Ostrand der IAA, nördl. Bachknie	4528530	5605795
403.628.028	Lengenfeld, Freibach östl. der Mitte der IAA, am südl. Bachknie	4528610	5605620
403.628.030	Lengenfeld, Freibach östl. des Südteils der IAA (nördlich v. Abflußrohr)	4528525	5605150
403.628.031	Lengenfeld, Freibach östl. des Südteils der IAA (Abflußrohr)	4528522	5605140
403.628.032	Lengenfeld, Freibach, südl. der IAA, 10 m vor dem Plohnbach	4528185	5604925
403.628.034	Lengenfeld, Bach nordwestl. der IAA, im Wald links der Str. Lengenfeld - Zwickau	4528275	5606115
403.628.035 + 36	Lengenfeld, Sickerwasseraustritt südl. des Dammes der IAA	4528200	5605170
403.628.037	Lengenfeld, Plohnbach, 14 m stromab d. Zuflusses südl. der IAA	4528160	5604940
403.628.038	Lengenfeld, Plohnbach, Brücke an der Straße Zwickau-Lengenfeld	4527855	5604880
403.628.040	Lengenfeld, Plohnbach, Wehr am Abfluß vom Stauteich	4527370	5604920
403.628.041	Lengenfeld, Plohnbach, Bachknie am Schießplatz (Bereich Südhalde)	4527290	5604980
403.628.042	Lengenfeld, Plohnbach, nördl. Baumechanik/Siedlung (Bereich Südhalle)	4527060	5604800
403.628.043	Lengenfeld, Plohnbach, Wehr nördl. der Siedlung (Bereich Südhalle)	4526875	5604790
403.628.044	Lengenfeld, Plohnbach, an der Eisenbahnbrücke vor Lenkteich	4526670	5604850
403.628.045	Lengenfeld, Plohnbach, ca.100 m stromauf des Lenkteiches	4526650	5605030
403.628.046	Lengenfeld, Plohnbach, 20 m vor Einlauf in die Göltzsch	4526105	5604830
403.628.053	Lengenfeld, Stauteich Teichboden Mischprobe	4527420	5604875
403.628.062	Lengenfeld, Sickerwasserabfluß $/$ Mitte Südhalde (15 m ab Bahngleismitte)	4527090	5604935
403.629.637	Lengenfeld, Göltzsch ca. 50 m stromab der Brücke von Neuhütte	4527240	5602080
403.629.638	Lengenfeld, Göltzsch am Stadion Lengenfeld	4526070	5604735
403.629.641	Lengenfeld, Göltzsch ca. 500 m WSW-lich der Hammermühle	4525115	5604705

Tabelle C.30: Probenahmepunkte Lengenfeld

ANHANG C. TABELLEN

ANHAN	G	С.	7	ΓA.	BE	EL.	LE	ΣN																				1	29
	ho in g cm ^{-3}	1,5	1,3	1,3	1,3	1,1	1,4	1,2	1,4	1,5	1,1	1,3	1,6	0,8	1,5	1,3	0,9	1,4	1,5	1,5	1,5	1,4	1,5; 1,6	1,1	1,1	1,4	1,5	1,5	
	$\mathbf{m}_{\mathrm{Petri}}$				102,0			98,7			87,2	105,4											128,4	84,1					
	$\mathbf{m}_{\mathrm{Marinelli}}$	856,3	707, 5	750,8		608, 6	809,9		793,1	823,1			881,9	471,9	859,9	719,1	480,0	792,3	852,2	866,0	818, 2	773,0	860,7		633, 5	796,8	823,8	838,3	
0.31: Feldparameter Lengenfeld	ODL in nSv h ⁻¹	246	570	193	∦NV	220	233	195	269	243	291	182	190	441	216	176	241	266	448; 242	238	320	1350	271	226	485	166	214	216	
	κ in $\mu S \ cm^{-1}$	459	375	453	256	318	315	329	331	300	453	304	333	1485	313	324	351	363	384; 373	375	378	375	380	349	4240; 4150	451	492	505	
	$E_{\rm H}~{\rm in}~{\rm mV}$	175	102	166	43	115	185	185	197	75	40	195	192	20	195	190	132	80	95; 58	63	20	45	194	243	404; 404	193	190	150	
Tabelle (pH	7,93	7,31	7,12	7	6,81	7,87	7,2	7,3	7	7,34	7,5	7,2	7,32	7,5	7	6,56	6,46	6,73; 6,9	7	7,25	7,4	7,84	6,88	2, 36; 3, 2	7,5	7,97	7,49	
	T in °C	11,5	12,8	9,9	14,4	6	13,5	13,3	12,9	12	9,5	12,5	9,4	15,8	12,5	12,5	11,4	12,7	$12,6;\ 11,3$	11,2	11,2	11,8	12	13,3	9; 10, 9	10	12,9	10,6	
	Volumen in l	4	4	4	5 L	4	4	9	4	4	4	4	4	9	4	4	4	4	8	4	4	9	4	4	4	4	4	4	
	Probe Nr.	7.112.001	7.112.002	7.112.004	9.004.094	9.004.098	9.004.103	403.628.027	403.628.028	403.628.030	403.628.031	403.628.032	403.628.034	403.628.035 + 36	403.628.037	403.628.038	403.628.040	403.628.041	403.628.042	403.628.043	403.628.044	403.628.045	403.628.046	403.628.053	403.628.062	403.629.637	403.629.638	403.629.641	

Punkt Nr.	U-238	Ra-226	Pb-210	U-235	m Ra-228	$\operatorname{Ra-224}$	Cs-137	K-40
7.112.001	$126,4\pm6,5$	$117, 7\pm 3, 5$	$122, 0 \pm 12, 7$	$6,7\pm1,3$	$69,4\pm4,6$	$60,5\pm2,6$	$21,8\pm 1,2$	$731,4\pm 30,0$
7.112.002	$2075, 4 \pm 88, 9$	$1175, 8 \pm 31, 8$	$1075, 3\pm 107, 9$	$103, 7\pm5, 3$	$73, 6 \pm 4, 8$	$58,2\pm2,5$	$19,6\pm1,0$	$923,5\pm37,4$
7.112.004	$71,8\pm6,3$	$92,0\pm2,6$	$90,9\pm9,2$	$3,9\pm0,7$	$74,1\pm4,7$	$66, 1\pm 2, 6$	$27,4\pm1,2$	$858, 5\pm 35, 2$
9.004.094	$308,1\pm16,0$	$254,0\pm 8,4$	$202,9\pm20,9$	$39,6\pm2,0$	$239,5\pm14,7$	$175, 3\pm 6, 7$	$44,2\pm1,9$	$843, 3 \pm 34, 5$
9.004.094 2.P	$325,7\pm14,9$	$251,7\pm8,7$	$221,0\pm24,0$	$37, 3\pm 2, 0$	$236, 6\pm14, 8$	$171,4\pm7,3$	$43,5\pm2,0$	$878,8\pm39,4$
9.004.098	$184,4\pm9,8$	$141, 5\pm3, 9$	$102,4\pm10,4$	$9,4\pm1,3$	$123, 3\pm7, 7$	$104, 0\pm6, 1$	$29,7\pm1,4$	$979,2\pm40,2$
9.004.103	$81,2\pm5,0$	$93, 6\pm3, 3$	$93,7\pm10,2$	$4,5\pm0,7$	$87,2\pm5,6$	$81, 3 \pm 3, 1$	$31,2\pm1,4$	$847, 9 \pm 35, 0$
403.628.027	$232,5\pm14,3$	$512,7\pm17,1$	$258,8\pm27,7$	$14,9\pm2,0$	$219,8\pm13,7$	$172, 2\pm 6, 5$	$52,7\pm2,7$	$694,9\pm29,2$
403.628.028	$243,9\pm13,3$	$189, 0\pm 6, 8$	$148,5\pm16,9$	$11,7\pm0,9$	$106,9\pm6,9$	$97,2\pm3,7$	$17,6\pm0,8$	$1176, 0 \pm 48, 8$
403.628.030	$106, 6\pm 6, 3$	$134, 6\pm3, 9$	$94,4\pm12,3$	$6,2\pm0,9$	$109,8\pm6,9$	$101,4\pm4,1$	$19,9\pm1,2$	$1181, 1 \pm 48, 5$
403.628.031	$238,1\pm12,6$	$260,9\pm 8,8$	$106,2\pm11,8$	$40,2\pm2,0$	$324,6\pm20,1$	$248,1\pm10,1$	$18,8\pm0,9$	$159,7\pm7,3$
403.628.032	$332,1\pm16,5$	$328,7\pm10,9$	$336,9\pm34,8$	$33,9\pm1,8$	$167,8\pm10,4$	$137,5\pm5,2$	$39,1\pm1,8$	$790,8\pm32,8$
403.628.034	$95, 3\pm7, 2$	$91,1\pm2,5$	$74, 6\pm 8, 3$	$5,0\pm0,9$	$100,8\pm6,6$	$94, 0 \pm 3, 9$	$17, 3\pm 1, 0$	$1066, 8 \pm 43, 1$
403.628.035 + 36	$2197,1\pm90,5$	$4601,9\pm 160,2$	$450, 3\pm54, 6$	$146,1\pm17,2$	$734,1\pm46,2$	$338, 3\pm15, 8$	$10,3\pm0,7$	$153,1\pm10,0$
403.628.037	$198,0\pm11,8$	$150,2\pm5,3$	$94,5\pm11,0$	$10,2\pm 1,0$	$111,1\pm7,1$	$99,5\pm3,8$	$14,6\pm0,8$	$1203, 9 \pm 49, 2$
403.628.038	$356,4\pm18,5$	$352,4\pm9,4$	$269,0\pm30,8$	$19,0\pm 1,7$	$150, 0\pm9, 6$	$135,4\pm5,8$	$32,4\pm1,8$	$912, 7\pm 38, 8$
403.628.040	$468,9\pm26,2$	$634, 6\pm17, 7$	$462,4\pm55,2$	$27,6\pm4,3$	$141, 0\pm9, 1$	$123, 2\pm7, 3$	$42,1\pm2,1$	$683,2\pm28,7$
403.628.041	$1437,2\pm56,7$	$336, 5\pm9, 0$	$210,4\pm26,4$	$71,2\pm3,7$	$65,0\pm4,2$	$60,8\pm3,5$	$28,6\pm1,4$	$529,8\pm22,0$
403.628.042	$610, 5\pm32, 5$	$766,2\pm20,2$	$733,1\pm87,6$	$32, 3\pm 3, 1$	$51,5\pm3,5$	$48,4\pm2,4$	$11,9\pm0,6$	$1033, 6 \pm 42, 1$
403.628.043	$782,8\pm31,5$	$809,9\pm27,0$	$705,5\pm71,8$	$43,2\pm2,9$	$56, 5\pm 3, 8$	$52,0\pm2,0$	$13,9\pm0,7$	$1080, 6 \pm 43, 8$
403.628.044	$938,7\pm42,9$	$715,6\pm19,9$	$673,1\pm85,8$	$50,3\pm3,8$	$56,9\pm4,0$	$49,5\pm2,5$	$13,3\pm0,8$	$1016, 3 \pm 42, 8$
403.628.045	$2464, 9 \pm 96, 9$	$2526, 2\pm 85, 6$	$1997, 6 \pm 213, 1$	$124,1\pm14,0$	$67, 6 \pm 4, 6$	$53,4\pm2,6$	$17,0\pm0,8$	$905, 7\pm44, 8$
403.628.046	$1228,4\pm44,2$	$1075,9\pm 29,9$	$1057, 4\pm 108, 3$	$63, 0 \pm 4, 9$	$61,7\pm4,4$	$52,2\pm2,5$	$14,6\pm0,9$	$899,9\pm38,8$
403.628.046 P	$1161, 0\pm 53, 8$	$911,5\pm30,2$	$1110, 5 \pm 113, 1$	$78,4\pm7,0$	$63,7\pm4,1$	$57, 3\pm 2, 4$	$15,3\pm0,7$	$944, 3\pm41, 5$
403.628.053	$676, 0\pm 30, 3$	$435,3\pm14,7$	$489,5\pm52,4$	$44,8\pm3,1$	$138, 6\pm 8, 6$	$148, 0\pm 6, 0$	$64,1\pm2,7$	$643, 0\pm 27, 4$
403.628.062	$3308, 0 \pm 120, 6$	$223,4\pm 8,0$	$60,6\pm7,9$	$191,5\pm 8,3$	$5,0\pm0,4$	$27,2\pm1,3$	$3,9\pm0,2$	$28,8\pm1,8$
403.629.637	$64,4\pm4,2$	$74,1\pm2,3$	$59,6\pm 6,9$	$3,5\pm0,6$	$73, 7\pm4, 8$	$69,9\pm2,9$	$18,0\pm0,9$	$877,9\pm35,9$
403.629.638	$82,2\pm4,1$	$94,2\pm3,4$	$85,2\pm10,0$	$3,8\pm0,7$	$86,6\pm5,5$	$77,5\pm3,2$	$26, 3\pm1, 3$	$862, 2\pm 35, 4$
403.629.641	$184, 6\pm8, 6$	$195,2\pm 6,6$	$176, 2\pm18, 2$	$10,1\pm 1,7$	$82,5\pm5,3$	$75,8\pm3,0$	$29,7\pm1,3$	$841,3\pm36,3$

Tabelle C.32: Messergebnisse Lengenfeld

ANHANG C. TABELLEN

130

²¹⁰ Pb Lit.	1100	64	65	45	45	58	61	NN#	NN#	NN#	NN #	NN#	_NN#	NN#	NN#	_NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN #	NN#	NN#	
²²⁶ Ra Lit.	1400	89	61	52	52	71	20	50	50	750	50	1890	250	2140	50	630	750	880	1760	1010	1380	1130	1380	1380	18490	250	50	50	750
²³⁸ U Lit.	1500	22	74	56	56	74	75	82	120	324	24	468	324	2976	116	372	1248	3120	1932	864	1980	360	1560	1560	3660	4740	22	92	252
${f A(^{226}{f Ra})/A(^{224}{f Ra})}$	$1,9\pm0,1$	$20,2\pm1,0$	$1,4\pm0,1$	$1,4\pm0,1$	$1,5\pm0,1$	$1,4\pm0,1$	$1,2\pm0,1$	$3,0\pm0,2$	$1,9\pm0,1$	$1, 3 \pm 0, 1$	$1,1\pm0,1$	$2,4\pm0,1$	$1,0\pm0,0$	$13,6\pm0,8$	$1,5\pm0,1$	$2,6\pm0,1$	$5,2\pm0,3$	$5,5\pm0,3$	$15,8\pm0,9$	$15,6\pm0,8$	$14,4\pm0,8$	$47, 3 \pm 2, 8$	$20,6\pm1,2$	$15,9\pm0,9$	$2,9\pm0,2$	$8,2\pm0,5$	$1,1\pm0,1$	$1,2\pm0,1$	26 + 01
${f A}(^{238}{f U})/{f A}(^{235}{f U})$	$19,0\pm5,1$	$20,7\pm1,5$	$19,2\pm4,9$	$9,7\pm1,2$	$10,0\pm0,9$	$20,4\pm3,2$	$23,6\pm6,4$	$18,4\pm4,3$	$20,2\pm2,3$	$17,4\pm3,7$	$8,2\pm0,9$	$10,5\pm1,2$	$20,7\pm5,3$	$19,1\pm2,5$	$20,3\pm2,9$	$21,8\pm3,7$	$17,7\pm3,0$	$22,1\pm1,6$	$19,4\pm2,3$	$20,3\pm1,8$	$18,5\pm2,0$	$20,9\pm2,6$	$20,1\pm1,8$	$16, 6\pm1, 9$	$16,0\pm1,5$	$22,0\pm1,4$	$23,4\pm6,2$	$21,6\pm4,5$	$10 7 \pm 3 0$
${f A}(^{238}{f U})/{f A}(^{226}{f Ra})$	$1,1\pm0,2$	$1,8\pm0,1$	$0,8\pm0,2$	$1,5\pm0,2$	$1,5\pm0,1$	$1,3\pm0,1$	$1,1\pm0,3$	$0,5\pm0,1$	$1,3\pm0,1$	$0,8\pm0,1$	$1, 3 \pm 0, 1$	$1,1\pm0,1$	$1,1\pm0,2$	$0,6\pm0,0$	$1,4\pm0,2$	$1,2\pm0,2$	$0,8\pm0,1$	$4,7\pm0,3$	$0,8\pm0,1$	$1,1\pm0,1$	$1,3\pm0,1$	$1,0\pm0,1$	$1,2\pm0,1$	$1,4\pm0,1$	$1,6\pm0,1$	$18,8\pm1,1$	$1,1\pm0,2$	$0,9\pm0,1$	1 0 + 0 1
Punkt Nr.	7.112.001	7.112.002	7.112.004	9.004.094	9.004.094 2.P	9.004.098	9.004.103	403.628.027	403.628.028	403.628.030	403.628.031	403.628.032	403.628.034	403.628.035 + 36	403.628.037	403.628.038	403.628.040	403.628.041	403.628.042	403.628.043	403.628.044	403.628.045	403.628.046	403.628.046 P	403.628.053	403.628.062	403.629.637	403.629.638	403.629.641

Tabelle C.33: Messwerte und Literaturwerte Lengenfeld

Anhang D

Literaturverzeichnis

Literaturverzeichnis

- [AEA03] AEA TECHNOLOGY QSA GMBH: Certificate of calibration of mixed radionuclide gamma-ray reference solution. Kalibrierdatenblatt zum Standard QCY48 (2003).
- [Arb03] ARBEITSGEMEINSCHAFT FÜR DIE REINHALTUNG DER ELBE: Hochwasser August 2002 – Einfluss auf die Gewässergüte der Elbe. URL www.arge-elbe.de/wge/Download/Berichte/HWAug02. pdf (März 2003).
- [Beu99] P. BEUGE ET AL.: Die Schwermetallsituation im Muldesystem. Freiberg, Hamburg. Schlussbericht zu den BMBF-Fördervorhaben 02WT9113 und 02WT9114 (1999).
- [Bie00] J. BIERINGER ET AL.: Grundlagen und Hinweise zur Messung von Ortsdosis und Ortsdosisleistung. In: BUNDESMINISTERIUM FÜR UM-WELT, NATURSCHUTZ UND REAKTORSICHERHEIT, (Hg.) Messanleitungen für die Überwachung der Radioaktivität in der Umwelt und zur Erfassung radioaktiver Emissionen aus kerntechnischen Anlagen (Verlag Urban und Fischer, München, Jena, 2000).
- [Deb90] K. DEBERTIN und U. SCHÖTZIG: Bedeutung von Summationskorrektionen bei der Gammastrahlen-Spektrometrie mit Germaniumdetektoren (Physikalisch-Technische Bundesanstalt, 1990).
- [DIN96] DIN 1319-3: Grundlagen der Messtechnik; Teil 3: Auswertung von Messungen einer einzelnen Messgröße, Messunsicherheit (Beuth Verlag, Berlin, 1996).
- [DIN00] DIN 25482-10: Nachweisgrenze und Erkennungsgrenze bei Kernstrahlungsmessungen - Teil 10: Allgemeine Anwendungen (Beuth Verlag, Berlin, 2000).
- [Dus01a] C. DUSHE ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Bärenstein (VF 18a) (Bundesamt für Strahlenschutz, 2001).

- [Dus01b] C. DUSHE ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Marienberg (VF 19) (Bundesamt für Strahlenschutz, 2001).
- [Dus01c] C. DUSHE ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Pöhla (VF 17) (Bundesamt für Strahlenschutz, 2001).
- [Dus01d] C. DUSHE ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Pobershau (VF 20) (Bundesamt für Strahlenschutz, 2001).
- [Dus01e] C. DUSHE ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Zobes-Mechelgrün (VF 07) (Bundesamt für Strahlenschutz, 2001).
- [Dus02a] C. DUSHE ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Gottesberg/Schneckenstein (VF 13) (Bundesamt für Strahlenschutz, 2002).
- [Dus02b] C. DUSHE ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Lengenfeld (VF 09) (Bundesamt für Strahlenschutz, 2002).
- [Dus03] C. DUSHE ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zu den Verdachtsflächen Freital (VF 21) und Mühlbach-Maxen (VF 27) (Bundesamt für Strahlenschutz, 2003).
- [ESM94] ESM STRAHLEN- UND UMWELTMESSTECHNIK: Betriebsanleitung zum Dosisleistungsmessgerät FH 40 G-L (1994).
- [Ett01] E. ETTENHUBER und K. GEHRKE: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht (Bundesamt für Stahlenschutz, 2001).
- [Fun92] W. FUNK ET AL.: Qualitätssicherung in der analytischen Chemie (VCH Verlagsgesellschaft mbH, Weinheim, 1992).
- [Ges96] GESELLSCHAFT FÜR ANLAGEN UND REAKTORSICHERHEIT MBH und BEAK CONSULTANTS GMBH: Radionuklidbelastung von Sedimenten und Auenböden - Datenerfassung, Erstauswertung, Ergebnisdarstellung (April 1996).
- [Ges97] GESELLSCHAFT FÜR ANLAGEN UND REAKTORSICHERHEIT MBH: Altlasten-kataster a.las.ka. Datenbank. Version 2.0 (1997).

- [Gro03] R. GROFFMANN: Wiederkehrende Prüfung der ODL-Messgeräte. ZSR (2003).
- [Jäc87] B. JÄCKEL, W. WESTMEIER und P. PATZELT: On the Photopeak Efficiency of Germanium Gamma Ray Detectors. In: Nucl. Instr. Meth. A261 (1987).
- [Kle04] P. KLEMM: Mitteilung (2004).
- [Küm02] M. KÜMMEL ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Schneeberg-Aue (VF 15) (Bundesamt für Strahlenschutz, 2002).
- [Knö03] A. KNÖCHEL, R. MICHEL, S. RITZEL und C. WANKE: Verlagerungen natürlicher Radionuklide im Muldesystem als Folge des Augusthochwassers. In: Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002, S. 92–95 (UFZ Umweltforschungszentrum Leipzig-Halle GmbH, 2003). Tagungsband zum Statusseminar des BMBF-Ad-hoc-Verbundprojektes, Freiberg, 27.-29. August 2003.
- [Knö04] A. KNÖCHEL, R. MICHEL, S. RITZEL und C. WANKE: Ad-hoc-Projekt Elbe-Hochwasser August 2002, Abschlussbericht zum Teilprojekt 3.9. Unveröffentlicht (2004).
- [Kni03] M. KNITTEL: Persönliche Mitteilung. Wismut GmbH (August 2003).
- [Kno99] G. F. KNOLL: Radiation Detection and Measurement (John Wiley & Sons, Inc., New York, 1999). Third Edition.
- [Lan01a] LANDESAMT FÜR LANDESVERMESSUNG UND DATENVERARBEI-TUNG SACHSEN-ANHALT: TOP50 - Amtliche topographische Karten. CD-ROM (2001).
- [Lan01b] LANDESVERMESSUNGSAMT SACHSEN: Top50 Amtliche topographische Karten. CD-ROM (2001).
- [Lei04] LEICHSENRING: Mitteilung. Wismut GmbH (2004).
- [Lie91] K. LIESER: Einführung in die Kernchemie (VCH Verlagsgesellschaft mbH, Weinheim, 1991). 3. Auflage.
- [Lie95] K. LIESER: Radionuclides in th Geosphere: Sources, Mobility, Reactions in Natural Waters and Interactions with Solids. In: *Radiochimica* Acta 70/71, S. 355–375 (1995).
- [Mic99] R. MICHEL und K. KIRCHHOFF: Nachweis-, Erkennungs- und Vertrauensgrenzen bei Kernstrahlungsmessungen (Fachverband für Strahlenschutz e.V, TÜV Verlag GmbH, Köln, 1999).

- [Mun00] H. MUNDSCHENK: Messanleitungen für die Überwachung der Radioaktivität im Sediment. In: BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT, (Hg.) Messanleitungen für die Überwachung der Radioaktivität in der Umwelt und zur Erfassung radioaktiver Emissionen aus kerntechnischen Anlagen (Verlag Urban und Fischer, München, Jena, 2000).
- [Ori03] ORIGINLAB CORPORATION: Dokumentation zu Origin 7.5G (2003).
- [Rit02] S. RITZEL: Gegenüberstellung und Optimierung von Verfahren zur gammaspetrometrischen Bestimmung von PB-210 in Umwetlproben. Diplomarbeit, Universität Marburg (2002).
- [Roy82] J. ROYSTON: An extension of Shapiro and Wilk's W Test for Normality to large samples. In: *Appl. Statist.* 31, S. 115–124 (1982).
- [Säc02] SÄCHSISCHES LANDESAMT FÜR UMWELT UND GEOLOGIE: Vorläufiger Kurzbericht über die meteorologisch-hydrologische Situation beim Hochwasser im August 2002. URL www.umwelt.sachsen.de/ de/wu/umwelt/lfug/lfug-internet/documen%ts/kb021202.pdf (Dezember 2002).
- [Sch98] U.-K. SCHKADE ET AL.: Gammaspektrometrische Bestimmung der spezifischen Aktivität natürlicher Radionuklide in Umweltproben, 5. Vergleichsanalyse "Boden 1998" (PTB, 1998).
- [Sha65] S. SHAPIRO und M. WILK: An analysis of variance test for normality. In: *Biometrika* 52 (1965).
- [Sie96] A. SIEHL, (Hg.): Umweltradioaktivität (Ernst und Sohn, Berlin, 1996).
- [Str91] STRAHLENSCHUTZKOMMISSION: Strahlenschutzgrundsätze für die Nutzung von durch den Uranbergbau kontaminierten Flächen zu forst- und landwirtschaftlichen Zwecken sowie als Grünanlage. Bundesanzeiger Nr. 227 (1991).
- [Str99] STRAHLENSCHUTZKOMMISION: Berechnungsgrundlagen zur Ermittlung der Strahlenexposition infolge bergbaubedingter Umweltradioaktivität (Berechnungsgrundlagen-Bergbau) (1999).
- [Vah04] J.-W. VAHLBRUCH: Über den Transfer von natürlichen Radionukliden in terrestrischen Ökosystemen und die realistische Modellierung der natürlichen Strahlenexposition in Norddeutschland. Dissertation, Universität Hannover (2004).
- [Wes02] WESTMEIER GMBH: Dokumentation zu GAMMAW (2002).
- [Wic01a] K. WICHTEREY ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachts-

fläche Annaberg-Buchholz (VF 18) (Bundesamt für Strahlenschutz, 2001).

- [Wic01b] K. WICHTEREY ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zur Verdachtsfläche Filzteich (VF 14) (Bundesamt für Strahlenschutz, 2001).
- [Wic02] K. WICHTEREY ET AL.: Radiologische Erfassung, Untersuchung und Bewertung bergbaulicher Altlasten - Abschlussbericht zu den Verdachtsflächen Zwickau und Oberrothenbach (VF 11 und 12) (Bundesamt für Strahlenschutz, 2002).
- [Wil97] W. WILL ET AL.: Ortsdosisleistung der terrestrischen Gammastrahlung in den östlichen Bundesländern Deutschlands (Bundesamt für Strahlenschutz, 1997).
- [Wis01] WISMUT GMBH: Bericht über 10 Jahre Umweltüberwachung und Sanierungstätigkeit. URL www.wismut.de/umweltbericht/ bericht-2000/uwb2000-zentraler_te%il.pdf (2001).
- [Wis02a] WISMUT GMBH: Chronik der Wismut. CD-Rom (2002).
- [Wis02b] WISMUT GMBH: Umweltbericht 2002. URL www.wismut. de/umweltbericht/bericht-2002/Inhalt-Abkuerzungen-% Einleitung.pdf (2002).
- [Wis03] WISMUT GMBH: Ergebnisse der Referenzmessungen. 13.08.2003 (2003).

Anhang E

Abkürzungsverzeichnis

BfS	Bundesamt für Strahlenschutz, Salzgitter und Berlin
FWHM	volle Halbwertbreite (full width at half maximum)
GPS	Global Positioning System, satellitengestütztes Navigationssystem
GRS	Gesellschaft für Anlagen- und Reaktorsicherheit
HPGe	Reinstgermaniumdetektor (high purity germanium)
LfUG	Landesamt für Umwelt und Geologie Sachsen, Dresden
MCB	Vielkanalanalysator mit Pufferspeicher
PTB	Physikalisch-Technische Bundesanstalt, Braunschweig
ODL	Photonen-Äquivalentdosisleistung (Ortsdosisleistung)
QCY48	Multinuklid-Aktivitätsnormal der Firma Amersham
SAG	Sowjetische Aktiengesellschaft der Buntmetallindustrie
SDAG	Sowjetisch-Deutsche Aktiengesellschaft
SSK	Strahlenschutzkommission
UFZ	Umweltforschungszentrum Leipzig-Halle
VF	Verdachtsfläche
WBA	Wasserbehandlungsanlage
ZSR	Zentrum für Strahlenschutz und Radioökologie der Universität Hannover
#NV	Wert nicht bekannt

Diese Arbeit entstand im Zeitraum von März 2003 bis März 2004 im Zentrum für Strahlenschutz und Radioökologie der Universität Hannover unter Leitung von Prof. Dr. Rolf Michel.

An dieser Stelle möchte ich zuerst Prof. Dr. Rolf Michel danken, der mir die Arbeit an diesem interessanten Thema im Bereich der Radioökologie ermöglicht hat.

Privatdozent Dr. Ingo Leya danke ich für die freundliche Übernahme des Korreferats.

Stefan Ritzel danke ich für die gute Zusammenarbeit in allen Lebenslagen, fruchtbare Diskussionen und hilfreiche Tips bei der Durchführung der Untersuchungen zu dieser Diplomarbeit.

Prof. Dr. Arndt Knöchel von der Universität Hamburg danke ich ebenfalls, dass er mit die Mitarbeit an diesem Projekt ermöglicht hat. Ihm und seinen Mitarbeitern Dirk Eifler, Joachim Feuerborn, Kristina Weppelmann und ganz besonders Frank Miller sowie Annia Greif von der TU Bergakademie Freiberg danke ich für die gute Zusammenarbeit insbesondere während der Probenahme.

Dem Bundesamt für Strahlenschutz, dem Sächsischen Landesamt für Umwelt und Geologie sowie dem Umweltforschungszentrum Leipzig-Halle danke ich für die Bereitstellung wertvoller Informationen und die Kooperation.

Auch allen Mitarbeitern des ZSR bin ich zu Dank verpflichtet.

Karl-Heinz Iwannek und Ralf Groffmann danke ich für die Zusammenarbeit beim Umzug der Detektoren.

Sven Hippler danke ich für die Hilfe bei vielen chemischen Fragen und Computerproblemen, Jan Vahlbruch für die Hilfe bei physikalischen und mathematischen Fragen.

Für das Korrekturlesen dieser Arbeit danke ich Stefan Ritzel, Sven Hippler, Dr. Michael Täschner, Dr. Claus Bunnenberg und besonders Dr. Dieter Jakob, der mir viele hilfreiche Tips gab und auch sonst immer ein offenes Ohr hatte.

Rüdiger Sachse sowie Ralf Groffmann, Frank Koepke, Hans-Georg Hannibal und Michael Senft von der Werkstatt danke ich für die Hilfe bei technischen Problemen.

Nicht zuletzt danke ich meinen Eltern und meiner Schwester für die immerwährende Unterstützung.

Diese Arbeit wurde vom Bundesministerium für Bildung und Forschung im Rahmen des Ad-hoc-Projekts "Schadstoffbelastung im Mulde- und Elbe-Einzugsgebiet nach dem Augusthochwasser 2002" gefördert.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbst angefertigt und keine anderen als die angegebenen Quellen verwendet habe.

Hannover, den