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Abstract

Cross sections for the production of residual nuclides are a key issue for medium

energy applications. Due to the large range of relevant target elements and the amount

of product nuclides it will not be possible to measure all the cross sections needed. One

will have to widely rely on models and codes to calculate the required data. The demand

for reliable theoretical predictions of production cross sections is by no means satis�ed

by the models and codes which are available today. In this context it is essential that

reliable and comprehensive databases do exist which can serve as benchmarks for code

development and validation.

In this work a systematic survey was done for the production of intermediate

mass fragments by proton induced reactions. It covers all previous available and new

data for the production of residual nuclides with masses between 3 and 30, over an

energy range extending from thresholds up to 2.6 GeV with targets spreading over

the entire chart of nuclides. The experimental data are exemplarily compared with

calculations using the TALYS and INCL4+ABLA codes.

This study was performed as a contribution to the NUDATRA work package

5.4 �High Energy Experiments for Radioactivity, Chemical Modi�cations and Damage

Assessment� for the EUROpean Research Programme for the TRANSmutation of High

Level Nuclear Waste in an Accelerator Driven System (EUROTRANS).

We have extended the range of this survey and a number of elder experiments

were evaluated and the results are now available. Cross sections for energies up

to 2.6 GeV were obtained also for residual nuclides with masses higher than 30 by

combined experiments using accelerators at LNS/Saclay (E=200-2600MeV) and at

TSL/Uppsala(E=70-180MeV). Cross sections were determined by target activation

experiments and o�ine γ-spectrometry of radionuclides at the Center for Radiation

Protection and Radioecology, ZSR, Leibniz Universität Hannover.

The capabilities of some available codes to predict cross sections for the

production of residual nuclides in thin and thick target experiments are tested and a

comparison between experiment and theory is made.

Keywords: cross sections, residual nuclides, protons, medium energy
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Kurzzusammenfassung

Wirkungsquerschnitte für die Erzeugung von Restkern-Nukliden sind von sehr

groÿer Bedeutung für Anwendungen in Bereich der mittleren Energien. Durch die

Vielzahl relevanter Target-Elemente und Produkt-Nuklide ist die experimentelle Er�

mittlung aller notwendigen Wirkungsquerschnitte nicht möglich, sodass man auf die

Berechnung der benötigten Daten mithilfe von Modellen und Rechencodes angewiesen

ist. Allerdings kann die groÿe Nachfrage nach zuverlässigen theoretischen Vorhersagen

von Erzeugungswirkungsquerschnitten nicht annähernd durch die bereits verfügbaren

Modelle und Codes gedeckt werden. In diesem Zusammenhang sind zuverlässige und

umfassende Datensätze, die als Vergleichbasis für die weitere Entwicklung und Vali�

dierung von Programmpaketen dienen, unerlässlich.

Diese Arbeit gibt einen systematischen Überblick über die Erzeugung mit�

telschwere Restkerne durch protoneninduzierte Reaktionen. Dabei werden im berück�

sichtigten Energiebereich bis 2,6 GeV alle bereits verfügbaren und neuen Daten für

die Produktion von Restkernen mit 3≤A≤30 und mit über die gesamte Nuklidkarten

verteilten Target-Nukliden abgedekt. Die Experimentellen Date werden exemplarisch

mit Berechnungen anhand der Programme TALYS und INCL4+ABLA verglichen.

Diese Untersuchung ist ein Beitrag für das NUDATRA arbeitspaket 5.4 �High

Energy Experiments for Radioactivity, Chemical Modi�cations and Damage Assess�

ment� des �EUROpean Research Programme for the TRANSmutation of High Level

Nuclear Waste in an Accelerator Driven System� (EUROTRANS).

Anschlieÿend konnten mittels der Auswertung früherer Messungen über die

bereits gennanten Untersuchungen hinausgehende Erkenntnisse gewonnen werden.

So wurden durch Aktivierungsexperimente and den Beschleunigern LNS/Saclay

(E=200-2600MeV) sowie TSL/Uppsala(E=70-180MeV) Wirkungsquerschnitte für En�

ergien bis zu 2,6 GeV zusätzlich auch für Restkerne mit A≥30 ermittelt. Die Messung

der Wirkungsquerschnitte erfolgte durch O�ine-Gammaspektrometrie am Zentrum für

Strahlenschutz und Radioökologie (ZSR) der Leibniz Universität Hannover.

Die Leistungsfähigkeit einiger verfügbarer Programmpakete im Hinblick auf die

Berechnung von Wirkungsquerschnitte für die Erzeugung von Restkern-Nukliden in

dünnen und dicken Targets wird anhand des Vergleichs von experimentellen und theo�

retischen Daten analysiert.

Schlagworte: Wirkungsquerschnitte, Restkern-Nukliden, Protonen, mittlere

Energien
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1 Introduction

The atomic nucleus is a fascinating object to study. The properties of nuclei are

important for such diverse phenomena as energy generation in stars and the design of

microelectronic devices. Although nuclei have been studied for over a century there are

still open questions. For example, properties of nuclei far from the valley of stability,

the formation of super-heavy elements and nuclear reactions which result in nuclei with

high excitation energy. No complete theoretical description exists of these reactions

but many models have been created, e.g. [Ni95, Gu83, Bo95a, Ai91], which are able

to explain some features of the reactions, such as direct reactions, pre-equilibrium

emission, evaporation and multifragmentation. The models often rely on assumptions

which may not be justi�ed in the whole energy range from a few MeV to several GeV

and no �rm energy limits exist where these assumptions are valid. Even within the

same energy interval physically di�erent models exist, e.g. [Ni95, Gu83]. In order to

experimentally distinguish between the models, more high quality data are needed.

The reactions cross section gives the probability that a particle will undergo a

nonelastic process when passing through a nuclear medium. Therefore reaction cross

section data are of importance, not only from a theoretical point of view, but also for

applications in such diverse �elds as medicine, biology, astrophysics and accelerator�

driven transmutation of nuclear waste.

Protons have been used for treatment of cancer and other medical conditions for

more than 50 years. The treatment utilizes the e�ect of the Bragg peak, where the

main part of the delivered dose is distributed in a well de�ned and relatively small

region, minimizing the dose to normal tissue surrounding the target. Although the

proton energy is deposited mainly through electromagnetic interactions with atomic

electrons, large improvements of the therapeutic methods may be achived with better

information about the nuclear reactions that also occur in the human body during

treatment, primarily with C, O and Ca. The use of radioactive isotopes for medical

diagnosis and treatment is a growing industry, where a variety of isotopes spread over

the periodic table are used. While many of the isotopes are produced in nuclear reactors

through neutron capture and �ssion, others are preferably produced with accelerated

proton beams in the intermediate energy range, or with novel techniques where an

intense neutron source is created with a proton beam interacting with light or heavy

targets.

The interaction of high energy cosmic radiation with biological matter is of con�

cern, not only for astronauts, but also for passengers in comercial airplanes. The

1



1 INTRODUCTION

projectile-target combinations of interest are similar to those for medical therapy, as

well as the natural elements of air (N, O, Ar) and potential shielding materials in

manned spacecrafts (H, C, Al).

Digital electronic devices may su�er random re-programming or permanent dam�

age, so-called Single Event E�ects (SEE) and Single Event Upsets (SEU), when a single

ionizing particle from cosmic radiation (mainly protons) deposits free charge within the

device. This e�ect is relatively small at sea level due to the natural shielding from the

atmosphere, but the problem increases with altitude and is therefore of concern for

airplane and satellite electronics. An obvious target for the study is 28Si, the basic

material for most of nowadays electronic devices, but other nuclides used in electronic

components are also of interest.

Cross sections for the production of residual nuclides by proton induced reac�

tions are basic nuclear quantities for an accurate modelling of the interaction of solar

cosmic protons with matter, e.g. meteorites, planetary surfaces and the upper earth

atmosphere. By these interactions a large variety of stable and radioactive nuclides -

the so-called cosmogenic nuclides - are produced and can be measured either by their

decay or as positive isotope anomalies in the target materials. The study of cosmogenic

nuclides is relevant for geo- and cosmochemical processes and allows the description of

the cosmic ray exposure history of lunar samples, meteorites and cosmic dust.

Several projects involving large scale accelerator driven systems (ADS) are under

development for subcritical nuclear energy production as well as for the reduction of

long-lived radioactive waste through nuclear transmutation. The basic idea for such

systems is to use high-intensity proton accelerators for the production of an intense neu�

tron �ux through spallation processes. The neutrons, with energies from the thermal

region up to 1 GeV, will then drive the subcritical nuclear reactor. While these projects

obviously require large amounts of nuclear data for intermediate energy neutrons, the

accelerator driven neutron source also requires better information of proton induced

reactions for the neutron production target (Pb, Bi, W, U), as well as for surrounding

structural materials (Al, Fe, Ni, Zr). An overview of the above described applications

of reaction cross-sections is given in Table 1.

The various applications described in this chapter reveal an extensive need of

nuclear data for a vast number of nuclei, reaction type, and over a large energy range.

The OECD Nuclear Energy Agency (NEA) has issued a report on an evaluation of

intermediate energy data [Ko98]. In the report it was emphasized that if all the mea�

surements important for various applications would be performed it would keep the

existing experimental facilities busy for about a millenium. Therefore one will have

2



Nuclear Physics

� Systematic of nuclear reactions
� Pre-equilibrium and intra-nuclear cascade model
� Pre-equilibrium decay, spallation and fragmentation
� Fission at medium energies

Astrophysics

� Abundance of heavy CR particles
� p-process nucleosynthesis
� T-Tauri and WR stars

Cosmophysics and -chemistry

� Cosmic ray exposure history of extraterrestrial matter
� Terrestrial ages of meteorites
� Variations of cosmic radiation with space and time

Particle Accelerator Technology

� Activation of detectors

� Radiation protection

� Online mass separation

� Radioactivity in beampipes

Medicine

� Radionuclide production

� Radiation therapy

Space and Aeronautical Technology

� Radiation protection

� Material damage

Table 1.1: Examples for applications of nuclear data.

to rely widely on models and codes to calculate the required data. The demand for

reliable theoretical predictions of production cross sections is by no means satis�ed by

the models and codes which are available today. In this context it is essential that

reliable and comprehensive databases do exist which can serve as benchmarks for code

development and validation.
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2 Aim of this work

One of the goals of this work is to complete the cross-sections database

for proton induced reactions by the evaluation of previous γ-spectrometric mea�

surements and by the measurement of long-lived radioactive progenitors in tar�

gets of earlier experiments performed using accelerators at LNS(Laboratoire Na�

tional Saturne)/Saclay (E=200-2600MeV) and at TSL(Svedberg Laboratory Upp�

sala)/Uppsala(E=70-180MeV).

As a contribution to the NUDATRA work package 5.4 "High Energy Experiments

for Radioactivity, Chemical Modi�cations and Damage Assesment" for the EUROpean

Research Programme for the TRANSmutation of High Level Nuclear Waste in an

Accelerator Driven System (EUROTRANS) a systematic survey shall be performed,

in the second part of this thesis, for the production of intermediate mass fragments by

proton induced reactions. This study will cover all previous available and new data

for the production of residual nuclides with masses between 3 and 30, over an energy

range extending from thresholds up to 2.6 GeV with targets spreading over the entire

chart of nuclides. This will contribute to testing the recently developed codes TALYS

and INCL4 and to do empirical systematics to see whether residual nuclides production

and light particle production can be attributed to the same production mode.

5
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3.1

3 Theoretical Background

3.1 Nuclear Reactions

Radioactive decays of nuclides allow obtaining informations about them. This

informations are however limited to a small number of nuclides - the naturally radioac�

tive ones - and only to some of their properties. We have to emphasize that the number

of naturally radioactive nuclides is small and is limited, with a few exceptions, to the

nuclides from the three main radioactive series; the number of radioactive nuclides

arti�cially produced, in nuclear reactions, is considerably bigger. This is the reason

why the information gained from radioactive decays is for the arti�cial radionuclides

produced in nuclear reactions.

Nowadays, it is well known that nuclear reactions are the main �source� for

informations about the properties of nuclei: dimensions, charge and mass distribution,

kinetic, electric and magnetic moments for the ground states and for the excited states,

probabilities of transition etc.

These informations are the basis for our knowledge about the fundamental laws of

matter since substantial parts of the universe is concentrated in the atomic nuclei.

Nuclear reactions are described by specifying the type of the incident radiation,

the nuclear target, the products of the reaction, the probability that the reaction will

take place, called �cross section�, and the distributions in energy and angle of the

reaction products.

A nuclear reaction can be de�ned as the change in the identity or characteristic

of an atomic nucleus, induced by bombarding it with an energetic particle. The bom�

barding particle may be an alpha particle, a gamma ray photon, a neutron, a proton or

a heavy ion. A typical nuclear reaction involves two reacting particles - and produces

new particles - a residual product nucleus and one or more lighter ejected particle. In

the �rst observed nuclear reaction (1919), Ernest Rutherford bombarded nitrogen with

alpha particles and identi�ed the ejected lighter particles as hydrogen nuclei or protons

(1H or p) and the product nuclei as a rare oxygen isotope. In the �rst nuclear reac�

tion produced by arti�cially accelerated particles (1932), the English physicists J.D.

Cockcroft and E.T.S. Walton bombarded lithium with accelerated protons and thereby

produced two helium nuclei, or alpha particles.

A nuclear reaction can be written:

x+X 99K [X∗] 99K Y + y,

7



3 THEORETICAL BACKGROUND

where x is the projectile, X is the target nucleus, X∗ is the excited composite nucleus,

Y is the product nucleus, and y is the ejectile.

For a nuclear reaction to occur the incident particle must interact with the nucleus.

And in this situation the energy must be high enough to overcome the Coulombs barrier

between the interacting partners. Observation has proved that if the energy is lower

than the height of the Coulomb barrier, the nucleons will bounce each other. The

height of the barrier depends on the atomic numbers of target and projectile nuclei,

i.e.,

Ec =
1

4πε0

Z1 · e · Z2 · e
r

(3.1)

or

Ec = k
Z1 · e · Z2 · e

r
(3.2)

r represents the distance between the two nuclides. This holds down to a distance r1

where the nuclear forces becomes operative. For r1 we have the relation

r1 = r0(A
1/3
1 + A

1/3
2 ) (3.3)

with

r0 = 1.4× 10−13cm (3.4)

3.1.1 Q-Value for a reaction

In a nuclear reaction, from conservation of energy, the total energy including the

rest-mass energy must be the same before and after the reaction i.e.

(
∑
i

[Ei +mic
2])before = (

∑
i

[Ei +mic
2])after (3.5)

where Ei and mi are the kinetic energy and rest mass of particle respectively. Any

change in the total kinetic energy before and after the reaction must be accompanied

by an equivalent change in the total rest mass. The Q-value of a reaction is de�ned as

the change in kinetic energy or rest mass in a reaction i.e.

Q = (kinetic energy)after − (kinetic energy)before (3.6)

or

Q = (rest mass)afterc
2 − (rest mass)beforec

2. (3.7)

8



3.1 Nuclear Reactions

If the kinetic energy of the products is greater than that of the reactants, the reaction

is exothermic and Q is positive. If energy is required to induce a reaction, the reaction

is endothermic and Q is negative. In such endothermic reactions a minimum kinetic

energy of reactants is required for the reaction to proceed.

In a binary nuclear reaction a+X → Y + b, the Q-value is given by

Q = (EY + Eb)− (Ea + EX) = [(ma +mX)− (mY +mb)] c
2 (3.8)

In most binary reactions, the number of protons is conserved and the same number

of electron masses can be added to both sides of the above reactions. Neglecting the

di�erences in electron binding energies, the Q-value can be expressed in terms of atomic

masses i.e.

Q = (EY + Eb)− (Ea + EX) = [(Ma +MX)− (MY +Mb)] c
2. (3.9)

In radioactive decay reactions a parent nuclide decays to a daughter with the emission

of a particle, i.e. P → D+d . The Q-value is given by Q = (ED +Ed) since the parent

nuclide is at rest, hence

Q = (ED + Ed) = [mP −mD −md] c
2 > 0. (3.10)

It should be noted that in some types of radioactive decay, such as beta decay and

electron capture, the number of protons is not conserved. In such cases the evaluation

of the Q-value using atomic masses may be inaccurate.

3.1.2 Threshold energy for a nuclear reaction

The actual amount of energy required in the laboratory frame to bring about

a nuclear reaction is slightly greater than the Q-value. This is due to the fact that

not only energy but also momentum must be conserved in any nuclear reaction. From

conservation of momentum, a fraction ma/(ma + MX) of the kinetic energy of the

incident particle a must be retained by the products. This implies that only a fraction

MX/(ma + MX) of the incident particle mass is available for the reaction. It follows

that the threshold energy is higher than the Q-value and is given by

Eth =
Q(ma +MX)

MX

(3.11)

9



3 THEORETICAL BACKGROUND

3.1.3 Nuclear reaction cross-section

In a nuclear reaction a fraction of particles is absorbed and another one is scat�

tered. The macroscopic cross section Σ is de�ned as:

Σ = Nσ,

where N is the number of target nuclei per unit volume and σ is the cross section.

The mechanism involved during the interaction of a particle with nuclei has di�erent

values of cross sections:

scattering: σs = σe + σin

absorbtion: σa = σγ + σf

If we combine all these cross section values we get the macroscopic cross section in the

form

Σtot = Σs + Σa (3.12)

the resulting Σtot is the probability per unit path length that any type of reaction will

occur [Ha87].

Let us assume that a beam of an area A interacts with the foil. We say that part

of the particle beam reacts with the target. Suppose that the foil has N(atoms/cm2),

then the area A covered by the nuclei is N(atoms/cm2) × A(cm2)× the e�ective area,

which is subtended by one atom (cm2/atom). So we can say to this e�ective area as a

cross section of the nuclear reaction σ

σ =
number of reactions per unit time

number of target nuclei(N)× projectile flux density (Φ)
(3.13)

Typical nuclear diameter is of the order of 10−12 cm. We might therefore expect the

cross section for the nuclear reaction to be the order of πr2, or 10−24 cm−2. It has been

found convenient to use the separate name for this area. The name adopted is barn

and is equivalent to 10−24cm−2.

3.1.4 Regimes of nuclear reactions

An outline of the general theory and modeling of nuclear reactions can be given

in many ways.

� A common classi�cation is in term of time scales: short reaction times are as�

sociated with direct reactions and long reaction times with compound nucleus

processes. At intermediate time scales, pre-equilibrium processes occur.

10



3.1 Nuclear Reactions

Figure 3.1: Schematical drawing of an outgoing particle spectrum. The energy regions
to which direct (D), pre-equilibrium (P) and compound (C) mechanisms contribute are
indicated. The dashed curve distinguishes the compound contribution from the rest in
the transitional energy region, [Ko07].

� An alternative, more or less equivalent, classi�cation can be given with the num�

ber of intranuclear collisions, which is one for direct reactions, a few for pre-e�

quilibrium reactions and many for compound reactions, respectively. As a conse�

quence, the coupling between the incident and outgoing channels decreases with

the number of collisions and the statistical nature of the nuclear reaction theories

increases with the number of collisions.

� Another way to classify nuclear reactions can be made in terms of energy of the

incident particle.

1. At low energy there are two main competing reactions: direct reactions and

compound reactions.

When the energy of a projectile is higher than the Coulomb barrier it interacts

with the nucleons in the target nucleus. The projectile can either be absorbed and form

a new nucleus, more probable at lower energies, or interact with individual nucleons

and then leave the nucleus. When the incoming proton interacts only with one or a few

nucleons in the target it is called a direct reaction. Direct reactions occur preferably in

peripheral collisions since the nuclear density is lower at the surface. The transfer of

energy and momentum to the nucleus is usually low in direct reactions, therefore the

outgoing proton has almost the same energy as the incoming one.

11



3 THEORETICAL BACKGROUND

The reaction for the formation of a compound nucleus takes place in two di�erent steps.

In the �rst phase the projectile particle interacting strongly with the target nucleus

will distribute all its energy on the target nucleons. A compound nucleus is formed in

an excited state containing now both the nucleons of the projectile and of the target

nucleus. A compound nucleus reaction can be represented as follows:

x+X → (x+X)∗ → y + Y

The nucleus created in the �rst stage of the reaction can have high excitation

energy and be unstable. Fluctuations of the energy of the nucleons can make, in the

second step, one or several nucleons, a fragment, get enough energy to escape from the

nucleus, thus reducing the mass, charge and excitation energy. If the remaining nucleus

has enough energy more nucleons or fragments are emitted until the excitation energy

gets too low for further emission of nucleons and the nucleus decays by gamma or beta

emission to the ground state. The analogy with water molecules boiling o� heated

water has given this process the name evaporation. Evaporation is the origin of most

low energy nucleons and fragments emitted in the reactions. However, very low energy

protons and fragments are, because of their electric charge, prevented from escaping the

nucleus by the Coulomb barrier. A small number of light nuclei can tunnel through the

potential barrier or be emitted by other processes, for instance �ssion in case of heavy

nuclei [Ma06]. These fragments can carry valuable information on di�erent reaction

mechanisms other than evaporation. An interesting feature of evaporation is that the

compound nucleus has no memory of the way it was formed, the decay is independent

of the reaction in which it was created [Go50].

It is not absolutely necessary that the energy of the projectile to be distributed

on �all� the nucleons in the target nucleus. It can also interact with several nucleons

successively and transfer part of its energy in every collision and as a result the total

energy transfer is large. The probability of many nucleon interactions is largest in

central collisions. The energy transfered from the incoming particle to the target

nucleons is shared evenly between them after many collisions among them. When this

occurs the nucleus has reached equilibrium. Before equilibrium is reached nucleons

can be emitted [Bl75] and they are called pre-equilibrium particles. The experimental

signatures of these particles are the particles emitted with energies just below the

nucleons coming from direct reactions [Sa80]. In all of the mentioned scenarios an

excited nucleus, i.e. a compound nucleus, is left after the �rst stage of the reaction.

2. Over the entire energy range nuclear reactions can be classi�ed as follows:
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3.1 Nuclear Reactions

� low energy reactions, for energies up to 50 MeV

� intermediate energy reactions, for energies from around 200 MeV up to a few GeV

� high energy reactions, for energies higher than a few GeV

Figure 3.2: Dependence of the reaction mode on energy.

It must be emphasized that there is no strict de�nition for the term �medium

energy reactions�. In this work is understood as reactions at energies above 50 MeV

and below a few GeV (Figure 3.2 ). A detailed treatment of proton induced reactions

at medium energies has to take into account a variety of phenomena such as spallation,

�ssion and (multi)-fragmentation, the de�nitons and regimes of which overlap and are

not well de�ned. Some details of the reactions mentioned will be shortly mentioned in

what follows.

In �Nuclear Physics Academic Press � the de�tion of spallation is the following:

a type of nuclear reaction in which the high-energy level of incident particles causes the

nucleus to eject more than three particles, thus changing both its mass number and its

atomic number. In the context of ADS or high intense neutron sources spallation is seen

as the desintegration of a nucleus by means of high energetic proton induced reactions.

In this way aproximately 40 neutrons per incident GeV proton are produced, a number

that represents as much as 20 times as for a �ssion reaction in a conventional nuclear

power plant with energy spectra of the neutrons similar up to the evaporation regime,

but extending to higher energies up to the incident proton energies in case of spallation

reactions. An energetic particle entering a massive target gives rise to a complex chain

of interactions resulting in the emission of various particles, some of which are able

to escape the target volume. The latter particles can be detected in the experiment

13



3 THEORETICAL BACKGROUND

and provide information on the transport process involved. These processes can be

viewed as a convolution of two types of cascades [Se47], such that particles released in

a primary intra-nuclear cascade (INC) give rise to a inter-nuclear cascade of secondary

and higher order reactions in the surrounding target material. A description of this

reactions can be seen in Figure 3.3.

Figure 3.3: Illustration of particle interactions on the intra-, inter- and evaporation
level, [Go04].

In the �rst stage the high energetic particle interacts with the individual nucleons

instead of the formation of a compound nucleus as in low energy reactions. Initial

collision leads to an ejection of nucleons and pions, which still have enough energy to

produce a cascade reaction (intranuclear cascades). After this phase the nucleus is left

in an excited state and goes to the ground state by evaporation of nucleons, mostly

neutrons. In the secondary stage of the spallation reaction also �ssion may occur.

Fission is the binary splitting of an excited nucleus into two approximately equal parts

(Figure 3.4). It is understood as a consequence of the deformation when repelling

electrostatic Coulomb forces on the proton overbalance the short ranging attractive

nuclear forces. A ground-state-deformed nucleus is situated in the minimum of the

potential energy which increases with increasing deformation towards the so-called

saddle point deformation. Beyond the saddle point the potential energy declines due

14



3.2 Experimental Approach

to the decreasing Coulomb repulsion until the scission point is reached. Then the

nucleus is constricted in such a way that fragmentation into two parts is likely.

Figure 3.4: Illustration of a �ssion reaction

Another process occurs with the formation of intermediate mass fragments

(IMFs) at higher temperatures as a consequence of incresing thermal motion linked

with the increasing mean distance of the nucleons. An excited remnant achieves ther�

mal equilibrium state and then expands, eventually reaching the freeze-out volume. At

this point it fragments into neutrons, light charged particles and IMFs. This process is

called multi-fragmentation. Due to the short ranging nuclear forces of nucleons the

mean �eld collapses and IMFs are formed by condensation. For more details on the

above described phenomena the reader is kindly refered to [Go04].

3.2 Experimental Approach

The measurement of integral cross-sections for the production of residual nuclides

by proton induced reactions can be achieved using two di�erent methods: classical

kinematics and inverse kinematics. In what follows the two methods will be shortly

described and the advantages and disadvantages of using them will be emphasized.

3.2.1 Classical kinematics

Classical kinematics consists in the irradiation of a target with protons or neu�

trons of the energy of interest and by analysing the produced species after irradiation

15



3 THEORETICAL BACKGROUND

Figure 3.5: Classical kinematics versus Inverse kinematics

by means of o�-line γ-spectrometry or by o�-line and on-line mass spectrometry. The

target can be irradiated either in the form of single foils or directly as a whole foil

pile, called �stack�, hence the name of this method: �stacked-foil technique� (Figure

3.6). Both have advantages and disadvantages. During the irradiation of single foils

unwanted reactions of secondarily produced particles in the target can be neglected,

which is not always ensured in massive stacks. If many targets are to be examined, the

irradiation of single foils is time consuming and not cost e�ective, so the stacked foil

technique is prefered. This experimental approach allows the determination of cross�

sections for several projectile energies because the primary particle meets the di�erent

targets with di�erent energies, due to its deceleration in the stack. It provides very

important information on the energy dependence of the production of speci�c nuclides

which is extremely valuable for the understanding of the energy dependence of the

di�erent reaction mechanisms. Because of the time delay between the irradiation and

measurement results are con�ned to residual nuclides with usually at least few hours

half-lifes which mostly reveal a cumulative production due to the decay of short lived

progenitors. So this method can only give a limited insight into the reaction mechanism

and information on the reaction kinematics is also not easily accesible.

3.2.2 Inverse kinematics

Inverse kinematics consists in the bombardment of an hydrogen target with heavy

projectiles (Figure 3.7). In this case the heavy target nuclei acts as projectile. The
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3.3 Determination of Cross-Sections for the Production of Residual Nuclides

Figure 3.6: Example of an experimental setup for the stacked foil technique

reaction products are identi�ed in-�ight in a high resolution spectrometer and their

mass and atomic number are determined. At the same time, information on the reaction

kinematics is available, permitting to distinguish between fragmentation and �ssion

products, due to their di�erent kinematic properties. Using this technique all the

primary residuals can be identi�ed at certain energy points but not over the whole

energy range desired, due to the e�orts needed to perform this type of measurements.

The combined information of these two experimental techniques, however, provide a

basis for an improved understanding of nuclear reaction aspects and for improvements

of the nuclear models, which now allow performing considerably more realistic calcula�

tions.

3.3 Determination of Cross-Sections for the Production of

Residual Nuclides

3.3.1 General case

Consider the nuclear reaction T(p,x)R, where a projectile p incident on the

target nucleus T produces the residual R and an emitted particle x. Here Φ is the

projectile �ux density. The cross-section σ represents the probability of occurring the

reaction. The produced residual nuclide R with half-life T1/2 is also radioactive and is

subject to the decay law N(t) = N0e
−λt with decay constant λ = ln(2)

T1/2
. The decay rate

17



3 THEORETICAL BACKGROUND

Figure 3.7: Example of an experimental setup for the inverse kinematics technique:
Schematic view from above of the horizontal section of the experimental setup [Ri06]
(FRS-fragment separator was used as a high resolution spectrometer)

for the residual is therefore:

dNR

dt
= σEΦENT − λNR (3.14)

which follows, with the initial condition NR(t = 0) = 0,

NR(t) =
σEΦENT

λ
(1− e−λt), t ≤ tEOI (3.15)

At the end of the irradiation with the duration tirr the activity becomes:

A(tEOI) = λNR = σEΦENT (1− e−λtirr) (3.16)

In a measured γ-spectrum we obtain a number C of counts in a net full-energy peak

at γ energy Eγ where a nuclide emits γ-quanta with an abundance Iγ(Eγ) which are

detected with an e�ciency εγ(Eγ). C is related to the activity A of this nuclide between

the beginning of the counting (BoC) and the end of the counting (EoC) according to

C =

∫ tEoC

tBoC

dtεγ(Eγ)Iγ(Eγ)A(t) (3.17)
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3.3 Determination of Cross-Sections for the Production of Residual Nuclides

Integration of Eq. 3.17 yields for the activity at the end of irradiation (EoI)

A(tEoI) =
Cλ

Iγεγ(1− e−λtc)
eλtd (3.18)

with tc = tEoC− tBoC being the counting time, td = tBoC− tEoI the decay time between
end of irradiation (EoI) and beginning of count (BoC). The production and decay of

the nuclide during the time of irradiation tirr of a sample consisting of NT target atoms

with projectile of �ux density Φ is for negligible burn-up of the targets described by:

A(t) = NTσΦ(1− e−λt), 0 ≤ t ≤ tirr, (3.19)

with the cross section σ to be determined. Combining Eq. 3.18 and Eq. 3.19 yields:

σ =
Cλ

IγεγΦNT

eλtd

(1− e−λtc)(1− e−λtirr)
(3.20)

3.3.2 Independent and cumulative cross-sections

Equations 3.19 and 3.20 are strictly valid only for the so-called independently

produced radionuclides because the only production mechanism assumed is the nuclear

reaction leading to the produced nuclide. But in the majority of cases a further pro�

duction by β− , β+, EC or α-decays of a radioactive precursor has to be taken into

account. Since there are sometimes ambiguities existing about the terms independent

and cumulative cross-sections some clari�cations have to be given.

A cross-section for the production of a nuclide is denoted as independent if the nuclide

can only be produced directly via the nuclear reaction between the projectile and the

target nucleus and not via subsequent β−, β+, EC or α-decays. Such independent

cross-sections are obtained if:

� either the nuclide is shielded by stable nuclides against β decay or by a long lived

progenitor

� or the cross-section for the production of a progenitor is also measured so that

the production via decay can be corrected for.

In all other cases the cross-sections are cumulative since they include also

the production via decay of precursors. If we consider, e.g. the production of a

nuclide D(aughter) on one hand by the nuclear reaction and on the other hand by

decay of radioactive precursor M (other) then the solution of the di�erential equation
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3 THEORETICAL BACKGROUND

corresponding to Eq. 3.19 for the activity AD(t) of D for times t > tirr

AD(t) = NTΦ((σD + σM
λM

λM − λD
)(1− e−λDtirr)e−λDt (3.21)

+σM
λD

λM−λD
(1− e−λM tirr)e−λM t),

where σD,σM are the independent cross-sections for the mother M and the daughter D,

respectively. Provided that the half-life of M is short compared to that of D(λM � λD)

we can neglect the second term in Eq. 3.21 for large td. This yields:

σD,cum = σD + σM
λM

λM − λD
, (3.22)

with the cumulative cross-section σD,cum of the nuclide D calculated according to Eq.

3.20.

3.3.3 Corrections for radioactive progenitors

In the condition λM � λD under which we derived the cumulative cross-section

σD,cum of D is ful�lled and we are able to measure σM , then we can derive the inde�

pendent cross-section σD for the production of D from Eq. 3.22. However, there are

some cases in which λM � λD is not satis�ed. For such cases we proceed as follows.

Assume a mother nuclide M of known activity AM decaying with decay constant λM

into the daughter D with λD for which wrong activities A∗
D are calculated according to

Eq. 3.18. Solving the system of coupled di�erential equations describing the decay of

the mother and the decay and buildup of the daughter after the end of irradiation (t=0)

we calculate the corrected activity according to Eq. 3.23 and obtain the independent

cross-section of the daughter via Eq. 3.24:

AD(tEoI) = A∗
tEoI

+ AM(tEoI)
λD

λD − λM
(1− λD

λM

1− e−λM tc

1− e−λDtc
e−(λM−λDtd)) (3.23)

σD =
A∗
tEoI

NTΦ(1− e−λDtirr)
− σM(1− λD

λD − λM
(1− 1− eλM tirr

1− eλDtirr
)) (3.24)

3.3.4 Corrections for γ-interferences

From the very complex spectra we dealt with in this work, the cross-sections

for some nuclides could only be determined after the correction of interfering γ-lines
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3.3 Determination of Cross-Sections for the Production of Residual Nuclides

from another nuclide which could not be resolved by our detectors. Assume that

A1(tEoI) and A2(tEoI) are the activities of two nuclides at the end of irradiation which

have interfering γ-lines with Iγ1 and Iγ2 being the abundances of the corresponding

γ-quanta. Then �rst a wrong activity A∗
1(tEoI) is calculated according to Eq. 3.18 in

our evaluation procedure under the assumption that the peak is only caused by nuclide

1. If A2(tEoI) is known, e.g. from other γ-lines of nuclide 2, we can calculate the correct

value of A1(tEoI) to be:

A1(tEoI) = A∗
1(tEoI)− A2(tEoI)

λ1Iγ1
λ2Iγ2

1− e−λ2tc

1− e−λ1tc
e−(λ2−λ1)td (3.25)

Although it is in principle possible to apply this scheme to more than only one inter�

fering γ-line we limit ourselves to one correction term since the resulting uncertainty

of the corrected activity quickly becomes rather high if the correction is large.
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4.2

4 Experiments at TSL and LNS

4.1 Overview

Between 1993-1997 a number of experiments were performed at the SATURNE

II synchrocyclotron of the Laboratoire National Saturne(LNS) at Saclay and at the cy�

clotron of the Svedberg Laboratory at Uppsala(TSL). At that time it was not possible

to evaluate all the experiments. For some of the samples γ-spectrometric measurements

were performed, but some of them were only irradiated and the γ-spectrometric mea�

surements were left to be done at a later moment in time for long-lived radionuclides

only. It is the case of experiments SACL0L, UPPS0H and UPPS0S, the subject of this

work. These experiments were evaluated and the obtained results are presented in this

work.

Integral cross-sections for the production of residual radionuclides were deter�

mined by o�-line γ-spectrometry of irradiated thin targets. The experimental setup

will be described shortly in the following sections. For more details see [Gl01], where

the techniques used are described extensively.

4.2 Targets and Irradiations

To avoid additional production of nuclei by interaction of the protons with ele�

mental impurities only high-purity materials were used as targets.

Each target was thoroughly cleaned and weighted before the irradiation. Typical

weights of the individual targets with diameters of 15 mm were 10 or 33 mg/cm2

for aluminum (99.999%). Targets were supplied by Goodfellow Metals Ltd., UK.

In order to allow the examination of many targets at di�erent energy points,

with a minimum requirement of beam-time, a stacked-foil technique was used at both

locations LNS and TSL. Some details about the total experiments have to be mentioned

at this point.

A large number of target elements was irradiated in each irradiation. This was

done in order to check consistency of the new cross-sections with earlier results as well

as to provide further targets of previously irradiated elements for further destructive

investigations of long-lived radionuclides by accelerator mass spectrometry or of stable

rare gas isotopes by conventional mass spectrometry. As a consequence, up to 36

elements scattered over the whole periodic system of elements from carbon to bismuth

were irradiated in one experiment at LNS.
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The proton irradiations were performed between 1995 and 1997 at the SATURNE II

synchrocyclotron of the Laboratoire National Saturne at Saclay(LNS, E>200 MeV),

France and at the Svedberg Laboratory at Uppsala(TSL, E<200 MeV). A detailed

survey of the experiments performed at LNS and TSL can be found in Tables 4.1 and

4.2.

Irradiations at TSL

At TSL the stacked foil technique was used, since the in�uences of secondary particles

on the production of the residual nuclides studied here can be neglected in this energy

range.

Figure 4.1: (a) Target containers used in experiments at TSL and LNS ; (b,c) the new
and smaller target containers used in the experiments at LNS . At LNS the individual
mini-stacks of type c were positioned in the beam by hanging them up on thin threads
in the center of Al-frames which were not hit by the primary protons. Dimensions are
given in mm [Gl98].

A variety of target elements were arranged in stack (in order of increasing mass) in

di�erent energy groups. In each group at least three di�erent foils were put together in

order to eliminate recoil e�ects for the foil in the middle which usually was analysed.

Between these groups three Al monitor foils were inserted. The foils were used to

further avoid recoil e�ects but also served for beam monitoring. Doing so, the �ux

densities were determined via the reaction 27Al(p, 3p3n)22Na using the cross sections
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Figure 4.2: Schematic view of the target arrangements used (a) at LNS for energies
above 200 MeV and (b) at TSL for energies below 180 MeV [Gl98].

given by [To81, St90]. The proton energy for each individual foil was calculated by

means of the semiempirical approach given by Andersen and Ziegler [An77] using the

update for the stopping power parameters given in the 1996 edition of the Table of

Isotopes [Fi96].

Irradiations at LNS

For the irradiations at LNS with energies above 200 MeV the mini-stack approach was

used in order to reduce secondary particle e�ects [Gl01]. In this set-up three Al monitor

foils and at least three target samples were put together in a so-called mini-stack. In

each irradiation up to 30 individual mini-stacks were aligned in the beam with distances

of 510 cm in-between. The �nal supports consisted of Al-frames which were not hit

by the primary beam and in the center of which the ministacks were hanged by thin

threads. The whole arrangement was optically adjusted using a laser beam to ensure

that each mini-stack is in the beam line. The proton �uxes were again determined via

the reaction 27Al(p, 3p3n)22Na using the cross sections given by [To81, St90] and the

proton energies were again calculated using the approach presented in [An77, Fi96].

For further information see [Mi97, Gl01]. The targets were arranged in a sequence of

increasing atomic number along the beam. For light-target elements, several elements

were packed together in one individual mini-stack. The irradiations were performed in

air and lasted typically about twelve hours to get su�cient �uence. Though a stacked

foil technique was used, only one energy point was investigated per irradiation for each

target element.

25



4 EXPERIMENTS AT TSL AND LNS

Experiment Ep,i Ep,f tEoI tirr ξ

[MeV] [MeV] [s] [g/cm2]

SACL0C 1600 1565 14.10.1993 60180 22.9
0853

SACL0D 1200 1161 15.10.1993 74040 21.1
0807

SACL0E 800 752 19.05.1994 86940 29.5
0800

SACL0F 600 545 20.05.1994 91260 31.0
1100

SACL0G 400 309 06.10.1994 121200 39.7
0804

SACL0H 330 228 07.10.1994 76200 38.5
0758

SACL0K 280 119 10.07.1995 67320 49.7
0800

SACL0L 2600 2525 11.07.1995 72180 48.5
0717

SACL0M 1400 1341 04.10.1995 70980 37.4
1407

SACL0N 1000 938 05.10.1995 60480 38.1
0900

SACL0P 280 188 22.05.1996 55500 31.1
0956

SACL0R 2600 2541 23.05.1996 63600 37.7
0905

Table 4.1: Survey on experiments performed at LNS

4.3 Measurements and evaluation of experimental data

4.3.1 γ Spectrometry

After the end of irradiation, the targets were transported to Cologne where the

stacks and ministacks were dismounted and the individual targets separated. A part

of them stayed at Cologne for measurement, another one was transported to Hanover

for the same purpose. The γ-spectrometric measurements started about between 36

and 60 h after the end of irradiation, respectively. In the case of this work this is true

for UPPS0H and SACL0L.
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Experiment Ep,i Ep,f tEoI tirr ξ

[MeV] [MeV] [s] [g/cm2]

UPPS0B 176.5 64.1 17.11.1993 13380 30.4
0200

UPPS0C 175.9 72.7 19.01.1994 25200 28.4
2310

UPPS0D 178.2 105 29.11.1994 13380 17.8
1900

UPPS0E 178.2 86.7 30.11.1994 21000 22.7
0700

UPPS0F 136.1 61.4 22.02.1995 12180 15.2
0600

UPPS0G 136.1 74.2 21.02.1995 12000 16.0
2130

UPPS0H 137.0 59.1 10.10.1995 11400 16.7
2140

UPPS0K 136.5 58.6 21.11.1995 - 19.3
2010

UPPS0L 177.3 128.8 19.03.1996 12360 12.0
2330

UPPS0M 177.3 130.0 20.03.1996 10320 13.8
0312

UPPS0N 97.2 0 15.10.1996 14820 14.6
1953

UPPS0P 97.2 0 16.10.1996 16200 12.0
0700

UPPS0R 97.5 24.6 12.03.1997 19260 13.0
0722

UPPS0S 97.5 38.6 11.03.1997 14400 9.8
1900

Table 4.2: Survey on experiments performed at TSL

γ-spectrometric measurements

The γ-spectrometric measurements were performed using several high-purity ger�

manium (HPGe) and germaniumlithium (Ge(Li)) detectors partially equipped with

automatic sample changers to be used for the short-time measurements. Each detec�

tor was connected via pre- and spectroscopy ampli�ers to computer-controlled multi�

-channel bu�ers whose built-in ADC digitized the pulses into spectra of usually 4096

channels. The ampli�cation was chosen for the registration of γ-quanta with energies
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between some tens of keV and about 2 MeV. Typical resolutions ranged from about 1

keV at 122 keV of 57Co to about 2 keV at 1332 keV of 60Co. The absolute calibration of

the γ-spectrometers was performed for each geometry used by calibrated radionuclide

sources (22Na, 57Co, 60Co, 137Cs, 133Ba, 152Eu, and 241Am) with certi�ed accuracies of

≤2% (PTB Braunschweig). E�ciency functions were obtained by �tting a double log�

arithmic linear function to the experimental e�ciency data above 350 keV. Below this

energy a �t function according to Gray and Ahmad [Gr85] was chosen. The e�ciencies

were repeatedly checked for each geometry for every detector.

Energy calibration was done using a least-squares �t to a second-order polynomial

for the energies of the calibrated radionuclide sources. To avoid problems with too high

dead-times and pile-up e�ects the distances between sample and detector window were

varied between 5 and 60 cm. Thus it was possible to keep the dead-time below 10%

with no detectable pile-up e�ects. The large distances were used especially for the

short time measurements shortly after the irradiations because of the high activities

of the samples. In these geometries no lead shielding of the detector was possible but

interferences with background γ-lines were negligible anyway due to the short counting

times as well as due to the high Compton-background caused by the measured samples

themselves. Background spectra were taken for these measurements for about 3 days

for each detector. These spectra were used in the data evaluation procedure to correct

measured activities for background interferences. Measurement times ranged from 5

min in the beginning up to about 7 hours in some cases at the end of a measurement

series.

4.3.2 Analysis of spectra

Stopping power and calculation of proton energies

Since a stacked-foil technique was applied the proton energies in all the di�erent

target foils had to be calculated. Although the energy degradation was small for the

highest initial proton energies such calculations were performed for all irradiations at

LNS and TSL. This was done by a computer program called �Stack�, originally based

on the work of Andersen and Ziegler [An77]. An improved version with some updates

[Fi96, Zi85] showed no signi�cant di�erence to the older version [Mi97].

Stopping power is de�ned as the average energy loss of a charged particle per unit path

length:

S = −dE
ds

(4.1)
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The determination of the stopping power can be performed in many complex ways.

Here is an example of the calculation of liniar energy loss with the help of the

Bethe-Bloch equation for heavy charged particles.

−dE
ds

=
4πz2e4

meν2
NV ·B, (4.2)

B = Z

[
ln

2meν
2

I
− ln (1− β2)− β2 − ck

Z

]
, (4.3)

β = ν
c
, I = 11,5 · Z (eV)

where

� −dE
ds

Stopping power

� z Atomic number of the heavy charged particle

� me Rest mass of the electron

� ν Velocity of the heavy charged particle

� NV Number of nuclei of the absorber per cm3

� B Atomic stopping number

� Z Atomic number of the absorber

� I Mean ionisation potential of the absorbers

� ck Correction factor for E < 4 MeV, 0 < ck < 1, charge exchange

At high energies ( >1 MeV per atomic mass unit) the stopping formula [An77] shows the

dependence on two parameters, the mean ionization potential and the shell correction.

These both parameters are di�erent for di�erent stopping materials. Experimental

proton stopping power data are summarized by Anderson and Ziegler [An77]. Reliable

data for many elements are available over a wide range of energies.

In Figure 4.3 is indirectly illustrated the dependence of the stopping power on the

velocity of the charged particle by the representation of dE
ds

as a function of traveled

distance s. This behaviour is very important for applications in radiation therapy, when

one needs to irradiate certain tumors with minimum damage to the external tissues.

29



4 EXPERIMENTS AT TSL AND LNS

Figure 4.3: Bragg ionization curve

Analysis of γ spectra

The analysis of the γ was done by the commercially available code GAMMA-W

[We95, We94]. GAMMA-W calculates net peak areas via an unfolding algorithm us�

ing a least-squares �t [We81]. For an evaluation, regions of a spectrum are de�ned in

which all peaks are unfolded simultaneously after the background has been calculated

according to [We81, We86]. Peak shapes are assumed to be Gaussian with a low-energy

tailing. For each detector and measuring geometry, parameters were determined and

supplied to the code which describe as function of energy or channel numbers the ful�

l-width at half-maximum of full-energy peaks and their tailings. The whole evaluation

procedure can be done either in an automatic mode or interactively by the user. Al�

though GAMMA-W is a sophisticated and successful code [Bl97], detailed tests showed

in our case that for complex spectra the automatic mode is not reliable enough with

respect to the necessary regioning of the spectrum, peak recognition, background deter�

mination, multiplet deconvolution and net-peak area calculation. Thus, we analyzed

each spectrum interactively, making sure to get a maximum of information out of each

spectrum. Proceeding in this way means, however, to give up the reproducibility of a

spectrum analysis in contrast to the automatic and strict application of a mathematical

algorithm.

Nuclide identi�cation

The spectrum analysis by Gamma-W code gives us an output �le with net peak

areas of the produced radionuclides as the parent decay. In the output �le we have

γ-energy with net peak area and also the uncertainty in it. Most codes and also

Gamma-W o�ers such capabilities, but in general an algorithm which can be used with

some con�dence for complex spectra does not seem to be exist. For identi�cation of
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residual nuclides we used the database provided by the Lund Nuclear Data Center

[Lu08].
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4 EXPERIMENTS AT TSL AND LNS

Table 4.3: Nuclear data used in this work for the determination of experimental cross�
sections
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4.3 Measurements and evaluation of experimental data

4.3.3 Contribution of uncertainties

Uncertainties of proton energies

Whereas the exact values of the contributions to the error of a result of a measure�

ments are unknown and unknowable, the uncertainties associated with the random

and systematic e�ects that give rise to error can be evaluated. But even if the evalu�

ated uncertainties are small, there is no guarantee that the error in the measurement

is small. The proton beam which falls on the target stack has three sources of uncer�

tainties:

1. The �rst source is the uncertainty in the proton energy when the particles leaving

the accelerator and is denoted by ∆EA.

2. The second source of uncertainty is that the protons are slowed down when they

collide with the nuclei of the target. Thus if we represent the proton initial energy

by En,i and hence after the interaction with the nuclide it is slowed down. As a

result the energy turned into En,f . Thus in this case we have the energy di�erence

in the form of kinetic energy of protons as ∆E loss=1
2
(∆En,i-∆En,f )

3. Third source of uncertainty in the proton energy is the statistical nature of slowing

down processes. There is an energy straggling which can described according to

[?] by Gaussians distribution with a characteristic width, the straggling parameter

αi. The parameter α we take from the output �le of program Stack.

Combination of these uncertainties gives the uncertainty of proton energy En in the

nth target foil of a stack in the form

∆En =

√√√√(∆EA)2 + (∆Eloss)2 + (
n∑
i=1

αi) (4.4)

Uncertainties of cross-sections

The following sources of uncertainties were considered for the cross-sections:

� Uncertainty in the determination of net peak areas:

This source of uncertainty is calculated by the evaluation code used for the spec�

trum analysis [To81]. It takes into account the Poisson uncertainties of the counts

in the individual channels as well as the uncertainties of the background deter�

mination, propagating them according to the law of error propagation through

the unfolding procedure. Sometime it is di�cult to assign a peak to a nuclide,
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4 EXPERIMENTS AT TSL AND LNS

because it is produced not only by a single nuclide. Now, if the contribution is

not negligible, the activity of the contributing nuclide can be determined using

another line or in later spectrum the interfering lines were corrected using this

activity. If it seems that the contributions of other nuclides are very small then

no correction is applied. Due to this procedure it has been assumed a maximum

inaccuracy of 2% from the contribution of the other nuclides, but it must be

pointed out that in the average this uncertainty should be smaller.

� Uncertainties of the half-lives:

Half-lives were taken from [Lu08]. Uncertainty of 1% were considered in the

half-lives. Larger uncertainty may cause disagreements between di�erent mea�

surements due to the exponential dependence on time.

� Uncertainty of γ-abundances:

Intensities were also taken from [Lu08]. Those γ- lines which had high net peak

areas were always considered and which were well-known, thus an uncertainty of

only 2% were taken into account.

� Uncertainty of e�ciency:

Standard calibration sources were supplied with an uncertainty ≤2% . Measure�

ments with both detectors veri�ed the uncertainty of full energy peak e�ciency

of 5 to 6%.

� Uncertainty of number of irradiated nuclei:

Each foil was weighted with an absolute uncertainty of ±0.4 mg. In case of

the aluminum catcher foils with typical weights of 60 mg, this resulted in an

inaccuracy of about 1%.

� Uncertainty of �ux density:

The �ux densities were determined via the monitor reaction 27Al(p,3p3n)22Na

using cross-sections as described in detail in Refs. [Mi97, Bo96]. The uncer�

tainty of �ux density is mainly determined by the uncertainties of e�ciency and

of the mass of the catcher foil which sum up to be about 6%. No uncertainties

were attributed to the monitor cross-sections. Moreover, an uncertainty in the

monitor cross-section due to an uncertainty of the proton energy was not consid�

ered because the monitor excitation function does not vary in the energy region

covered.

� Uncertainty of irradiation time, decay time and counting time:

For time scales determined by the half-lives of nuclides observed within this work,
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4.3 Measurements and evaluation of experimental data

it was assumed that uncertainties of the above-mentioned quantities are negligi�

ble.

� Uncertainty of impurities:

Due to the high purity of the target foils, contributions of other constituents were

not considered.

� γ-γ-coincidences:

γ-γ-coincidences have to be taken into account at very small distances between

sample and detector. Since distances from the detector down to 5 cm were used to

get a su�cient counting statistics, it would have been necessary to correct them

in some cases. But this was not done since the e�ects were visible only for some

special nuclides. In these cases they caused an uncertainty in the determination

of activity using di�erent γ-lines of 45%. Consequently, this uncertainty had

been taken as a general uncertainty due to γ-γ coincidences in case of coincident

γ-rays.

� Constancy of �ux density over irradiation time:

The beam intensities were continuously monitored and recorded. Using these

protocols, interruptions of the irradiations were taken into account using the

following replacement in Eq. 3.20

1

1− exp(−λtirr)
→

n∑
i=1

exp(λ(tEoI − tEoI,i))
1− exp(−λtirr,i)

(4.5)

Because the �ux density itself may not be constant during irradiation we replaced

Φ in Eq. 3.20 and Eq. 3.21 by

Φ→ 1

tEoI − tBoI

∫ tEoI

tBoI

dt∗Φ(t∗) (4.6)

with Φ(t∗) being the relative measurements of the beam current. Using these

replacements the uncertainties due to �uctuations in the beam intensity become

negligible. Moreover, they would a�ect only the cross-sections for very short-lived

nuclides.

� Dead-time and pile-up losses in γ-spectrometry:

The dead-time of the detector systems was automatically corrected. Pile-up

e�ects were not seen because the distances between samples and detector were

35



4 EXPERIMENTS AT TSL AND LNS

varied in the way that the counting rates were low enough to avoid both pile-up

and failure of the automatic dead-time correction.

4.4 Flux monitoring

The �ux density in each sample was supposed to be the same as in the preceding

aluminum catcher foils. Using the guarded Al targets in the middle, the �ux density

was determined by measuring the 22Na-activity via the γ-line at 1274.5 keV (I=99.9%).

The monitor cross-sections used were those recommended by Tobailem and de Lassus

St. Genies [To81] for energies above 200MeV and those measured by Steyn et al. [St90]

below 200 MeV; see Ref. [Mi97] for a detailed discussion of the monitor cross-sections.

At LNS, the �uences di�ered by a factor of up to 50 depending on the position of the

mini-stack in the total arrangement, but also as a consequence of some variability of the

beam currents delivered by the accelerator. At TSL, generally higher beam currents

were available and the �uences were about a factor of 10 higher than the highest ones

obtained at LNS. In spite of the extremely di�erent experimental conditions, the results

showed excellent consistency among the di�erent experiments.

4.5 Experimental results

Data needs for the development of accelerator driven system technologies include

target elements like C, Mg, O, Si and Ca as components of building concrete, but also

target elements like Cu, which can be found in the structure of the beam pipe or in

the accelerator structural materials and Ni which is a component of stainless steel.

The experimental results are discussed in this section. Altogether a number of 93

new cross sections were determined. Cross-sections for a nuclide were calculated for

di�erent gamma-energy lines in order to ensure the reliability of the work. The results

were in good agreement with each other which proves the consistency of the obtained

results.
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4.5 Experimental results

4.5.1 Results from UPPS0H

During the UPPS0H experiment the following target elements were irradiated:

C, O, Mg, Si, V, Ti, Co, Rb, Mo, In and Te. In this work we deal with C, O, Mg and

Si only.

Experiment Description Target Product

Uppsala H Ep,i=136 MeV Al 24Na
Ep,f=59.1 MeV C 7Be

tEOI=10.10.1995/21:40 Mg 7Be, 22Na, 24Na
tirr=11400s O 7Be

Si 7Be, 22Na, 24Na, 28Mg

Table 4.4: Survey on target-product combinations evaluated from UPPS0H

A survey on the details of the experiment and on the target-product combinations

evaluated can be found in Tables 4.4 and 4.5. The numerical values of the newly

determined cross-sections can be found in tabular form in Table 4.6.

Experiment Target Mass Energy Flux density u(Φ)

in mg in MeV (Φ) in s−1cm−2

in s−1cm−2

Uppsala H CCUH132 25.33 125.10 1.09E+11 2.10E+09
CCUH312 25.3 106.40 1.06E+11 2.10E+09
CCUH552 25.71 82.60 1.02E+11 2.10E+09
MGUH142 40.21 124.60 1.09E+11 2.10E+09
MGUH322 37.05 105.90 1.06E+11 2.10E+09
MGUH572 39.59 82.00 1.01E+11 2.10E+09
QQUH171 198.91 121.80 1.09E+11 2.10E+09
QQUH411 201.39 97.45 1.04E+11 2.10E+09
SIUH162 158.41 123.00 1.09E+11 2.10E+09
SIUH402 159.26 98.80 1.05E+11 2.10E+09

Table 4.5: Survey on targets evaluated from UPPS0H

As the common product for all irradiated targets is 7Be the results for this

residual nuclide have been chosen for exempli�cation and are displayed in Figure 4.4.
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4 EXPERIMENTS AT TSL AND LNS

Target-Product Target Energy Cross section

in MeV in mb
natC(p,x)7Be CCUH132 125.1 13.5±1.1
natC(p,x)7Be CCUH312 106.4 12.8±0.9
natC(p,x)7Be CCUH552 82.6 16.9±1.2
natMg(p,x)7Be MGUH142 125 2.37±0.39
natMg(p,x)7Be MGUH322 105.9 2.34± 0.12
natMg(p,x)7Be MGUH572 82 1.96 ±0.15
natMg(p,x)22Na MGUH142 125 42.5± 2.9
natMg(p,x)22Na MGUH322 105.9 48.9± 0.7
natMg(p,x)22Na MGUH572 82 52.9± 1.2
natMg(p,x)24Na MGUH142 125 6.10± 0.45
natMg(p,x)24Na MGUH322 105.9 6.38± 0.95
natMg(p,x)24Na MGUH572 82 6.89± 0.08
natO(p,x)7Be QQUH171 121.8 6.63±0.65
natO(p,x)7Be QQUH411 97.45 6.74±0.31
natSi(p,x)7Be SIUH123 123 141.1±0.4
natSi(p,x)7Be SIUH402 98.8 1.16±0.30
natSi(p,x)22Na SIUH123 123 16.6±1.7
natSi(p,x)22Na SIUH402 98.8 18.04±0.15
natSi(p,x)24Na SIUH123 123 3.46±0.18
natSi(p,x)24Na SIUH402 98.8 3.35±0.03
natSi(p,x)28Mg SIUH123 123 0.038±0.002
natSi(p,x)28Mg SIUH402 98.8 0.033±0.001

Table 4.6: Cross sections determined for the production of residual nuclides by proton
induced reactions in UPPS0H
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4 EXPERIMENTS AT TSL AND LNS

As it will be discussed in the next chapter the production of 7Be from natural

C and O is special because of the proximity in masses between target and product.

This is nicely exhibited in the shape of the excitation function. For the target elements

Mg and Si, below 100 MeV, contribution of low-energy production is observed and a

change in slope can be noticed in the shape of the excitation function at about 200 MeV

pointing to di�erent formation modes as evaporation and pre-equilibrium emission at

medium energies.

The data are exemplarily compared with earlier works. Our new cross-sections

agree within errors with the large existing data base for the production of 7Be. A

complete set of graphs presenting all the experimental data is given in Appendix F.
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4.5 Experimental results

4.5.2 Results from SACL0L

The SACL0L experiment covered Ca, Cu, Ni and Si targets. The targets and

the resulted residual nuclides toghether with a description of the parameters of the

experiment cand be found in Tables 4.7 and 4.8.

Experiment Description Target Product

Saclay L Ep,i=2600 MeV Al 24Na
Ep,f=2525 MeV Ca 7Be, 24Na, 43K

tEOI=11.07.1995/07:17 Cu 24Na, 43K, 44Scm, 46Sc,
tirr=72180s 47Sc, 48Sc, 48Cr, 51Cr,

52Mn, 55Co, 56Co, 57Co,
58Co, 57Ni

Ni 24Na, 43K, 44Scm, 48V,
48Cr, 51Cr, 52Mn, 55Co,
56Co, 57Co, 56Ni, 57Ni

Si 7Be, 22Na, 24Na, 28Mg

Table 4.7: Survey on target-product combinations evaluated from SACL0L

Experiment Target Mass Energy Flux density u(Φ)

in mg in MeV (Φ) in s−1cm−2

in s−1cm−2

Saclay L NISL092 426.13 2553 6.10E+08 2.13E+07
TISL062 107.82 2545 5.85E+08 2.28E+07
CUSL102 190.88 2556 8.17E+08 3.45E+07
CFSL052 570.21 2543 9.92E+08 7.04E+07
SISL042 164.32 2540 9.92E+08 7.04E+07

Table 4.8: Survey on targets evaluated from UPPS0H

I have chosen to exemplify the production of 7Be from Ca and the production of 24Na

from Ca, Cu and Si.
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4 EXPERIMENTS AT TSL AND LNS

Target-Product Target Energy Cross section

in MeV in mb
natCa(p,x)7Be CFSL052 2540 20.6±1.3
natCa(p,x)24Na 2.51±0.23
natCa(p,x)43K 0.49±0.03
natCu(p,x)24Na CUSL102 2560 2.96±0.23
natCu(p,x)43K 1.33±0.18
natCu(p,x)44Scm 5.25±0.43
natCu(p,x)46Sc 7.50±0.98
natCu(p,x)47Sc 2.75±0.19
natCu(p,x)48Sc 3.08±0.02
natCu(p,x)48Cr 0.36±0.05
natCu(p,x)51Cr 18.5±3.2
natCu(p,x)52Mn 5.96±0.60
natCu(p,x)55Co 1.3±0.06
natCu(p,x)56Co 7.98±1.40
natCu(p,x)57Co 18.1±0.5
natCu(p,x)58Co 24.3±2.6
natCu(p,x)57Ni 0.66±0.06
natNi(p,x)24Na NISL092 2553 2.72±0.20
natNi(p,x)43K 0.61±0.05
natNi(p,x)44Scm 6.59±0.33
natNi(p,x)48Sc 0.50±0.02
natNi(p,x)48Cr 1.20±0.01
natNi(p,x)51Cr 31.8±4.00
natNi(p,x)48V 16.2±0.8
natNi(p,x)52Mn 11.2±0.1
natNi(p,x)56Ni 2.07±0.15
natNi(p,x)57Ni 13.1±0.6
natNi(p,x)55Co 7.96±0.10
natNi(p,x)56Co 31.6±0.7
natNi(p,x)57Co 67.1±3.3
natSi(p,x)7Be SISL042 2540 8.16±0.42
natSi(p,x)24Na 2.85±0.22

Table 4.9: Cross sections determined for the production of residual nuclides by proton
induced reactions in SACL0L
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4 EXPERIMENTS AT TSL AND LNS

As it can be seen in Figure 4.5 the data for the production of 7Be from Ca are

scarce and far from giving a complete excitation function. Further measurements are

needed for a better understanding of the production. In the case of the production of
24Na from Ca, Cu and Si consistent data basis exist and complete excitation functions

are available. The shape of the excitation function suggest as production modes evap�

oration and pre-equilibrium emission at low energies and IMF production at medium

energies.

For the production of 43K from Ca, Cu and Ni (Figure 4.6) not many experimental

cross-sections were available for comparison. Further data are needed to describe these

reactions completely.

The situation is much better for the production of 55,56,57Co from natural Cu

(Figure 4.7). Complete and consistent excitation functions exist for these reactions for

energies ranging from thresholds up to 2.6 GeV.

The data base for target element Ni allows a nearly complete description of the

excitation functions for the production of radionuclides with masses above 43 (Figure

4.8 and Appendix F). For lower product masses the data base is less complete.
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Figure 4.6: Experimental data for the production of 43K from Ca, Cu and Ni
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4 EXPERIMENTS AT TSL AND LNS

Figure 4.7: Experimental data for the production of 55Co, 56Co and 57Co from Cu
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Figure 4.8: Experimental data for the production of 55Co, 56Co and 57Co from Ni
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4 EXPERIMENTS AT TSL AND LNS

4.5.3 Results from UPPS0S

For targets irradiated during experiment UPPS0S �rst measurements were per�

formed only recently. This is the reason why the determined cross-sections are con�ned

to long-lived products. The parameters of the experiment can be found in Table 4.10

and a survey on irradiated targets, energies covered and �ux densities is given in Table

4.11.

Experiment Description Target Product

Uppsala S Ep,i=97.5 MeV Al 24Na
Ep,f=38.6 MeV Fe 54Mn

tEOI=11.03.1997/19:00 Mn 54Mn
tirr=14400s Ti 44Ti

Ag 101Rh, 102Rhm, 108Agm

Table 4.10: Survey on target-product combinations evaluated from UPPS0S

Experiment Target Mass Energy Flux density u(Φ)

in mg in MeV (Φ) in s−1cm−2

in s−1cm−2

Uppsala S FEUS032 134.31 95.77 8.11E+10 1.85E+10
FEUS192 150.22 74.14 1.03E+11 2.36E+10
FEUS322 141.49 53.84 1.23E+11 2.83E+10
MNUS012 152.36 99.16 7.76E+10 1.78E+10
MNUS172 149.48 77.05 1.00E+11 2.29E+10
MNUS302 150.53 57.50 1.20E+11 2.75E+10
MNUS372 154.2 45.20 1.32E+11 3.05E+10
TIUS162 217.07 78.24 9.88E+10 2.26E+10
TIUS202 219.9 72.66 1.04E+11 2.39E+10
TIUS252 213.6 64.90 1.12E+11 2.57E+10
TIUS292 216.96 59.14 1.18E+11 2.71E+10
TIUS332 221.2 51.75 1.26E+11 2.89E+10
AGUS043 211.82 93.84 8.30E+10 1.90E+10
AGUS093 216.25 87.46 8.95E+10 2.05E+10
AGUS113 211.09 84.08 9.29E+10 2.13E+10
AGUS212 219.33 71.26 1.06E+11 2.43E+10
AGUS232 210.92 68.07 1.09E+11 2.50E+10
AGUS272 211.41 62.69 1.15E+11 2.63E+10
AGUS342 219.7 49.74 1.28E+11 2.94E+10

Table 4.11: Survey on targets evaluated from UPPS0S
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Target-Product Target Energy Cross section

in MeV in mb
natFe(p,x)54Mn FEUS032 95.77 109.2±25.9
natFe(p,x)54Mn FEUS192 74.14 59.3±13.9
natFe(p,x)54Mn FEUS322 53.84 86.3±20.4
55Mn(p,x)54Mn MNUS012 99.16 169.6±39.9
55Mn(p,x)54Mn MNUS172 77.05 170.8±40.2
55Mn(p,x)54Mn MNUS302 57.50 166.9±39.8
55Mn(p,x)54Mn MNUS372 45.20 211.6±50.1
natTi(p,x)44Ti TIUS162 78.24 5.62±1.32
natTi(p,x)44Ti TIUS202 72.66 4.88±1.15
natTi(p,x)44Ti TIUS252 64.90 3.76±0.89
natTi(p,x)44Ti TIUS292 59.14 3.36±0.79
natTi(p,x)44Ti TIUS332 51.75 3.13±0.74
natAg(p,x)101Rh AGUS043 93.84 18.2±4.3
natAg(p,x)101Rh AGUS093 87.46 15.4±3.7
natAg(p,x)101Rh AGUS113 84.08 13.5±3.2
natAg(p,x)101Rh AGUS212 71.26 6.89±1.62
natAg(p,x)101Rh AGUS232 68.07 6.99±1.65
natAg(p,x)101Rh AGUS272 62.69 7.80±1.84
natAg(p,x)101Rh AGUS342 49.74 0.67±0.16
natAg(p,x)102Rhm AGUS043 93.84 10.2±2.4
natAg(p,x)102Rhm AGUS093 87.46 9.40±2.21
natAg(p,x)102Rhm AGUS113 84.08 9.11±2.14
natAg(p,x)102Rhm AGUS212 71.26 7.12±1.68
natAg(p,x)102Rhm AGUS232 68.07 5.51±1.30
natAg(p,x)102Rhm AGUS272 62.69 2.94±0.70
natAg(p,x)102Rhm AGUS342 49.74 2.05±0.49
natAg(p,x)108Agm AGUS043 93.84 18.6±4.4
natAg(p,x)108Agm AGUS093 87.46 18.9±4.5
natAg(p,x)108Agm AGUS113 84.08 18.8±4.5
natAg(p,x)108Agm AGUS212 71.26 18.8±4.5
natAg(p,x)108Agm AGUS232 68.07 18.8±4.5
natAg(p,x)108Agm AGUS272 62.69 18.5±4.4
natAg(p,x)108Agm AGUS342 49.74 17.9±4.2

Table 4.12: Cross sections determined for the production of residual nuclides by proton
induced reactions in UPPS0S

A good data base was available for the production of 54Mn from natural Fe and

Mn. The values of the cross-sections determined in this work seem to be slightly higher

than the ones from earlier works, but still in agreement within errors (Figure 4.9).
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4 EXPERIMENTS AT TSL AND LNS

Figure 4.9: Experimental data for the production of 54Mn from natural Fe and Mn

The situation is the same also for 44Ti from natural Ti, but changes for the

production of 101Rh, 102Rhm and 108Agm. Few data were available for comparison from

[Bu96] and [Al94]. No data were found for 108Agm. Further measurements are needed

to be able to give a complete description of the excitation functions.
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4 EXPERIMENTS AT TSL AND LNS

4.5.4 Comparison with TALYS

Using TALYS code a comparison was made between our data for target elements

Cu and Ni and the theoretical calculations. All the resulted graphs are displayed in Ap�

pendix G. For the production of 46,47Sc from natural Cu we observe an underestimation

of the experimental cross-sections (Figure 4.11).

Figure 4.11: Production of 46,47Sc from natural Cu

We see a good agreement between TALYS and the experimental data for 57,58Co

from natural Cu (Figure 4.12), although in the case of 58Co we observe a slight under�

estimation of the experimental data near the 200 MeV limit.

In the case of residual nuclide production from natural Ni an interesting be�

haviour is observed when comparing with the TALYS theoretical calculations. The
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Figure 4.12: Production of 57,58Co from natural Cu

production is overestimated by orders of magnitude for 48Cr and underestimated for
51Cr (Figure 4.13).

For the rest of the products studied from natural Ni there is a good agreement

between experiment and theory (Appendix G).

Theoretical calculations with TALYS show a good agreement up to about 100

MeV with the experimental data for the production of 54Mn from natural Fe and Mn

(Figure 4.14). From 100 MeV up to 200 MeV the agreement exists no longer and the

TALYS results are lower than the experimental ones. This is also true for 101Rh from

natural silver (Figure 4.15). We observe an under-estimation of production for 102Rhm

and an over-estimation of the production for 108Agm (Figure 4.15).
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Figure 4.13: Production of 48,51Cr from natural Ni

54



4.5 Experimental results

Figure 4.14: Experimental data for the production of 54Mn from natural Fe and Mn
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Figure 4.15: Experimental data for the production of 101Rh, 102Rhm and of 108Agm
from natural Ag
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5.1

5 NUDATRA Project

5.1 Overview

This work was performed as a contribution [Mi06] to the NUDATRA work pack�

age 5.4 "High Energy Experiments for Radioactivity, Chemical Modi�cations and Dam�

age Assessment" for the EUROpean Research Programme for the TRANSmutation of

High Level Nuclear Waste in an Accelerator Driven System (EUROTRANS).

In order to allow a systematic survey about the production of intermediate mass

fragments by proton-induced reactions it was decided to cover all previous available

and new data for the production of residual nuclides with masses between 3 and 30

over an energy range extending from thresholds up to 2.6 GeV.

The availability of experimental data di�ers considerably among the possible

candidate nuclides. A criterion for inclusion into this work was that at least an estimate

of the entire excitation function should be possible. It was further decided to include

light- and intermediate-mass target elements where the residual nuclides are quite close

in mass to the target element. This was done to allow a systematic description for

targets spreading over the entire chart of nuclides and to survey whether or not there

are peculiarities in the relevant reactions on heavy target elements.

In order to ful�ll the task M5.19 within the NUDATRA project a number of

recent and elder experiments were �nally evaluated and the results are now available.

Further evaluations are going on, as e.g. for proton-induced reactions on uranium

and thorium between 200 MeV and 2.6 GeV. New measurements on the production

of long-lived radionuclides and of stable rare gas isotopes were started. For some of

them preliminary data are now available. In total, the now existing database allows

a systematic survey on the production of intermediate mass fragments as functions of

target element masses and energies and for comprehensive tests of models and codes

describing medium-energy nuclear reactions.
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5.2 Target and Product Nuclide Coverage

The availability of experimental data for the production of residual nuclides by

proton-induced reactions depends widely on their application in various �elds of basic

and applied sciences; e.g. [Mi99, Mi00]. Already in the 1960's cross sections for the

production of residual nuclides turned out to be the crucial quantities to understand

cosmogenic nuclides in extraterrestrial matter and much work was done in the following

decades dedicated to this issue.

By our group and a large number of collaborators a cross section database for

the interpretation of cosmogenic nuclides was established in a series of thin-target and

thick-target experiments during more than two decades. The database covers the tar�

get elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Nb,

Mo, Rh, Ag, In, Te, Ba, and La for proton-induced reactions. In 1997, the database

of cosmochemically relevant cross sections of proton-induced reactions covered nearly

550 target/product combinations with nearly 22,000 cross sections; [Mi95, Mi97] and

references therein. More recent analyses covered the production of special long-lived

radionuclides such as 14C [Ne96], 36Cl [Sc96a, Sc96b, Su97], 41Ca [Sc04], 53Mn [Me00],

and 129I [Sc97] and of stable rare gas isotopes [Gi98, Gi98a, Ly98]. In addition, measure�

ments of cosmochemically relevant cross sections were increasingly performed during

recent years by other groups; see [Si97] for a review and references.

Today, such investigations are going on, focusing widely on the understanding of

cosmogenic nuclides produced in-situ in the Earth's surface and consequently aiming

more to neutron-induced rather than to proton-induced reactions. For accelerator

technologies, production of residual nuclides at medium energies has to be modeled in

order to describe the radioactive inventories of the spallation targets, the activation

of accelerating structures, of the beam pipes and windows and of shielding materials,

cooling materials and ambient air. Radionuclide inventories will determine the �nal

disposal costs of spallation targets and will decide whether the burn-up of nuclear waste

can be counterweighted or not by the creation of other activation products. Moreover,

medium-energy cross sections of �ssion products and actinides are needed. Finally,

the production of residual nuclides will cause chemical alteration of the irradiated

components and, in particular, production of light complex particles such as 2H, 3H,
3He, and 4He will cause considerable material damage.

Integral excitation functions for the production of residual nuclides are basic

quantities for the calculation of radioactive inventories of spallation targets in spalla�

tion neutron sources and in accelerator-driven devices for energy ampli�cation or for
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transmutation of nuclear waste. Due to the large range of relevant target elements

and the vast amount of product nuclides it will not be possible to measure all the

cross sections needed. Consequently, one will have to rely widely on models and codes

to calculate the required cross sections and validation of such calculations will be a

high priority issue. Since previous experiences with predictions of such excitation func�

tions were not satisfying [Mi97a], two new code systems, namely TALYS [Ko05] and

INCL4+ABLA [Bo02, Ju98], were developed within the HINDAS (High and Inter�

mediate Energy Nuclear Data for Accelerator-Driven Systems) project [Ko92, Me05].

Experimental investigations of the HINDAS project provided consistent sets of nuclear

data of all types to allow for comprehensive tests of these models; see ref. [Me05] for

details.

Within the EC project HINDAS experimental investigations were extended to

heavy target elements such as Ta, W, Pb, Bi [Gl01, Mi02, Ku01, Mi02a, Mi05], and

U [Uo05]. These elements are under discussions as spallation-target materials in spal�

lation neutron sources and in other accelarator based technologies. For the target

element lead a comprehensive set of excitation functions pulished recently was com�

pleted by AMS-measurements of cross sections for the production of the long-lived

radionuclides 10Be, 36Cl, and 129I, [Sc05, Sc06]. For natural uranium, cross sections

for the production of residual nuclides are available for p-energies from 21 MeV to 69

MeV [Uo05, Sh08, Sh09] and at 600 MeV [Ad05]. Further spin-o�s of the HINDAS

project were mass spectrometric measurements of cross sections for the production of

stable and radioactive isotopes of He, Ne, Ar, Kr, and Xe from natural lead; [Ly05]

and references therein.

Together with new and not previously published cross sections for the target ele�

ments Rb, Mo, Rh, Ag, In, Te, and La, the published cross sections for the production

of residual nuclides for cosmochemically relevant target elements, and those measured

within the HINDAS project for Fe, Ta, W, Au, Pb, Bi, and U, our consistent data

base now contains data for nearly 1,500 nuclear reactions and more than 25,000 cross

sections. Most of the data are available in EXFOR.

Our investigations made use of classical kinematics and, therefore, they are con�

�ned to residual nuclides with usually at least a few hours half-lives which mostly

reveal a cumulative production due to the decay of short-lived progenitors. These in�

vestigations are complimentary to those using inverse kinematics where all the primary

residuals can be studied at certain energy points but not over the whole energy range

desired, e.g. [En01].
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Table 5.1: Survey on the nuclear reactions dealt with in this report

This work gives the complete dataset in tabular form in Appendix A. A complete

set of graphs presenting all the experimental data is given in Appendix C. The newly

presented data are still labeled with their original experiments from which they were

derived. They cover the following reference labels with respect to the radionuclide

production: [Bo95, Bu94, Bu96, De96, Gl93, Ha95, Ho95, Kl96, Kr95, Ly93, Mi93,

Ne94a, Pr97, Ro91, Re93, Sc91, Sc91a, Su95].
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5.3 Experimental Data

One of the key issues in the construction of accelerator based technologies is

the calculation of radioactive inventories of the spallation targets as well as activation

of accelerator parts, shields, cooling media and ambient air. These calculations are

important both for short lived radionuclides and long lived radionuclides since the

latter decide about potential environmental impact and problems when such devices

have to be decomissioned and disposed, but also for the production of stable nuclides,

in particular gaseous elements, in medium energy nuclear reactions, in order to describe

material damage in accelerator components. Having this in mind in this chapter we

shall discuss some selected reactions to exemplify some features of the experimental

excitation functions and to comment on some aspects of data consistency and quality.

5.3.1 3He and 4He

The production of light complex particles such as 2H, 3H, 3He and 4He will cause

chemical alteration of the irradiated components. For example the accumulation of 3He

and 4He in�uences the swelling (the He atoms are insoluble in most, if not, all metals;

they tend to migrate and form large bubbles that at least embrittle the irradiated

metal) of the lead spallation target and cooling system. The number of displacements

per atom (dpa), which is an essential parameter for stability studies, is ussualy given

as a function of the number of produced He atoms. Therefore, the quality of the 3He

and 4He cross-sections directly a�ects the reliability of stability and design studies.

For the production of 3He, the experimental data have to be distinguished

whether they describe the direct production of 3He or whether the production due

to the decay of 3H is included. Therefore, we distinguish here cross sections for 3He

(Figure 5.1) and 3Hec (Figure 5.2), the latter including the production via the decay of
3H which is usually assumed to equal the direct production of 3He. In total, su�cient

data are available for the target elements Al, Mg, Si, Fe, Ni, Pb, and Bi.

For 4He (Figure 5.3), for which comprehensive data exist for the same target

elements, the transition through two reaction modes from evaporation or PE-emission

to production as IMF is more pronounced since the evaporation or PE-emission is more

pronounced than for 3He. Also for the production of 4He the tendency for a decreasing

importance of evaporation and PE-emission is seen with increasing mass number of the

target elements. In Appendix C, Figures C.2 and C.3 further graphs can be studied

for the production of 3He, 3Hec and 4He.
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Figure 5.1: Excitation functions for the production of 3He by proton-induced reactions
on natural magnesium, iron, and nickel
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Figure 5.2: Excitation functions for the production of of 3Hec on natural aluminum,
iron, and lead.
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5.3.2 7Be and 10Be

For heavier IMFs a really good data base exists for the production of 7Be (Fig�

ures 5.4 to 5.6 ). The situation for 10Be (Figures 5.8 and 5.11) is also not bad, but

considerably less data exist than for 7Be because of the need of chemical separation

and AMS-measurements.

In the case of 7Be and 10Be surely the target elements C, N, and O are particular

because of their proximity in masses to the product nuclides. This is nicely exhibited

by the structures of their excitation functions (see also Appendix C, Figures C.4 to

C.10). For target elements from F to Bi the excitation functions for 7Be and 10Be

run relatively smooth with energy. For the target elements from F to the iron group

varying contributions of low energy production below 100 MeV are observed and the

shapes of the excitation functions show a clear change in slopes above about 200 MeV

pointing also for these product nuclides to di�erent formation modes as evaporation or

PE-emission residues and IMF-production at medium energies. For the heavy target

elements above Ir only the production at energies above a few hundred MeV as IMFs

can be experimentally observed. The measurements by Titarenko et al. [Ti04] do not

exhibit signi�cant di�erences between the cross sections for the production of 7Be from

the di�erent pure Pb isotopes. With respect to 10Be, it is to mention here that the data

for Bi(p,X)10Be [Ta02] must still be regarded as preliminary. Further measurements

are underway.
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5.3.3 21Ne, 22Na, and 24Na

The situation becomes better for the neon isotopes (shown here for 21Ne in

Figure 5.11) and for 22Na (Figure 5.12 and 5.13) and 24Na (Figure 5.14). It has to

be mentioned that for 22Ne also the direct production and the cumulative one after

the decay of 22Na is distinguished in the data, denominated as 22Ne and 22Nec (see

Appendix C, Figures C.16 to C.25). For the stable neon isotopes su�cient experimental

data exist to give complete excitation functions; see 21Ne in Figure 5.11). This is due

to their importance as cosmogenic nuclides in extraterrestrial matter [Mi98, Mi99].

Consequently, the target elements investigated were Mg, Al, Si, Fe, and Ni. But, in

the context of the HINDAS project [Me05] and thereafter systematic measurements

for Pb and Bi were performed [Mi05] and further measurements are just going on by

I. Leya and coworkers. Except for the product near target elements Mg, Al, and Si,

the excitation functions are not much structured. They do not give indications of

low-energy production by evaporation or PE-emission. So these products (and the

heavier ones dealt with in this work) must be regarded as IMFs.
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Figure 5.6: Excitation functions for the production of 7Be by proton-induced reactions
on natural silver, tantalum and tungsten.
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Figure 5.7: Excitation functions for the production of 7Be by proton-induced reactions
on natural gold, lead, and bismuth.
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By far most of the data exist for 22Na (Figure 5.12) from light and medium-mass

target elements. Particular structures in the excitation functions are seen for target

elements from Na to Ca, for all heavier target elements the excitation functions exhibit

monotonous increases from thresholds to the highest energies investigated. In the case

of the target element Mg, for mono-isotopic targets of 24,25,26Mg we see a nice distinction

of the individual reaction channels contributing to the production of 22Na from natural

magnesium (Figure 5.10). For 24Na (Figure 5.14) the phenomenology of the excitation

functions does not di�er from that of 22Na.
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For the heaviest product nuclides dealt with in this thesis, 28Mg (Figure 5.16) and
26Al (Figure 5.17), just the target elements up to the iron group were systematically

investigated. For heavier target elements just some data for Pb exist and ongoing

measurements promise data for 26Al from lead and bismuth.
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Because of the particular importance of helium production in accelerator-driven

facilities, the agreement among the experimental data is of outstanding importance.

Such measurements were performed within the HINDAS project by direct measurement

of light gas isotopes by the NESSI collaboration, e.g. [En99]. In addition and in order

to test the consistency with earlier mass spectrometric measurements the production

of stable and radioactive rare gas isotopes of He-, Ne-, Ar-, Kr-, and Xe from natural

lead by proton-induced reactions was investigated from threshold up to 2.6 GeV by

rare gas mass spectrometry [Ly05]. Apart from some exceptions the database for the

proton-induced production of noble gas isotopes from lead is consistent and nearly

complete. While for the production of He from Al and Fe, where the cross sections

obtained by thin-target irradiation experiments are up to a factor of 2 higher than

the NESSI data [En99], both datasets agree for the He production from lead (Figure

5.18). Figure 5.18 just contains the data by Leya and co-workers [Ly05] with respect to

the mass spectrometric measurements. But for the cosmochemically important target

elements Mg, Al, Si, Fe and Ni, considerably more data exist which were measured

by di�erent groups at di�erent places. The recent ones of these measurements [Gi98,

Gi98a] validate the measurements by Leya and co-workers [Ly98, Ly05]. Thus, our

present conclusion is that some of the helium produced by evaporation and PE-emission

from the light target elements must be missing in the NESSI measurements. This would

explain that the cross sections for lead are well in agreement for the mass spectrometric

and the NESSI measurements, but not for the light target elements.

Except for the NESSI measurements, all cross sections dealt with so far in this

report were derived by o�-line measurements after experiments in classical kinematics.

The measurements with inverse kinematics performed at GSI, e.g. [En01], had not to

be mentioned here because IMFs were not accessible in the past. However, in a recent

experiment with U on protons in inverse kinematics, measurements of IMF down to

masses of 15 were reported [Ri05]. Since we are not dealing with the target element

uranium, this work is only mentioned for completeness here.
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5.4 Empirical systematic

In order to emphasize the particularities of the phenomenology of IMF production

some general considerations about the phenomenology of residual nuclide production

at medium energies are necessary. In Serbers two-stage model [Se47] of nuclear reac�

tions at intermediate energies the spallation process is described as a fast intra-nuclear

cascade followed by a slow deexcitation shape of the highly excited intermediate sys�

tem by evaporation. This view is valid still today. As a consequence of this model

one expects the phenomenology of spallation reactions to be characterized by an ex�

ponential decrease of the isobaric mass yields with the mass di�erence between target

and products. Figure 5.19 gives an example for the target element niobium where

the upper envelope of the individual cross sections can serve as a �rst approximation

of the isobaric mass yields. In early mathematical formulations this dependence was

described by Rudstams formula [Ru66] which in addition to the exponential behavior

of the isobaric mass yields described the residual nuclide distribution on an isobar by

Gaussians or distorted semi-Gaussian functions. It was also observed that the slope of

the exponential decrease of mass yields with target-product mass di�erence gets �atter

with increasing particle energies.

Figure 5.19: Cross sections for the production of residual nuclides from niobium as
function of the product mass [Mi97].

At that time no experimental evidence existed that other evaporation processes

than those of nucleons or light complex particles might contribute to the slow deexci�
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tation process at the end of the intra-nuclear cascade. This lack of evidence originated

from the fact that practically no experiments were performed to investigate proton-in�

duced spallation reactions on heavy target elements. Already during the �rst two

decades of spallation studies it was, however, observed that the isobaric yields and

the individual cross sections for small residual nuclide masses increase again. In the

example given in Figure 5.19 this e�ect is observed for mass 7, namely the production

of 7Be. The increase of yields at low masses, which was also observed for other nuclides

up to about mass 15, was attributed to fragmentation, e.g. in form of a Fermi break-up

of the excited system after the intra-nuclear cascade. Whether or not this would lead

to multifragmentation with enhanced multiplicities of IMFs was not discussed.

Figure 5.20: Cross sections for the production of residual nuclides from Ta, Pb, and Bi
as function of the product mass [Gl98].
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With the rising interest in accelerator-driven technologies intermediate-energy

nuclear reactions with heavy target elements were systematically investigated and a

new feature of spallation reactions was observed. The intermediate residuals at the

end of intra-nuclear cascade could deexcite in addition to evaporation of nucleons and

light complex particles via �ssion. This is exemplarily shown in Figures 5.20 - 5.22 for

proton-induced reactions on Ta, Pb, and Bi. Already at about 200 MeV the �ssion

channel is open for elements such as Ta, W (not shown), Au (not shown), Pb, and Bi.

Figure 5.21: Cross sections for the production of residual nuclides from Ta, Pb, and Bi
as function of the product mass [Gl98].

At energies of about 80 MeV �ssion products show up for Pb and Bi, but not

for the lighter target elements. With increasing energies the �ssion channel becomes

increasingly important. It dominates the mass distribution at about 1 GeV. However,
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above masses of 140 the symmetric �ssion mass distribution shows a transition into

the exponential mass distribution of �classical� spallation products for higher prod�

uct masses. The �attening of the slope of isobaric yields of the �classical� spallation

products tends to smear out the importance of the �ssion channel which, however,

can be weakly distinguished even at 2.6 GeV (Figure 5.22). The knowledge about in�

termediate-energy proton-induced reactions with heavy target elements was strongly

in�uenced by investigations using inverse kinematics, e.g. [En01], which allowed to

measure complete distributions of residual nuclides for elements with atomic numbers

above 20 in these reactions. These investigations are performed at particular energies

and the e�orts needed to perform these measurements do not allow for establishing

complete excitation functions over large energy regions. Thus, the classical- and in�

verse-kinematics experiments are complementary with respect to the investigations of

complete residual nuclide distributions at a particular energy with the measurement of

the complete energy dependence for particular product nuclides.

One draw-back of the inverse kinematics was that low residual masses could

not be observed and therefore no evidence about the IMFs could be obtained. Also

in the intermediate-energy nuclear reactions of protons with heavy target elements

an enhanced production of IMFs with masses below about 15 was observed in the

experiments with classical kinematics (Figures 5.19 - 5.22). Only in recent experiments

[Ri05] lower-mass residual nuclides were also observed using inverse kinematics. At

present, we shall describe the phenomenology of IMF-production on the basis of the

experimental data put together in the preceding section. This shall contribute to the

discussion of the still open question whether the production of IMFs needs a particular

production mode such as (multi-)fragmentation or whether the production of IMFs can

be explained on the basis of deexcitation modes such as evaporation and �ssion in the

second stage of spallation reactions. To this end we look at the systematic of cross

sections at particular energies. Since not all the measurements were performed at the

same energy points, we had to look at certain energy bins of ±100 MeV width though

for low energies this adds some scatter to the data because of the dependence of the

individual cross sections on energy. This was done in Figures 5.23 - 5.33 in this section.

Such a systematic was already used earlier [Mi00]. It can, however, now be discussed

on the basis of much larger data base.

According to the shapes of the distributions of the residual nuclides (Figures 5.20

- 5.22), radionuclides with masses larger than 56 can be unambiguously recognized as

being �ssion-products. The residual nuclide distributions indicate even that the �ssion

products extend well beyond the maximum of the binding energy per nucleon curve.
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Figure 5.22: Cross sections for the production of residual nuclides from Ta, Pb, and Bi
as function of the product mass [Gl98].

But, it will be easier to discuss �rst such nuclides above this maximum at mass 56.

In Figure 5.23, the cross sections for the production of 59Fe and 60Co at energies of

0.8, 1.2, 1.6, and 2.6 GeV are plotted as function of the atomic numbers of the target
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elements. One observes about an exponential decrease of the cross sections with in�

creasing atomic number of the target element up to Z = 60. For higher atomic numbers

Z>73 (Ta) the cross sections increase with atomic number of the target element also

about exponentially.

For target elements between Z = 56 and Z = 73 no experimental data exist. The

decrease of cross sections for targets with atomic numbers below 60 can be understood

as the phenomenology of �classical� spallation reactions where the deexcitation in the

stage of the reactions occurs solely via evaporation of nucleons and light composite par�

ticles. The increase for higher-Z target elements points to an exponentially increasing

importance of the �ssion channel in this second stage of the reaction. If the production

of IMFs occurs in the context of the deexcitation via the �ssion channel, one would

expect a similar behavior of IMF cross sections.

However, this is not the case as will be discussed below for all the residual nuclides

dealt with in this work. In spite of the wealth of experimental data for the production

of IMFs described in the preceding section, the systematic derived here remains not

comprehensive for many residual nuclides. But, for some nuclides one obtains a rather

comprehensive and consistent view of IMF production. Generally, we have plotted the

cross sections for a particular residual nucleus as a function of the target mass number

for energy bins centered around 600 MeV, 1200 MeV, 1600 MeV, 2000MeV, 2200 MeV,

and 2600 MeV for all the data available (Figures 5.24 - 5.33 and Appendix D). The

center points of the energy bins were chosen to contain as many cross sections as

possible and, at the same time, to give a systematic survey on all energies investigated.

There is practically no dependence on target mass for the production of 3He and 4He

for all energies (Figures 5.25 - 5.26). A slight increase with target mass of 3He and 4He

production observed for high energies may be but is not necessarily signi�cant.
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5.4 Empirical systematic

Figure 5.23: Systematic of the production of 59Fe and 60Co by proton-induced reactions
as function of target atomic numbers according to [Gl98].
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5.4 Empirical systematic

For the production of 7Be (Figure 5.27) and 10Be (Figure 5.28) the systematic

looks similar but shows slight di�erences. For 7Be at 500 MeV and target elements up to

iron, the cross sections decrease with increasing target mass. Naturally, the production

from C, N, and O is somewhat particular because of the small mass-distance of targets

and products. For higher target masses the cross sections stay essentially constant over

the entire higher mass region. For an energy of 1000 MeV, there is a general trend of

decrease of the cross sections with target mass, however, with a change in slope for

target elements heavier than iron. At 1500 MeV, 2000 MeV and 2600 MeV, the cross

sections for the production of 7Be practically depend slightly linear on a logarithmic

scale over the entire target mass region with tendency of lower decreases with increasing

energy.

For 10Be, the situation is not so clear cut, mainly because of a still persistent

lack of data. In particular, the preliminary data by Tarabishi [Ta02] need urgently

to be con�rmed by independent measurements. Such measurements are underway. In

general, one can conclude for 10Be that there appears not to be a signi�cantly di�erent

trend in the data than observed for 7Be.
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A clearer picture is obtained for the heavier IMFs, such as the neon isotopes, 22Na,
24Na, 28Mg, and 26Al.

For 21Ne at 600 MeV, one observes an exponential decrease of the cross sections

with target mass up to mass 60. For higher masses this decrease becomes much less

steep: only about a factor of two between mass 60 and 200 (Figure 5.29).

For 22Na (Figure 5.30) most data exist in this product mass region. At 500 MeV

the cross sections decrease exponentially over the entire target mass region. Above mass

100 no 22Na could be measured. For energies above 1000 MeV 22Na could be observed

for all target masses. As in the case of 21Ne, one observes for 22Na a composite curve

for the dependence of its production as a function of target mass. It is composed from

two exponentials, a steep one up to a target mass of about 100 and a �atter decreasing

one up to lead and bismuth. This holds also true at the highest energy of 2600 MeV.

For 24Na (Figure 5.31) the picture is similar, but shows some di�erences for higher

target masses. The picture at about 500 MeV, which actually includes also the early

600 MeV data with considerable scatter, the steep exponential decrease up to mass 60

of the target elements is again observed. For higher target masses there is considerable

ambiguity due to unacceptable scatter of many old data which is still enhanced by the

strong dependence on energy of the cross sections in this energy bin. But for higher

energies, the systematic becomes clearer because also the old data appear to be more

consistent. We observe generally a �attening of the steep exponential decrease of the

cross sections for target masses up to 100. For heavier target masses, however, there is

practically no decrease and the production cross sections remain more or less constant.

There might even be a slight increase with target masses at 2600 MeV.
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For 28Mg (Figure 5.32), the data base is not as comprehensive as for 22Na (and
24Na). In spite of that there are strong indications that after some structure in the

systematic for target elements quite close to the product mass, the production of 26Mg

remains practically constant for higher target masses. For 26Al (Figure 5.33), the

situation is again not yet satisfactory because of lack of data because of the big e�orts

needed for chemistry and AMS. But, the available data point to a dependence on target

mass similar to that observed for the other products with product masses above 20.

So one may conclude that the systematic of the production of the radionuclides,

dealt with in this work as IMFs, have scarcely something in common with the depen�

dence on target element exhibited by the established �ssion products 59Fe and 60Co. It

must also be emphasized that their behavior shows no di�erence depending on whether

or not a �ssion channel is open. It is, however, natural that a phenomenology as here

described cannot decide about the actual reaction modes. This can only be done on the

basis of model calculations based on a sound theory of nuclear reactions at intermediate

energies. However, such model calculations must be able to describe the trends with

energies and the dependencies on target masses described in this thesis. Consequently,

the data base described here and the systematic discussed in this section provides a

basis for testing models and codes describing the production of IMFs in intermediate

energy nuclear reactions.
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Figure 5.33: Systematic of the production of 26Al by proton-induced reactions as func�
tion of target mass numbers.
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5.5 Comparison between experiment and theory

5.5.1 Modeling of residual nuclide production at medium energies

Apart from the experimentally accessible measurement of production cross-sec�

tions, the theoretical modeling is necessary in order to understand the nuclear reactions.

Beyond that it is also necessary to formulate a model, which is capable in all aspects

to describe a reaction.

A variety of theoretical models are in general use at this time for calculating

nuclear reaction cross sections. To put these models in perspective, an overview is

presented here of the physical features that they emphasize. Since the nature of the

nuclear force is not fully understood, and since nuclei consist of nucleons interacting

through complicated many-body interactions, a comprehensive theory of nuclear reac�

tions and nuclear structure derived from fundamental principles, with good predictive

abilities, does not yet exist. Instead, nuclear physics researchers often develop models

which typically emphasize one or more physical features over others, depending on the

context of the investigation. Examples include compound nucleus, direct, and various

preequilibrium nuclear reaction theories, including exciton and intranuclear cascade

semiclassical models and quantum mechanical multistep approaches. The drawbacks

inherent in emphasizing certain physical aspects over others are partly compensated

by a corresponding insight, and mathematical simplicity, exhibited by a model.

Many di�erent interaction mechanisms can occur when a nucleon of a few hun�

dred MeV and below strikes a target nucleus. At low incident energies (a few MeV, say),

nuclear reactions take place by the compound nucleus process, in which the incident

particle is captured by the target nucleus, and its energy is shared statistically among

all the nucleons of the compound system. After a time much greater than the inter�

action time, the compound nucleus emits one or more particles and generally attains

its ground state by gamma-ray emission. As the incident energy increases, it becomes

more likely that particle emission will take place in the �rst stage of the reaction, when

the incident particle interacts with the target nucleus as a whole (for example, a collec�

tive excitation) or a nucleon within it. Many theories have been developed to enable

the cross sections of these direct reactions to be calculated, and they facilitate an un�

derstanding of elastic and inelastic scattering and particle transfer reactions. However,

experimental and theoretical research in the last few decades has shown that particle

emission can take place with a time scale longer than the very rapid direct reactions

(about 10−22) but much much shorter than the slower compound nucleus reactions

(about 10−16 to 10−18 sec). These emission processes are known as preequilibrium or
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multistep reactions, and they are characterized by particles emitted with relatively

high energies and with angular distributions that are peaked in the forward direction.

One of the problems in nuclear reaction theory is a proper treatment of the scattering

at energies where two or more reaction mechanisms apply.

The demand for reliable theoretical predictions of production cross sections is by

no means satis�ed by the models and codes which are available today. In this context

it is essential that reliable and comprehensive databases to exist which can serve as

benchmarks for code development and validation.

We will shortly discuss the di�erent modes of proton induced production of

residual nuclides at intermediary energies and we will see how these modes manifest in

the excitation functions and whether they are capable of explaining all their features.

R. Serber describes spallation as a fast intra-nuclear cascade of nucleon-nucleon

interactions followed by a slow de-excitation in statistical equilibrium.

Accepting the general validity of Serber's two step process, the �rst phase is a quick

sequence of nucleon-nucleon collisions since the wavelength of the incoming particle

is small compared with the distances of the nucleons inside the target nucleus. This

phase is called the intranuclear cascade (INC) and comprises collisions of primary and

secondary fast nucleons with other nucleons of the composite system and the creation

of pi-mesons. During this phase nucleons and light clusters are emitted from the

composite system. The particles emitted during the INC have high energies and the

are preferably emitted in the beam direction. The energy distribution of the INC

particles and the residual system at the end of the INC, called prefragment, depends

on the mass of the target, the incident energy and the impact parameter. It also should

be noted that for light- and medium-mass targets the nature of the incoming particle

(proton or neutron) signi�cantly in�uences the neutron excess of the composite system

and of the prefragments.
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Depending on the above mentioned parameters, the number of baryon-baryon

collisions show a steady increase with time which then suddenly �attens, when equipar�

tition of energies is attained. At this time the fast intranuclear cascade ends and the

second, slow step of the reaction begins, in which the highly excited prefragment deex�

cites. Deexcitation of the prefragment can occur principally in two ways, by evaporation

of nucleons and nucleon clusters or by the breakup of the unstable prefragment into

two or more fragments, which themselves may still release their excitation energies by

evaporation of nucleons and nucleon clusters. The �rst of these deexcitation paths is

called the classical evaporation phase as invented in Serber's model, the second is called

multifragmentation. For heavy target elements at least two di�erent types of �ssion

have to be added to this scenario.

Figure 5.35: Experimental cross sections for the production of 7Be and 10Be from
carbon, aluminum, and iron compared with theoretical ones calculated by the LAHET
code system [Pr94, Pr89] using the Bertini-Gilbert-Cameron options, the HETC in form
of the HET-KFA2 code [Cl88] and a semiempirical formula according to the YIELD
code [Si73a, Si73b]; according to [Gl98].

Generally, a reliable a priori calculation of cross sections for the production of

residual nuclides at intermediate energies is a demanding task which up today has
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many open questions. On the basis of our extensive data base many models and codes

have been tested in this respect; see [Mi97] and references therein. A general survey

on the predictive capabilities of a wide variety of models and codes was performed in

a NEA model and code Intercomparison [Mi97a]. The result of this intercomparison

was that the best codes just were capable to calculate residual nuclide production

cross sections within a factor of two on the average. In many cases average deviations

exceeded an order of magnitude. For intermediate energies and heavy target elements

the LAHET code system (LCS) [Pr89, Pr94] and the HET-KFA2 [Cl88] were tested

in particular using always the Bertini INC model [Be69] for the calculation of the

intranuclear cascade. The HET model which was originally developed by Armstrong

and Chandler [Ar72] is included in both code systems. Also these models turned out to

fail widely [Gl01]. It was a general observation in all those tests that for �ssion products

and for the IMFs dealt within this work the results were inadequate. In Figures 5.35

- 5.36 some examples are given. Aside of the LAHET and HET-KFA2 codes also

semiempirical formulas were tested [Gl98, Gl01]. The result for such formulas was in

a nutshell that they worked fairly well if experimental data were known, but that they

frequently failed when extrapolating to reactions for which no data were known before

(Figure 5.35).

In order to improve this unsatisfactory situation two codes systems were devel�

oped during the HINDAS project [Me05] to satisfy the needs for modeling nuclear

reaction data at intermediate and high energies. The TALYS code includes the opti�

cal model, direct, pre-equilibrium, �ssion and statistical models and thereby gives a

prediction for all the open reaction channels for energies up to about 200 MeV [Ko05].

The INCL4+ABLA code system is a combination of the codes INCL4 [BO02] for the

intra-nuclear cascade and ABLA [Ju98] for the nucleus de-excitation. The experimen�

tal data base established during the HINDAS project o�ers an excellent chance for the

validation of the new codes.

During the HINDAS project [Me05] and in a recent paper [Mi05] �blind� calcula�

tions were performed for Fe, W, Ta, Pb, Bi, and U and the results were compared with

the new experimental data in order to validate these code systems with respect to their

capabilities to predict cross sections for the production of residual nuclides respective.

Figure 5.37 gives an example for such a comparison for the production of 52m+gMn

from natural iron. A more systematic survey on the capabilities of the TALYS and

INCL4+ABLA codes and on still pertaining problems is given in Figure 5.39 for the

target element bismuth. Generally, the results of these comparisons were quite good.

For a wide range masses from target-near to spallation products, both codes, TALYS
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Figure 5.36: Experimental cross sections for the production of 14C from natural iron
and nickel compared with theoretical ones calculated with the HET-KFA2 code within
the HERMES code system [Cl88].

Figure 5.37: Experimental cross sections (squares) for the production of 52m+gMn from
natural iron by proton-induced reactions in comparison with TALYS results (solid line)
[Mi05].

and INCL4+ABLA, adequately reproduce the experimental cross sections varying by

5 orders of magnitude over the entire range of energies for. In contrast to earlier evalu�

ations [Mi97, Gl01, Ku01, Mi02, Mi02a], the new codes also give reasonable results for

all �ssion products.

In general both codes performed quite satisfactorily, though some problems re�

mained to be solved. With respect to the production of IMFs, however, the problem

of grossly underestimating their production by the INCL4+ABLA code remained. In

Figure 5.37, this is already seen for the production of 22Na from Bi, which is underes�
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5.5 Comparison between experiment and theory

Figure 5.38: Comparison of experimental cross sections [Mi02] with model calculations
using the TALYS (solid lines) and INCL4+ABLA (broken lines) codes; from [Mi05].

timated by about an order of magnitude. This failure was attributed at that time to

the neglect of multi-fragmentation in the existing codes [Mi05].
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5.5.2 TALYS

Model calculations were performed for the production of residual nuclides using

the TALYS code [Ko05] with standard options for energies up to 200 MeV. Created

at NRG Petten (Netherlands) and CEA Bruyères-le-Châtel (France), TALYS is a

computer code system for the analysis and prediction of nuclear reactions. The basic

objective behind its construction is the simulation of nuclear reactions that involve

neutrons, photons, protons, deuterons, tritons, 3He- and alpha-particles, in the 1 keV

- 200 MeV energy range and for target nuclides of mass 12 and heavier. To achieve

this, a set of nuclear reaction models (see Table 5.5.2) are implemented into a single

code system in order to enable the evaluation of nuclear reactions from the unresolved

resonance range up to intermediate energies.

An additional advantage of TALYS is the option of �ne tuning the adjustable

parameters of the various reaction models to available experimental data. However,

this option was not used in the present work, but it could be used to adapt the

theoretical calculation to the experimental data.

Table 5.2: Nuclear models and structure information implemented in TALYS 0.72
(released 21.dez.06)

Optical Model:

� Optical model potential (OMP) calculations are performed with ECIS-2003
� Neutrons/protons: Koning-Delaroche phenomenological spherical OMP (local /
global), Soukhovitskii deformed OMP for actinides, and user-de�ned OMP's

� Complex particles: Simpli�ed Watanabe folding approach

Direct Reactions:

� Direct reaction calculations are performed with ECIS-2003
� DWBA for (near) spherical nuclei
� Coupled-channels for deformed nuclei (symmetric rotational / harmonic vibra�
tional / vibration-rotational / asymmetric rotational)

� Weak-coupling model for odd nuclei
� Giant resonances (Kalbach macroscopic phenomenological model)
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Compound Reactions:

� Hauser-Feshbach

� Width-�uctuation models (Moldauer / GOE triple integral / HRTW)

� Blatt-Biedenharn formalism for angular distributions

Pre-equilibrium Reactions:

� Two-component excition model

� Photon exciton model (Akkermans and Gruppelaar)

� Continuum stripping, pick-up and knock-out (Kalbach phenomenological model)

� Angular distribution (Kalbach systematics)

Multiple Emission:

� Multiple pre-equilibrium emission for any number of particles

� Multple Hauser-Feshbach emission for any number of particles

Fission:

� Hill-Wheeler transmission coe�cients

� single / double / triple humped barriers

� Class II (III) states

� Experimental barrier parameters

� Rotating-Liquid-Drop model

� Rotating-Finite-Range model

� Microscopic barrier parameters

� Fission fragment mass distributions (Multi-Model Random-Neck-Rupture model)

� Fission fragment charge disitributions (scission-point model)
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Gamma-Ray Transmission Coe�cients:

� Brink-Axel Lorentzian

� Kopecky-Uhl Generalised Lorentzian

� photoabsorption cross sections: (GDR + quasi-deuteron (Chadwick)

Nuclear Structure Database (based on RIPL-2):

� Abundancies

� Discrete levels

� Deformations

� Masses

� Level density parameters

� Resonance parameters

� Fission barrier parameters

� Thermal cross sections

� Microscopic level densities

� Prescission shapes

The nuclear models that are adjusted in this manner can be used to obtain

further information about the nuclear properties. Speci�c features of TALYS and a

full description of all implemented nuclear models are given by A.J. Koning, S. Hilaire

and M. Duijvestijn [Ko07].

Radioactive progenitors were considered in the calculations according to Table

5.3 if necessary. Selected results are presented in Figures 5.39-5.44, all the results are

listed in Appendix D. The theoretical curves are only given for the energy regions

covered by the experimental data.

Except for the light product nuclides with masses below 20 the calculations de�

scribe the experimental data fairly well. For the lightest product nuclides, i.e. 14C and
15O from oxygen (Figure 5.39), we see severe over- and underestimation of the experi�

mental cross sections and also for the production of 18F from sodium and magnesium

the calculations fail widely to reproduce the experimental data (Figure 5.40).

114



5.5 Comparison between experiment and theory

Table 5.3: Product nuclides determined and radioactive progenitors considered for the
calculations
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Figure 5.39: Comparison of experimental cross sections for the production 14C from
natural oxygen and 15O from 16O with model calculations using the TALYS code.
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Figure 5.40: Comparison of experimental cross sections for the production 18F from
sodium and natural magnesium with model calculations using the TALYS code
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The production of 28Mg from natural silicon has actually an unique reaction

path, namely 30Si(p,3p)28Mg. This reaction tends to be increasingly underestimated

with increasing proton energy.
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Figure 5.42: Comparison of experimental cross sections for the production of 22Na and
28Mg from natural silicon with model calculations using the TALYS code
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Figure 5.44: Comparison of experimental cross sections for the production of 26Al from
magnesium and aluminium with model calculations using the TALYS code.
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5.5.3 INCL4+ABLA

As already pointed out before, all earlier available models and codes fail to repro�

duce the production of IMFs like 7Be and 10Be. This is also true for the INCL4+ABLA

calculations as well as for the Bertini-Gilbert-Cameron calculations (Figure 5.46). The

calculations underestimate the experimental data by orders of magnitude. It is, how�

ever, a new observation that also the production of neon and sodium isotopes is grossly

underestimated (Figure 5.47). Mostly, the INCL4+ABLA calculations perform a lit�

tle bit better. Just for 28Mg and 26Al examples can be shown for which the order of

magnitude of the experimental cross sections is met (Figure 5.47).
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Figure 5.45: Comparison of experimental cross sections for the production of 7Be from
natural tantalum, tungsten, and lead with model calculations using the INCL4+ABLA
code and with Bertini-Gilbert-Cameron calculations.
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5.5 Comparison between experiment and theory

Figure 5.46: Comparison of experimental cross sections for the production of 10Be from
natural lead and bismuth with model calculations using the INCL4+ABLA code and
with Bertini-Gilbert-Cameron calculations.
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6 Conclusions

By the evaluation of previous γ-spectrometric measurements and by the measure�

ment of long-lived radioactive progenitors in targets of earlier experiments: UPPS0H,

UPPS0S and SACL0L this work is contribuing to the cross-sections database for pro�

ton induced reactions with a number of new cross sections covering target elements

Si, Ca, Ti, Mn, Fe, Ni, Cu and Ag, which are relevant for research studies concerning

accelerator driven technologies.

For the NUDATRA project a number of 173 excitation functions were studied

for the production of residual nuclides with masses between 3 and 30, over an energy

range extending from thresholds up to 2.6 GeV with targets spreading over the entire

chart of nuclides. The results have been compared with TALYS and INCL4+ABLA

codes. While TALYS describes fairly well the shapes of the excitation functions, with

a few exceptions which were discussed in the proceeding chapters, INCL4+ABLA fails

to describe the experimental data by orders of magnitude.

The present work provides the necessary data and empirical systematic to allow

consistent and comprehensive testing of model calculations describing the production

of light intermediate mass fragments in proton-induced reactions. It covers su�cient

residuals and a wide energy range to contribute to the crucial question whether or not

the production of intermediate mass fragments are an extreme case of �ssion and evapo�

ration or whether a separate fragmentation mode is needed to explain the experimental

data.

The existing codes are not capable to predict reliably the experimental data.

As a consequence, for accelerator based technologies, it will be necessary to provide

extensive experimental database for radionuclide production which have to contain

all relevant nuclides for technological development, environment protection or other

reasons.
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C Excitation functions for the NUDATRA

experimental data

The graphs are displayed in increasing order of the atomic number of the products:
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