Einfluss des Porenwassers auf die Migration von Technetium in verschiedenen Referenzböden

Masterarbeit
vorgelegt von

Tim Schmalz
Matrikelnummer: 3211310

Abgabe 31.01.2023
Erstprüfer Prof. Dr. Clemens Walther
Zweitprüfer Prof. Dr. Denis Gebauer
Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere, dass alle Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht worden sind und dass die Arbeit in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt worden ist.

Hannover, den 31.01.2023

Tim Schmalz
Inhaltsverzeichnis

1 Einleitung .. 1

2 Hintergrund ... 2
 2.1 Technetium ... 2
 2.2 Boden .. 4
 2.2.1 Bodenlösung ... 5
 2.2.2 Sorption und Ionenaustausch .. 6
 2.2.3 Extraktion von Bodenlösungen .. 7
 2.2.4 RefeSol-Böden ... 8
 2.3 Analytische Methoden ... 9
 2.3.1 Optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES) 9
 2.3.2 Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) 11

3 Material und Methoden .. 13
 3.1 Untersuchte Böden ... 13
 3.2 Bodensättigungsextrakte ... 15
 3.2.1 Gewinnung der Bodensättigungsextrakte .. 15
 3.2.2 Untersuchung der Bodensättigungsextrakte mittels ICP-OES 16
 3.3 Säulenversuche .. 17
 3.3.1 Synthetische Bodenlösungen .. 17
 3.3.2 Vorbereitung und Betrieb der Säulen ... 19
 3.3.3 Gewinnung von Bodenproben aus den Säulen und Probenaufbereitung 21
 3.4 Untersuchung der Proben aus den Säulenversuchen mittels ICP-MS 22

4 Ergebnisse und Diskussion ... 22
 4.1 Ermittelte Zusammensetzung der Bodensättigungsextrakte 23
 4.2 Ergebnisse der Säulenversuche .. 27
 4.2.1 RefeSol-01A .. 28
 4.2.2 RefeSol-02A .. 32
 4.2.3 RefeSol-03G .. 34
 4.2.4 RefeSol-04A .. 36

5 Zusammenfassung und Ausblick .. 39

Literaturverzeichnis ... 45
Abbildungsverzeichnis ... 55
Tabellenverzeichnis ... 57
Anhang ... 58
1 Einleitung

Die vorliegende Arbeit schließt inhaltlich an das abgeschlossene Verbundprojekt Trans-LARA (Förderkennzeichen: 02NUK051A-E) an, welches das Transport- und Transferverhalten langlebiger Radionuklide entlang der kausalen Kette Grundwasser-Boden-Oberfläche-Pflanze zum Thema hatte. Dabei sollten Erkenntnisse über die Radionuklidmigration im Fernfeld eines Endlagers radioaktiver Abfälle im Falle eines potentiellen Störfalls gewonnen werden.

Für die hier vorliegende Arbeit wurden für die vier Referenzböden Bodensättigungsextrakte gemäß Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) erstellt und mittels optischer Emissionsspektrometrie analysiert. Auf dieser Grundlage wurden für die jeweiligen Böden individuelle synthetische Bodenlösungen entwickelt, die an die tatsächlich vorliegenden Konzentrationsverhältnisse angepasst sind.

2 Hintergrund

2.1 Technetium

Technetium ist ein Element ohne stabiles Isotop, womit es im Vergleich zu benachbarten Elementen im Periodensystem eine Sonderstellung einnimmt. Die Technetiumisotope mit der längsten Halbwertszeit sind \(^{97}\text{Tc} (4,21 \cdot 10^6 \text{ Jahre})\) und \(^{98}\text{Tc} (4,2 \cdot 10^6 \text{ Jahre})\) [2], größere Bedeutung zeigt jedoch das \(^{99}\text{Tc}\), da es ein langlebiges Spaltprodukt der neutroneninduzierten Spaltung von \(^{235}\text{U}\) und \(^{239}\text{Pu}\) darstellt (isobare Spaltausbeute jeweils > 6 %) und als solches einen erheblichen Anteil am Abfall von Kernkraftwerken hat [3, 4].

Darüber hinaus kommt \(^{99}\text{Tc}\) in geringen Mengen natürlich in der Erdkruste vor, da es auch bei der Spontanspaltung, insbesondere von \(^{238}\text{U}\), gebildet werden kann. Zudem ist durch den Einfang von Neutronen aus sekundärer kosmischer Strahlung die Bildung von Technetium in Molybdänmineralen möglich [5].

Der Großteil des \(^{99}\text{Tc}\) in der Umwelt ist jedoch anthropogenen Ursprungs und lässt sich beispielsweise auf Kernwaffentests, den Nuklearunfall von Tschernobyl und die Ableitungen der Wiederaufbereitungsanlagen für Kernbrennstoff in Sellafield und La Hague zurückführen [6]. Zudem ist der medizinische Bereich eine Quelle von \(^{99}\text{Tc}\), da das metastabile Isomer \(^{99m}\text{Tc}\) in der nuklearmedizinischen Diagnostik eingesetzt wird und dort mit einem Anteil von über 70 % an allen diagnostischen Untersuchungen das meist verwendete Radionuklid darstellt [7].

\(^{99}\text{Tc}\) und \(^{99m}\text{Tc}\) werden über den Zerfall von \(^{99}\text{Mo}\) erhalten. Wie in Abbildung 2-1 zu sehen ist, wird bei dem \(\beta^-\)-Zerfall mit einer Halbwertszeit von etwa 66 h überwiegend das metastabile \(^{99m}\text{Tc}\) gebildet, welches schließlich mit einer Halbwertszeit von etwa 6 h unter Emission eines \(\gamma\)-Quants (\(E_\gamma = 141 \text{ keV}\)) in \(^{99}\text{Tc}\) übergeht. \(^{99}\text{Tc}\) wiederum ist ein reiner \(\beta^-\)-Strahler, welcher mit einer Halbwertszeit von \(2,111 \cdot 10^5 \text{ Jahren}\) und einer Energie von \(E_{\beta, \text{max}} = 0,2937 \text{ MeV}\) zu stabilem \(^{99}\text{Ru}\) zerfällt [2].

Abbildung 2-1: Bildung und Zerfall von \(^{99}\text{Tc}\).
Technetium ist zwischen Mangan und Rhenium in der siebten Gruppe des Periodensystems zu finden. Aufgrund der Lanthanoidenkontraktion weisen Technetium und Rhenium nahezu identische Ionenradien auf, die sich deutlich von denen des Mangans unterscheiden (z.B. in Oxidationsstufe +VII und tetraedrischer Koordination; Tc: 0,51 Å; Re: 0,52 Å; Mn: 0,39 Å). Dies hat zur Folge, dass sich Technetium und Rhenium auch in ihren chemischen Eigenschaften sehr ähneln, wohingegen zur Chemie des Mangans große Unterschiede bestehen [8, 9]. Rhenium wird aus diesem Grund auch als Homolog für Technetium verwendet [10].

Alle drei Elemente weisen sieben Elektronen in ihrer Valenzschale auf. Die äußeren d-Elektronen sind im Technetium- bzw. Rhenium-Atom aufgrund der größeren Entfernung zum Kern jedoch schwächer gebunden, weswegen sie leichter abgegeben werden als beim Mangan-Atom. Während für Mangan deshalb unter Standardbedingungen die Oxidationsstufe +II die stabilste ist, während es in der Oxidationsstufe +VII ein starkes Oxidationsmittel darstellt, ist für Technetium und Rhenium die Oxidationsstufe +VII unter Standardbedingungen die stabilste, während sich die Oxidationsstufe +II kaum beobachten lässt [8].

Neben der Oxidationsstufe +VII, in der es vor allem in Form des Pertechnetat-Anions TcO₄⁻ vorliegt, ist für Technetium die Oxidationsstufe +IV von Bedeutung, was auch im Pourbaix-Diagramm in Abbildung 2-2 zu erkennen ist. Darüber hinaus kann Technetium zahlreiche weitere Oxidationsstufen einnehmen, welche jedoch schnell in die Oxidationsstufen +IV und +VII übergehen, wenn sie nicht durch geeignete Liganden stabilisiert werden [11].

Abbildung 2-2: Pourbaix-Diagramm des Systems Tc-O-H
\((T = 298,15 \text{ K}, p = 10^5 \text{ Pa}, c = 10^{-10} \text{ mol} \cdot \text{l}^{-1})\) [12].
Technetium in der Oxidationsstufe +IV bildet schwerlösliche Oxide der Form \(\text{TcO}_2 \cdot x \text{H}_2\text{O} \) [13]. Wie aus dem Pourbaix-Diagramm hervorgeht, sind diese Oxide amphoter, da sie sowohl im sauren, also auch im basischen Bereich in Lösung gehen. Die Löslichkeit von Tc(IV) in Abhängigkeit des pH-Werts ist in Abbildung 2-3 dargestellt.

Abbildung 2-3: Tc(IV)-Löslichkeit in Abhängigkeit des pH-Werts bei \(T = 298,15 \) K; die Kästchen entsprechen experimentell ermittelten Werten aus der Literatur (weiß: [14], schwarz: [15]), die durchgezogene, sowie die beiden gestrichelten Linien geben die berechnete Löslichkeit von \(\text{TcO}_2 \cdot 1,6 \text{H}_2\text{O} \) mit Vertrauensbereich an [16].

Technetium(IV)-oxide lösen sich zudem unter oxidativen Bedingungen langsam auf, infolge der Oxidation zum Pertechnetat [17]. Dieses zeigt im Allgemeinen eine hohe Wasserlöslichkeit [3]. Zusammen mit der Tatsache, dass \(\text{TcO}_4^- \) kaum an Bodenbestandteile sorbiert [18], führt dies dazu, dass Technetium in der Umwelt eine hohe Mobilität aufweist [10]. In Form von Pertechnetat kann Technetium zudem leicht von Pflanzen über den Wurzelpfad aufgenommen werden und so in die Nahrungskette gelangen [19, 20].

2.2 Boden

Infolge der bei der Bodenbildung ablaufenden Prozesse sind Böden im Allgemeinen in mehrere Schichten untergliedert, die als Bodenhorizonte bezeichnet werden [23]. Die Horizonte
werden üblicherweise mit einer Buchstabenkombination näher klassifiziert, die als Horizontsymbol bezeichnet wird. Gemäß ihrer Lage im Bodenprofil wird ihnen ein Hauptsymbol in Form eines Großbuchstabens zugeordnet, welches anhand ihrer Eigenschaften durch ein Suffix in Form eines Kleinbuchstabens ergänzt wird [22, 24]. Die verschiedenen Lagen eines Bodenprofils sind mit ihren entsprechenden Hauptsymbolen in Abbildung 2.1 dargestellt.

Abbildung 2-4: Bodenprofil mit Bezeichnung der Haupthorizonte; über dem nahezu unverwittertem Ausgangsgestein (C) befindet sich der Unterboden (B) aus vorwiegend mineralischer Substanz, darüber der Oberboden (A) aus mineralischer und organischer Substanz, auf dem ein organischer Horizont (O) liegt [25].

Ein Parameter für die Charakterisierung von Böden ist die Korngrößenzusammensetzung, die auch mit dem Begriff Textur bezeichnet wird. Sie gibt die anteilsmäßige Zusammensetzung eines Bodens aus Sand, Schluff und Ton an. Dabei umfasst Sand gröbere Bodenpartikel mit einem Durchmesser von 2 mm bis 63 µm und Schluff Partikel mit einem Durchmesser zwischen 63 µm und 2 µm, während Tonpartikel kleiner als 2 µm sind [26].

2.2.1 Bodenlösung

Der Begriff Bodenlösung bezeichnet die wässrige Phase des Bodens, die aus dem freien Wasser, den darin gelösten Ionen und Molekülen sowie kolloidalen Partikeln besteht [21]. Im
Ökosystem hat die Bodenlösung eine wichtige Rolle als Nährstoffvermittler, da fast alle Nährstoffe von Pflanzen in gelöster Form aus dem Bodenwasser aufgenommen werden [28].

2.2.2 Sorption und Ionen austausch

Stoffe aus der Bodenlösung können sich an feste Bodenbestandteile anlagern, was als Sorption bezeichnet wird. Beispielsweise kann ein Sorbat Bindungen mit reaktiven Oberflächengruppen eingehen, die kovalenten Charakter haben können oder im Fall von Ionen durch elektrostatischer Wechselwirkung an gegensätzlich geladene Oberflächen gebunden sein. Letzteres stellt eine vergleichsweise schwache Bindung dar, weshalb diese unspezifisch sorbierten Ionen leicht gegen andere Ionen ausgetauscht werden können. Sowohl organische als auch anorganische Bodenbestandteile zeigen überwiegend eine negative Oberflächenladung, sodass in Böden vor allem der Kationenaustausch vorherrscht [21].

Die Fähigkeit von Böden, Kationen in austauschbarer Form zu adsorbieren, wird in Form der effektiven Kationenaustauschkapazität (KAKeff, in mmol*kg⁻¹) ausgedrückt. Neben dem pH-Wert wird die effektive Kationenaustauschkapazität eines Bodens vor allem von seinem Anteil
an organischer Substanz sowie seinem Tongehalt bestimmt. Letzterer hat großen Einfluss auf die spezifische Oberfläche des Bodens. In einem tonig lehmigen Boden, der zu gleichen Gewichtsanteilen aus Sand, Schluff und Ton zusammengesetzt ist, trägt die Tonfraktion zu etwa 99 % zur spezifischen Oberfläche des Bodens bei [21].

2.2.3 Extraktion von Bodenlösungen

Die Frage nach der Zusammensetzung von Bodenlösungen ist für viele bodenkundliche Fragestellungen relevant. Ein Hindernis hierfür stellt jedoch oftmals die Gewinnung des Probenmaterials für die Analyse dar. Hierzu sind in der Literatur einige Verfahren beschrieben, von denen sich jedoch bislang keines eindeutig als Standardverfahren etablieren konnte, da alle mit gewissen Vor- aber auch Nachteilen verbunden sind [33].

Ein Verfahren zur Gewinnung von Bodenlösungen ist die Nutzung von Saugsonden. Diese können in Böden eingebracht werden, um in-situ Proben aus dem Porenwasser zu gewinnen. Die Lösung wird dabei, infolge eines eingestellten Unterdrucks, durch die poröse Oberfläche der Sonden abgezogen. Die Reichweite der Saugsonden ist jedoch gering, was insbesondere bei inhomogenen Böden die Ergebnisse beeinträchtigen kann. Darüber hinaus können Schwebstoffe aus der Bodenlösung mit der Zeit die Poren der Sondenoberfläche verstopfen, was sich negativ auf die Lebensdauer der Sonden auswirkt [34].

Eine weitere Methode, um die Bodenlösung aus dem Boden zu extrahieren, stellt die Abtrennung durch Zentrifugation dar. Dazu werden Bodenproben in Gefäßen mit einer porösen Platte zentrifugiert, welche den Boden zurückhält, während die Bodenlösung durch die Platte gelangt und in einem Sammelgefäß aufgefangen wird. Nachteilig ist, dass infolge der Kräfte, die auf den Boden wirken, eine Verdichtung des Bodens erfolgt und das Porensystem des Bodens beeinflusst wird [34]. Zudem werden durch die Zentrifugation oft nur geringe Mengen Bodenlösung erhalten [35].

Neben der direkten Extraktion von Bodenlösung aus dem Bodengefüge besteht auch die Möglichkeit der Herstellung wässriger Suspensionen. Dazu wird den Böden eine bekannte Menge an Flüssigkeit zugegeben und diese nach einer Gleichgewichtseinstellung wieder abgetrennt. Vorteilhaft ist, dass so vergleichsweise leicht auch größere Probenvolumina erhalten werden. Zudem sind apparativer Aufwand und damit auch die Kosten gering [34].

Beispielhaft zu nennen ist das 2:1-Schüttelverfahren nach DIN 19529, für das das einzustellende Wasser/Boden-Verhältnis der Suspension fest vorgegeben ist [36]. Hier erfolgt zusätzlich ein Schütteln der Probe, um die Gleichgewichtseinstellung zu beschleunigen. Dadurch wird jedoch das Bodenmaterial beansprucht, was zu einer Oberflächenvergrößerung und der Schaffung neuer Sorptionsplätze führt. Die Folge ist, dass durch Schüttelversuche die Konzentrationen gelöster Stoffe in der Bodenlösung unterschätzt werden können [37].

Der Nachteil der Bodensättigungsextrakte liegt darin, dass die zuzugebende Menge Wasser somit nur unscharf definiert ist, obwohl diese einen entscheidenden Einfluss auf das Sorptionsgleichgewicht im Boden hat [34]. Durch die feste Vorgabe eines Wasser/Boden-Verhältnisses werden jedoch Versuchsbedingungen geschaffen, die mitunter stark von den realen Verhältnissen von flüssiger und fester Phase im Boden abweichen [39].

2.2.4 RefeSol-Böden

![Abbildung 2-5: Übersicht über das RefeSol-System des Fraunhofer IME; nach [40].](image)

2.3 Analytische Methoden

2.3.1 Optische Emissionsspektrometrie mit induktiv gekoppelt Plasma (ICP-OES)

Die optische Emissionsspektrometrie mit induktiv gekoppelt Plasma (ICP-OES) ist eine weit verbreitete Technik der Elementanalytik, die für die Bestimmung zahlreicher Elemente in einer Vielzahl unterschiedlicher Matrices verwendet wird. Die zu untersuchende Probe wird hierbei in Form eines Aerosols einem Argonplasma zugeführt. Dabei wird sie atomisiert, teilweise ionisiert und die Atome und Ionen werden zur Lichtemission angeregt. Nachdem das emittierte Licht durch eine Optik spektral zerlegt wurde, lassen sich die Elemente der Probe anhand der detektierten Wellenlänge des Lichts qualitativ bestimmen und zudem durch die entsprechende Lichtintensität quantifizieren [43]. Das für die ICP-OES namensgebende Plasma wird durch eine Argon-Plasmafackel erzeugt, wie sie in Abbildung 2-6 dargestellt ist.

Abbildung 2-6: Aufbau einer Plasmafackel [43].

Drei konzentrische Quarzrohre führen durch die Spule eines Hochfrequenzgenerators, welche das Plasma induktiv zündet [44]. Der äußere Gasstrom weist den höchsten Volumenstrom auf und erhält das Plasma aufrecht, weshalb dieser als Plasmagas bezeichnet wird. Gleichzeitig wirkt dieser Gasstrom jedoch auch kühlend, weshalb auch die Bezeichnung Kühlgas gebräuchlich ist. Radial zentriert befindet sich das Injektorrohr, durch das ebenfalls Argon strömt,

Da die Elemente im Plasma alle zur gleichen Zeit zur Emission angeregt werden, können diese theoretisch simultan bestimmt werden, womit eine kurze Messzeit einhergeht [43]. Um dies zu ermöglichen, werden Polychromatoren eingesetzt, beispielsweise in der Form eines Echelle-Gitters, dem ein Prisma nachgeordnet ist, wie es in Abbildung 2-7 dargestellt ist.

Abbildung 2-7: Strahlengang in einem ICP-Emissionsspektrometer mit Echelle-Gitter [46].

Abbildung 2-8: Strahlengang in einer Zirkularoptik in Paschen-Runge-Aufstellung [49].

Für die Paschen-Runge-Aufstellung werden mehrere Detektoren verwendet, weshalb das Licht vor der Detektion über weniger reflektierende Oberflächen geführt und der Signalverlust reduziert wird. Solche Zirkularoptiken haben jedoch einen hohen Platzbedarf, weswegen die entsprechenden Spektrometer weniger kompakt sind als auf einer Echelle-Optik basierende Geräte [48].

2.3.2 Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS)

Wie bei der ICP-OES handelt es sich auch bei der ICP-Massenspektrometrie um ein Verfahren der Elementanalytik, in dem ein Argonplasma für die Atomisierung und Ionisierung der Probe verwendet wird. Die Analytik erfolgt jedoch nicht über die optische Emission der Analyten. Stattdessen werden die gebildeten Ionen nach ihrem Masse-Ladungs-Verhältnis getrennt, wofür häufig Quadrupol-Massenspektrometer eingesetzt werden [50].

Der schematische Aufbau eines solchen ICP-Massenspektrometers mit Quadrupol-Massenfilter ist in Abbildung 2-9 gezeigt.
Abbildung 2-9: Schema eines ICP-Massenspektrometers; nach [50].

Abbildung 2-10: Schema eines Quadrupol-Massensfilters; nach [50].

Die Messung via ICP-Massenspektrometrie kann durch Isobaren und Molekülionen gestört werden. Für 99Tc resultieren beispielsweise Interferenzen aus dem Vorliegen von 99Ru, 98Mo und 59Co40Ar [10]. Um den zu untersuchenden Analyten von störenden Interferenzen zu trennen, können chemische Verfahren verwendet werden. Für Technetium hat sich dafür die Extraktionschromatographie mittels TEVA-Harz etabliert, die auch für diese Arbeit angewandt wurde und daher in Abschnitt 3.3.3 näher erläutert wird.
Darüber hinaus besteht die Möglichkeit der Nutzung eines Tripel-Quadrupol-Massenspektrometers mit Reaktionszelle. Nach der Massenselektion durch den ersten Quadrupol werden entweder spezifisch der gewünschte Analyt oder die störenden Interferenzen mit einem geeigneten Reaktionsgas zur Reaktion gebracht, sodass Analyt und Interferenz daraufhin in einem weiteren Massenfilter voneinander getrennt werden können [51].

3 Material und Methoden

3.1 Untersuchte Böden

Bei den in dieser Arbeit untersuchten Böden handelt es sich um vier Böden aus dem RefeSol-System des Fraunhofer Instituts für Molekularbiologie und angewandte Ökologie; RefeSol-01A, -02A, -03G und -04A. Im Rahmen des eingangs erwähnten Projektes Trans-LARA wurden die Böden am Institut für Radioökologie und Strahlenschutz hinsichtlich ihrer Korngrößenverteilung, ihres pH-Werts in Calciumchlorid-Lösung, ihrem Anteil an organischem Kohlenstoff sowie ihrer effektiven Kationenaustauschkapazität charakterisiert [55]. In Tabelle 3-1 sind die ermittelten Werte zu finden.

Tabelle 3-1: Textur, pH-Wert, Anteil organischen Kohlenstoffs und Kationenaustauschkapazität der untersuchten Referenzböden.

<table>
<thead>
<tr>
<th></th>
<th>Sand [%]</th>
<th>Schluff [%]</th>
<th>Ton [%]</th>
<th>pH_{\text{CaCl}_2}</th>
<th>C_{\text{org}} [%]</th>
<th>KAK_{\text{eff}} [mmol_c · kg⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RefeSol-01A</td>
<td>74,8</td>
<td>20,7</td>
<td>4,5</td>
<td>5,8</td>
<td>0,98</td>
<td>39,1</td>
</tr>
<tr>
<td>RefeSol-02A</td>
<td>6,2</td>
<td>79,3</td>
<td>14,6</td>
<td>6,3</td>
<td>1,04</td>
<td>113,6</td>
</tr>
<tr>
<td>RefeSol-03G</td>
<td>26,8</td>
<td>52,6</td>
<td>20,5</td>
<td>5,9</td>
<td>4,22</td>
<td>132,3</td>
</tr>
<tr>
<td>RefeSol-04A</td>
<td>83,8</td>
<td>10,6</td>
<td>5,6</td>
<td>5,3</td>
<td>2,93</td>
<td>45,6</td>
</tr>
</tbody>
</table>
Die Böden RefeSol-01A und -03G werden beide zu den Braunerden gezählt, während es sich bei RefeSol-02A um eine pseudovergleyte Parabraunerde und bei RefeSol-04A um einen Gley-Podsol handelt [40].

Bei der Vergleyung, die beispielsweise für die Bildung von Gley-Podsolen wie den RefeSol-04A erfolgt, liegt dagegen keine Beeinflussung durch Stauwasser aus Niederschlägen, sondern durch das Grundwasser vor. Dieses kann zusammen mit gelöstem Eisen und Mangan durch Kapillarkräfte in ungesättigte Bodenschichten aufsteigen, wo es dann zu einer Ausfällung von Eisen- und Mangan-(Oxid-)Hydroxiden kommt [21].

Der Begriff Podsol wiederum leitet sich aus dem Russischen ab und lässt sich mit „Ascheboden“ übersetzen, was auf die oft hellgraue Farbe des Oberbodens zurückzuführen ist. Diese hat ihre Ursache in der Podsolierung, mit der die Auswaschung von Humusstoffen zusammen mit komplexiertem Eisen und Aluminium infolge einer starken Bodenversauerung bezeichnet wird [60].

Abbildung 3-1: Standorte der Probenahme für RefeSol-01A (Region Hannover), -02A (Kreis Soest), -03G (Hochsauerlandkreis) und -04A (Kreis Osnabrück); Karte nach [61].

3.2 Bodensättigungsextrakte

Entsprechend der Empfehlung in der BBodSchV wurden Bodensättigungsextrakte erstellt, um Proben für die Analytik der Bodenlösungen zu gewinnen. Dieses Verfahren wurde gewählt, da so vergleichsweise leicht auch größere Probenvolumina gewonnen werden konnten und zudem im Vergleich zum 2:1-Schüttelverfahren nach DIN 19529 die realen Boden/Wasser-Verhältnisse besser abgebildet werden.

3.2.1 Gewinnung der Bodensättigungsextrakte

Für jeden der vier verwendeten Referenzböden wurden jeweils drei Proben für die Herstellung der Bodensättigungsextrakte angesetzt. Dazu wurden jeweils ca. 300 g lufttrockener Boden in Polyethylen-Behältern zunächst mit demineralisiertem Wasser (MilliQ) angefeuchtet und über Nacht verschlossen im Kühlschrank gelagert. Am folgenden Tag wurde zu den Böden weiter MilliQ-Wasser gegeben, bis die Fließgrenze der Böden erreicht war. Danach wurde der Boden für eine weitere Nacht verschlossen im Kühlschrank gelagert, um die Gleichgewichtseinstellung zu ermöglichen.

Tabelle 3-2: Wassergehalte der Bodenproben für die Herstellung von Bodensättigungsextrakten im lufttrockenen Zustand und beim Erreichen der Fließgrenze.

<table>
<thead>
<tr>
<th>Boden</th>
<th>Wassergehalt (lufttrocken) [%]</th>
<th>Probe</th>
<th>Wassergehalt (fließend) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RefeSol-01A</td>
<td>2,5</td>
<td>1</td>
<td>15,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>14,9</td>
</tr>
<tr>
<td>RefeSol-02A</td>
<td>1,6</td>
<td>1</td>
<td>22,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>23,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>25,0</td>
</tr>
<tr>
<td>RefeSol-03G</td>
<td>3,5</td>
<td>1</td>
<td>33,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>33,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>32,4</td>
</tr>
<tr>
<td>RefeSol-04A</td>
<td>1,4</td>
<td>1</td>
<td>20,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>20,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>22,7</td>
</tr>
</tbody>
</table>

Am nächsten Tag wurden die Bodenproben für 30 min bei 3000 rpm zentrifugiert. Die überstehende Lösung wurde abdekantiert und über eine Nutsche filtriert. Anschließend erfolgte zusätzlich eine Filtration über Spritzensatzfilter mit 0,45 µm Porenweite.

3.2.2 Untersuchung der Bodensättigungsextrakte mittels ICP-OES

Für die Analyse der angefertigten Bodensättigungsextrakte wurden zwei unterschiedliche ICP-OES-Systeme verwendet. Aufgrund eines technischen Defektes des hauseigenen iCAP 6200 von THERMO SCIENTIFIC wurde zunächst auf ein ARCOS-System von SPECTRO am Institut für Anorganische Chemie der Universität Hannover zurückgegriffen. Später erfolgte dann zusätzlich eine Messung mittels iCAP 6200, die die Ergebnisse verifizieren sollte.

Die Kalibration der Messungen erfolgte für beide Geräte über Reihen externer Standards, die aus einer Multielement-Standardlösung von CARL ROTH verdünnt wurden (ICP-Mehrelementstandard IV, 1000 mg · l⁻¹). Zusätzlich wurde für die Messung mittels ARCOS auch eine Kalibrationsreihe für Schwefel, Phosphor und Silicium angesetzt, um auch diese Elemente quantifizieren zu können, die nicht im Multielementstandard enthalten sind. Dazu wurden ICP-Einzelementstandards (1000 mg · l⁻¹) verwendet, die ebenfalls von CARL ROTH bezogen wurden.

Für die Messung der Proben mittels ARCOS wurden die Proben in HNO₃ (2 %) verdünnt. Die Kontrollmessung am iCAP 6200 erfolgte wiederum in demineralisiertem Wasser (MILLI-Q), da die verwendete Messmethode und die Analyseparameter darauf angepasst waren.
3.3 Säulenversuche

3.3.1 Synthetische Bodenlösungen

Mithilfe der ermittelten Konzentrationen von Ionen in den Bodensättigungsextrakten konnten für die einzelnen Böden individuelle Bodenlösungen entworfen werden. Dabei wurden nur die ermittelten Konzentrationen aus der ersten OES-Messung mittels SPECTRO ARCOS herangezogen. Dies lag vor allem darin begründet, dass für die Messung am ARCOS-System bessere Kalibrierungsgeraden erhalten und die Ergebnisse deshalb als verlässlicher eingeschätzt wurden. Lediglich die Ergebnisse für Bor wurden infolge der Kontrollmessung am iCAP 6200 verworfen, was in Abschnitt 4.1 näher diskutiert wird.

Elemente, die lediglich in Spuren detektiert wurden, wurden nicht weiter betrachtet. Da keine Informationen über die Konzentrationen der Anionen in den Bodensättigungsextrakten vorlagen, wurden die Salze für die Herstellung der synthetischen Bodenlösungen so gewählt, dass die Konzentrationen der Anionen in etwa den Angaben in der Literatur [21] für die durchschnittliche Zusammensetzung von Bodenlösungen entsprechen. Die Auswahl wurde jedoch zunächst auf die entsprechenden Nitrate, Sulfate und Chloride beschränkt. Phosphate und (Hydrogen-)Carbonate wurden beispielsweise nicht verwendet, um die Bildung schwerlöslicher Verbindungen zu vermeiden. Dabei wurde auch berücksichtigt, dass die Bodenlösungen in Zukunft nicht nur für Versuche mit dem eher löslichen Technetium, sondern auch für Versuche mit anderen Elementen herangezogen werden könnten, die schwerlösliche Verbindungen mit den entsprechenden Anionen bilden (z.B. $pK_a(PuPO_4) = 24.4$ [62]).

Die resultierenden Salzlösungen wiesen pH-Werte auf, die deutlich niedriger waren als die gemessenen pH-Werte der entsprechenden Böden, die in Tabelle 3-1 angegeben sind. Dies ist unter anderem darauf zurückzuführen, dass das zugegebene Aluminiumsalz sauer reagiert und dass auf die Zugabe von basischen Salzen wie (Hydrogen-)Carbonaten verzichtet wurde.

Um dies zu kompensieren, wurde das Natriumnitrat, welches zuvor verwendet wurde, um die Natrium-Konzentration einzustellen, zum Teil durch eine Natriumhydroxid-Lösung ersetzt. Die Bodenlösung für RefeSol-01A (BLR-1) war auch danach noch etwas zu sauer, weshalb zusätzlich eine Kaliumhydroxid-Lösung hinzugegeben und die hinzugefügte Menge an Kaliumnitrat entsprechend reduziert wurde. Für die Bodenlösungen der Böden RefeSol-02A und -04A wurde durch die Natronlaugenzugabe ein pH-Wert erhalten, der etwas zu basisch war, was durch verdünnte Salpetersäure kompensiert wurde.

Die Salze und Lösungen, mit denen die Bodenlösungen angesetzt wurden, sind mit der entsprechenden Menge in Tabelle 3-3 aufgeführt.
Tabelle 3-3: Menge an Salzen und Lösungen, die für die Herstellung des synthetischen Bodenwassers nach Bors et al. (SBW) [1] sowie der individuellen RefeSol-Bodenlösungen (BLR-1 bis BLR-4) verwendet wurden.

<table>
<thead>
<tr>
<th></th>
<th>SBW</th>
<th>BLR-1</th>
<th>BLR-2</th>
<th>BLR-3</th>
<th>BLR-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCl₂ · 2 H₂O [mg · l⁻¹]</td>
<td>1008,50</td>
<td>596,68</td>
<td>195,70</td>
<td>770,02</td>
<td>178,03</td>
</tr>
<tr>
<td>Ca(NO₃)₂ · 4 H₂O [mg · l⁻¹]</td>
<td>—</td>
<td>960,18</td>
<td>104,97</td>
<td>1858,69</td>
<td>—</td>
</tr>
<tr>
<td>MgSO₄ · 7 H₂O [mg · l⁻¹]</td>
<td>446,10</td>
<td>444,68</td>
<td>25,46</td>
<td>545,16</td>
<td>71,60</td>
</tr>
<tr>
<td>Mg(NO₃)₂ · 6 H₂O [mg · l⁻¹]</td>
<td>—</td>
<td>154,17</td>
<td>—</td>
<td>189,00</td>
<td>—</td>
</tr>
<tr>
<td>KNO₃ [mg · l⁻¹]</td>
<td>248,70</td>
<td>142,69</td>
<td>9,28</td>
<td>101,01</td>
<td>55,06</td>
</tr>
<tr>
<td>NaNO₃ [mg · l⁻¹]</td>
<td>550,80</td>
<td>—</td>
<td>—</td>
<td>70,06</td>
<td>—</td>
</tr>
<tr>
<td>Al(NO₃)₃ · 9 H₂O [mg · l⁻¹]</td>
<td>—</td>
<td>57,02</td>
<td>31,15</td>
<td>55,91</td>
<td>31,85</td>
</tr>
<tr>
<td>MnCl₂ · 4 H₂O [mg · l⁻¹]</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>21,43</td>
<td>—</td>
</tr>
<tr>
<td>NaOH (10 %) [µl · l⁻¹]</td>
<td>—</td>
<td>98,0</td>
<td>105,4</td>
<td>139,9</td>
<td>116,9</td>
</tr>
<tr>
<td>KOH (10 %) [µl · l⁻¹]</td>
<td>—</td>
<td>75,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HNO₃ (1 mol · l⁻¹) [µl · l⁻¹]</td>
<td>—</td>
<td>—</td>
<td>70,0</td>
<td>—</td>
<td>130,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SBW</th>
<th>BLR-1</th>
<th>BLR-2</th>
<th>BLR-3</th>
<th>BLR-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²⁺ [mmol · l⁻¹]</td>
<td>6,86</td>
<td>8,12</td>
<td>1,77</td>
<td>13,09</td>
<td>1,21</td>
</tr>
<tr>
<td>Mg²⁺ [mmol · l⁻¹]</td>
<td>1,81</td>
<td>2,41</td>
<td>0,10</td>
<td>2,95</td>
<td>0,29</td>
</tr>
<tr>
<td>K⁺ [mmol · l⁻¹]</td>
<td>2,46</td>
<td>1,52</td>
<td>0,09</td>
<td>1,00</td>
<td>0,54</td>
</tr>
<tr>
<td>Na⁺ [mmol · l⁻¹]</td>
<td>6,48</td>
<td>0,27</td>
<td>0,29</td>
<td>1,21</td>
<td>0,32</td>
</tr>
<tr>
<td>Al³⁺ [mmol · l⁻¹]</td>
<td>—</td>
<td>0,15</td>
<td>0,08</td>
<td>0,15</td>
<td>0,08</td>
</tr>
<tr>
<td>Mn²⁺ [mmol · l⁻¹]</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,11</td>
<td>—</td>
</tr>
<tr>
<td>NO₃⁻ [mmol · l⁻¹]</td>
<td>8,92</td>
<td>11,20</td>
<td>1,30</td>
<td>19,48</td>
<td>0,93</td>
</tr>
<tr>
<td>Cl⁻ [mmol · l⁻¹]</td>
<td>13,71</td>
<td>8,12</td>
<td>2,66</td>
<td>10,69</td>
<td>2,42</td>
</tr>
<tr>
<td>SO₄²⁻ [mmol · l⁻¹]</td>
<td>1,81</td>
<td>1,80</td>
<td>0,10</td>
<td>2,21</td>
<td>0,29</td>
</tr>
<tr>
<td>I⁻ [mmol · l⁻¹]</td>
<td>36,7</td>
<td>35,9</td>
<td>6,5</td>
<td>53,6</td>
<td>6,1</td>
</tr>
<tr>
<td>pH</td>
<td>6,1</td>
<td>5,4</td>
<td>6,5</td>
<td>5,6</td>
<td>5,4</td>
</tr>
<tr>
<td>Eh [mV]</td>
<td>562,6</td>
<td>548,2</td>
<td>537,5</td>
<td>541,0</td>
<td>537,0</td>
</tr>
</tbody>
</table>
Anhand der Ionenstärke ist festzustellen, dass die Bodenlösung für RefeSol-03G (BLR-3) die höchste Konzentration gelöster Salze aufweist. BLR-2 und -4 zeigen beide deutlich niedrigere Ionenstärken, während BLR-1 und das SBW im Vergleich eher in der Mitte liegen. Eine vertiefende Diskussion der Zusammensetzung der Bodenlösungen erfolgt in Abschnitt 4.1.

3.3.2 Vorbereitung und Betrieb der Säulen

Für die Säulenversuche wurden Säulen aus transparentem Plexiglas mit einer Länge von 30 cm und einen Durchmesser von 5 cm verwendet. Sie wurden an beiden Enden mit einer Deckelkonstruktion verschlossen, die in Abbildung 3-2 zu sehen ist.

Abbildung 3-2: Schematischer Aufbau der Deckelkonstruktion.

Innerhalb der Deckelkonstruktion befindet sich ein Filter, welcher auf einem kleinen Dichtring aufliegt und mittels einer Plexiglasscheibe und Kunststoffschrauben fixiert ist. Der Deckel wird zusammen mit einem größeren Dichtring auf die Säule aufgesetzt und mit einer großen Stahlmutter verschraubt.

Insgesamt wurden sechzehn Säulen angefertigt, sodass für jeden Boden zwei Säulen mit SBW und zwei Säulen mit der entsprechenden individuellen Bodenlösung betrieben werden konnten. Während des Befüllens der Säulen wurden von den Böden jeweils Proben für die Bestimmung des gravimetrischen Wassergehalts genommen. Dazu wurden die Bodenproben

Die Säulen wurden anschließend so aufgestellt, wie es in Abbildung 3-3 zu sehen ist. Es wurden jeweils vier Säulen parallel betrieben, womit vier Durchgänge nötig waren.

Abbildung 3-3: Versuchsaufbau des Säulenversuchs; aus Vorratsgefäßen (1) wurden die Bodenlösungen mittels einer peristaltischen Schlauchpumpe IPC-4 von ISMATEC (2) von unten in die Säulen (3) gepumpt. Das Eluat der Säulen wurde in Sammelgefäßen (4) aufgefangen.

Die synthetischen Bodenlösungen wurden zunächst mittels Durchleiten von Argon entgast. Die Zu- und Ableitung der Lösungen erfolgte über Teflonschläuche, die mittels einer Verschraubung aus Polyetheretherketon (PEEK) an die Deckel der Säule angeschlossen wurden.

Nachdem für einen Zeitraum von etwa eineinhalb Wochen Bodenlösung mit einer Pumprate von 42,5 µl · min⁻¹ (≈ 60 ml · d⁻¹) durch die Säule gepumpt wurde, wurden die Vorratsgefäße durch Gefäße mit Tracerlösungen ausgetauscht, in denen etwa 333 Bq · ml⁻¹ ⁹⁹TcO₄⁻ in der entsprechenden synthetischen Bodenlösung vorlagen. Nach etwa 6 h erfolgte der Wechsel zurück zu den ungetracerten Bodenlösungen, sodass der Tracer in Form eines Pulses von etwa 15 ml auf die Säule aufgegeben wurde.

3.3.3 Gewinnung von Bodenproben aus den Säulen und Probenaufbereitung

Der eingefrorene Boden wurde aus den Säulen herausgeschoben und in zehn etwa gleich große Schichten geteilt. Die Bodenschichten wurden dann bei 105 °C für mindestens 16 h getrocknet und anschließend gewogen. Aus jeder Schicht wurden etwa 15 g Probenmaterial für die Bestimmung des Gehalts an 99Tc genommen, welche für ca. 6 h bei 600 °C in einem Muffelofen verascht wurden. Wie in der Literatur beschrieben, sind bei Temperaturen unterhalb von 700 °C keine signifikanten Verluste von 99Tc infolge der Veraschung zu erwarten [10, 63].

Anschließend wurden die Proben in Mikrowellengefäße aus Teflon überführt und in 15 ml HNO$_3$ (3 mol · l$^{-1}$) bei einer Temperatur von 160 °C für 30 min im Mikrowellenofen MARS 6 von CEM aufgeschlossen. Als Ausbeutetracer wurden 100 µl einer Lösung hinzugegeben, die 10 mg · l$^{-1}$ Rhenium in Form von Ammoniumperrhenat enthielt.

Die Lösungen wurden danach in Bechergläser gefüllt und unter Heizlampen eingedampft. Der Rückstand wurde schließlich in HNO$_3$ (0,1 mol · l$^{-1}$) neu aufgenommen und die nicht aufgeschlossenen Bodenbestandteile abfiltriert. Um das 99Tc von der Probenmatrix zu trennen, die die spätere Messung via ICP-MS stören kann, erfolgte eine Extraktionschromatographie über sogenanntes TEVA-Harz. Die aktive Komponente des TEVA-Harzes ist ein quartäres, aliphatisches Amin, dessen Struktur in Abbildung 3-4 zu sehen ist [64].

Abbildung 3-4: Struktur des Trialkylmethylammoniumnitrats bzw. -chlorids im TEVA-Harz.

Die verwendete Trennungsapparatur für die Chromatographie ist in Abbildung 3-5 zu sehen. Die verwendeten TEVA-Kartuschen von TRISKEM (50 – 100 µm) wurden zunächst mit 10 ml HNO$_3$ (0,1 mol · l$^{-1}$) vorkonditioniert. Durch eine an die Trennungsapparatur angeschlossene Pumpe wurde ein leichter Unterdruck erzeugt, sodass sich eine konstante Tropfgeschwindigkeit von etwa einem Tropfen pro Sekunde einstellte.

Abbildung 3-5: Aufbau der Extraktionschromatographie über TEVA-Harz mittels Vakuumbox.
Nach der Vorkonditionierung wurden die Proben eluiert und die Kartuschen anschließend mit etwa 20 ml HNO₃ (0,1 mol⋅l⁻¹) gespült. Unter den gegebenen Bedingungen weist ⁹⁹Tc, welches infolge des Aufschlusses in Salpetersäure als Tc(VII) vorliegen sollte [10], eine starke Retention auf dem TEVA-Harz auf. Dies wird auch aus Abbildung 3-6 deutlich, in welcher der Kapazitätsfaktor von TEVA-Harz in Abhängigkeit von der Konzentration an Salpetersäure für Technetium in der Oxidationsstufe +VII angegeben ist.

Abbildung 3-6: Kapazitätsfaktor \(k' \) für die Sorption von Tc(VII) an TEVA-Harz in Abhängigkeit von der Konzentration an Salpetersäure; nach [65].

Das auf dem TEVA-Harz retardierte ⁹⁹Tc wurde durch Elution mit HNO₃ (8 mol⋅l⁻¹) aus den Kartuschen heraushergelöst. Die resultierenden Lösungen wurden erneut unter Heizlampen eingedampft, in 5 ml HNO₃ (2%) aufgenommen und für die spätere Messung via ICP-MS verdünnt.

3.4 Untersuchung der Proben aus den Säulenversuchen mittels ICP-MS

Für die Analytik des ⁹⁹Tc sowie des Ausbeutetracers \(^{185/187}\)Re in den Proben wurde überwiegend ein iCAP Q von THERMO SCIENTIFIC verwendet, ein ICP-Massenspektrometer mit Quadrupol-Massenfilter. Darüber hinaus erfolgten auch Messungen an einem ICP-Massenspektrometer 8900 von AGILENT, wobei es sich um ein Gerät mit Tripel-Quadrupol handelt. Für die durchgeführten Messungen wurde jedoch nur ein Quadrupol betrieben.

Sowohl die Proben aus dem Eluat der Säulen, als auch aus dem Aufschluss der Bodenschichten wurden für die Messungen in HNO₃ (2 %) verdünnt. Die Kalibration der Messungen erfolgte über eine Reihe externer Standards.

4 Ergebnisse und Diskussion

Für die Messungen mittels ICP-OES und -MS wurden Nachweis- und Bestimmungsgrenzen mittels der sogenannten Leerwertmethode im Sinne der DIN 32645 [66] bestimmt. Die Nachweigrenzen \(x_{NG} \) wurden demnach nach
\[x_{NG} = \frac{s_L}{b} t_{n-1;\alpha} \sqrt{\frac{1}{m} + \frac{1}{n}} \]

(1)

erhalten. Dabei ist \(s_L \) die Standardabweichung der Messwerte der Leerprobe, \(b \) die Steigung der Kalibriergeraden, \(n \) die Anzahl der Messungen für die Bestimmung des Leerwerts und \(m \) die Anzahl der Messungen an einer Leerprobe, während \(t_{n-1;\alpha} \) einen Quantil der Studentschen \(t \)-Verteilung bezeichnet. Dabei wurde ein Signifikanzniveau von \(\alpha = 0,05 \) angenommen.

Die Bestimmungsgrenzen \(x_{BG} \) wurden aus den Nachweisgrenzen nach \(x_{BG} = k \cdot x_{NG} \) abgeschätzt, wobei \(1/k \) die relative Ergebnisunsicherheit ist, die mit 0,33 angenommen wurde.

4.1 Ermittelte Zusammensetzung der Bodensättigungsextrakte

Tabelle 4-1: Mittels ICP-OES (ARCOS) bestimmte Massenkonzentrationen der angegebenen Elemente in den Bodensättigungsextrakten der Referenzböden. Aus den Ergebnissen für die drei Proben je Boden wurde der Mittelwert bestimmt und zusammen mit der Standardabweichung aufgeführt. Zudem sind Normwerte für Ackerböden aus der Literatur [21, 67] angegeben; \(^1\) berechnet aus Literaturwerten für Sulfat; \(^2\) berechnet aus Literaturwerten für (Di-)Hydorgenphosphat; < LOD: unterschreitet Nachweisgrenze; (): außerhalb Kalibration.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega) [mg·l(^{-1})]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 – 600</td>
</tr>
<tr>
<td>Ca</td>
<td>325,31 ± 11,11</td>
<td>71,13 ± 1,89</td>
<td>524,77 ± 29,18</td>
<td>48,53 ± 1,82</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>58,46 ± 1,70</td>
<td>2,52 ± 0,09</td>
<td>71,67 ± 2,62</td>
<td>7,06 ± 0,27</td>
<td>1 – 80</td>
</tr>
<tr>
<td>K</td>
<td>59,52 ± 3,12</td>
<td>3,59 ± 0,15</td>
<td>39,06 ± 1,68</td>
<td>21,29 ± 0,54</td>
<td>0,1 – 80</td>
</tr>
<tr>
<td>Na</td>
<td>6,25 ± 0,14</td>
<td>6,72 ± 0,14</td>
<td>27,87 ± 1,24</td>
<td>7,45 ± 0,46</td>
<td>2 – 50</td>
</tr>
<tr>
<td>B</td>
<td>3,66 ± 0,02</td>
<td>3,56 ± 0,02</td>
<td>3,61 ± 0,02</td>
<td>3,61 ± 0,00</td>
<td>0,02 – 0,25</td>
</tr>
<tr>
<td>Al</td>
<td>4,10 ± 0,06</td>
<td>2,24 ± 0,14</td>
<td>4,02 ± 0,12</td>
<td>2,29 ± 0,04</td>
<td>0,01 – 10</td>
</tr>
<tr>
<td>Mn</td>
<td>< LOD</td>
<td>< LOD</td>
<td>5,95 ± 0,30</td>
<td>(< 0,5)</td>
<td>< 0,001 – 3</td>
</tr>
<tr>
<td>Fe</td>
<td>(< 0,5)</td>
<td>(< 0,5)</td>
<td>< LOD</td>
<td>(< 0,5)</td>
<td>0,02 – 3</td>
</tr>
<tr>
<td>Sr</td>
<td>(< 0,5)</td>
<td>< LOD</td>
<td>(< 0,5)</td>
<td>< LOD</td>
<td>0,2 – 20 [67]</td>
</tr>
<tr>
<td>S</td>
<td>69,23 ± 4,68</td>
<td>9,35 ± 0,19</td>
<td>48,19 ± 3,18</td>
<td>10,07 ± 0,15</td>
<td>≈ 3 – 40 (^1)</td>
</tr>
<tr>
<td>Si</td>
<td>35,15 ± 0,04</td>
<td>35,46 ± 0,23</td>
<td>34,84 ± 0,39</td>
<td>31,76 ± 0,10</td>
<td>1 – 40</td>
</tr>
<tr>
<td>P</td>
<td>2,50 ± 0,27</td>
<td>1,02 ± 0,03</td>
<td>2,52 ± 0,11</td>
<td>1,71 ± 0,05</td>
<td>≈ 0,3 – 3 (^2)</td>
</tr>
</tbody>
</table>

Im Gegensatz zu den anderen beiden Referenzböden sind RefeSol-01A und -03G vermutlich stärker durch die Düngung der Böden beeinflusst. Aus den Probenahmeprotokollen in Abbildung A-1 und Abbildung A-3 im Anhang ist abzulesen, dass der Boden RefeSol-01A im Jahr vor der Probenahme intensiv gekalkt wurde (insgesamt 2 t · ha⁻¹) und eine Stickstoffdüngung erhalten hat (60 kg · ha⁻¹), während RefeSol-03G in den Jahren vor der Probenahme regelmäßig mit Rindergülle gedüngt wurde (insgesamt 110 m³ · ha⁻¹ von 2014 bis 2017). Dies spiegelt sich auch in der Zusammensetzung der Bodensättigungsextrakte der Böden RefeSol-01A und -03G wider, da diese im Mittel höhere Konzentrationen der betrachteten Elemente aufweisen als die Lösungen der Böden RefeSol-02A und -04A.

Darüber hinaus sind Auffälligkeiten für die Elemente Mangan und Bor zu erkennen. Während der Boden RefeSol-03G eine sehr hohe Konzentration von Mangan in der Bodenlösung aufweist, die auch die angegebenen Literaturwerte übersteigt, ist dies für Bor für alle vier Bodenlösungen gleichermaßen zu beobachten.

Um diese Abweichungen von der Norm aber auch die Ergebnisse insgesamt zu verifizieren, erfolgte eine zweite Messung der Bodensättigungsextrakte an einem iCAP 6200 Emissionspektrometer. Die entsprechenden Ergebnisse sind in Tabelle 4-2 aufgeführt.

<table>
<thead>
<tr>
<th>RefeSol-01A</th>
<th>RefeSol-02A</th>
<th>RefeSol-03G</th>
<th>RefeSol-04A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>(> 100)</td>
<td>74,38 ± 5,20</td>
<td>(> 100)</td>
</tr>
<tr>
<td>Mg</td>
<td>64,03 ± 4,20</td>
<td>2,72 ± 0,12</td>
<td>87,12 ± 5,41</td>
</tr>
<tr>
<td>K</td>
<td>52,22 ± 5,39</td>
<td>0,85 ± 0,78</td>
<td>38,70 ± 4,53</td>
</tr>
<tr>
<td>Na</td>
<td>7,05 ± 0,42</td>
<td>7,31 ± 0,11</td>
<td>29,93 ± 2,35</td>
</tr>
<tr>
<td>B</td>
<td>0,05 ± 0,03</td>
<td>< LOD</td>
<td>< LOD</td>
</tr>
<tr>
<td>Al</td>
<td>1,78 ± 0,99</td>
<td>2,35 ± 0,22</td>
<td>4,01 ± 0,74</td>
</tr>
<tr>
<td>Mn</td>
<td>< LOD</td>
<td>< LOD</td>
<td>6,95 ± 0,40</td>
</tr>
</tbody>
</table>

Im Wesentlichen konnten die Ergebnisse der ersten Messung mittels ARCOS-System durch die Kontrollmessung am hauseigenen iCAP 6200 bestätigt werden. Nur die hohen gemessenen Werte für die Konzentration von Bor in den Lösungen ließen sich nicht reproduzieren. Dass Bor nur in Spuren in den Bodenlösungen vorkommt, wie es aus der zweiten Messung hervorgeht, scheint dabei wesentlich realistischer.

Die Bor-Konzentration, die in der ersten Messung ermittelt wurde, liegt in allen Bodenlösungen um eine Größenordnung über dem Normwert aus der Literatur von bis zu 0,25 mg·l⁻¹. Zwar ist angegeben, dass in Böden aus borreichen Gesteinen auch Werte bis zu 18 mg·l⁻¹ möglich sind [21], jedoch erscheint es unwahrscheinlich, dass dies auf alle Böden gleichermaßen zutrifft. Zudem ist auffällig, dass die Werte für die einzelnen Bodenlösungen nur geringfügig voneinander abweichen.

Eine mögliche Erklärung hierfür liegt im sogenannten Memory-Effekt. Bor kann leicht an den Wandungen des Probeneinführungssystems adsorbieren und wird nur langsam wieder ausgewaschen, weshalb eine Verschleppung des Analyten möglich ist [43]. Es kann also vermutet werden, dass die hohen ermittelten Konzentrationen im Rahmen der ersten Messung auf fehlerhafte Analysebedingungen, wie die Verschleppung von Bor aus vorherigen Proben zurückzuführen sind.

Im Zuge des Kooperationsprojektes GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) wurden in 33 europäischen Ländern Ackerboden- und Grünlandproben mit verschiedenen Extraktions- und Aufschlussmethoden hinsichtlich ihrer Elementzusammensetzung untersucht, um mittels Einzelelementkarten die Verteilung der Elemente und ihre Bioverfügbarkeit im europäischen Maßstab darstellen zu können [69].

Abbildung 4-1 zeigt einen Ausschnitt der Einzelelementkarte für die geographische Verteilung löslichen Mangans in landwirtschaftlich genutzten Böden zusammen mit den Standorten der Probenahme für die vier betrachteten Referenzböden.

Abbildung 4-1: Geographische Verteilung von mobilem Mangan in Böden; Karte nach [61], Daten zur Manganverteilung aus [69]

Kritisch anzumerken ist, dass für die Erstellung der Elementkarten nur punktuell Proben genommen wurden (etwa eine Probe pro 2500 km² [70]) und die lokale Elementverteilung somit nur bedingt aufzulösen ist. Es kann also nicht auf eine exakte Konzentration von Mangan in den Böden geschlossen werden, zumal Böden dynamische Systeme darstellen und Konzentrationen von Bodenbestandteilen ständigen Schwankungen unterliegen. Dennoch kann anhand der Abbildung vermutet werden, dass sich der Boden RefeSol-03G tatsächlich in einer Gegend befindet, die sich gegenüber den Standorten der anderen drei Böden durch einen höheren Gehalt löslichen Mangans im Boden auszeichnet.

Fraglich ist, ob dies allein der Grund für die sehr hohe Konzentration an Mangan in den Bodensättigungsextrakten ist. Denkbar ist, dass die hohe Konzentration auch anthropogenen...

Beim Boden RefeSol-03G handelt es sich um einen Lehm­boden [40], der eine hohe Wasserhaltekapazität aufweist. Dies hat sich auch bei der Herstellung der Bodensättigungsextrakte gezeigt, da für diesen Boden am meisten Wasser nötig war, um die Fließgrenze zu erreichen.

Es wäre also denkbar, dass die Zusammensetzung der Bodenlösung infolge der Niederschläge zum Zeitpunkt der Probenahme durch Stau­wasser beeinflusst wurde. Durch Stau­wasser könnten sich im Boden anaerobe Bedingungen ausgebildet haben, welche das Auflösen von Mangan(IV)-(Oxid-)Hydroxiden infolge der Reduktion zu Mn(II) ermöglichen [79, 80].

Es existieren somit mehrere mögliche Gründe für die hohe Konzentration von Mangan in den Bodensättigungsextrakten des RefeSol-03G. Insbesondere, weil in Form von Düngung in die Bodenchemie eingegriffen wurde, scheint es nicht ausgeschlossen, dass die Zusammensetzung der Bodenlösung für einzelne Bestandteile außerhalb des Bereiches liegt, der in der Literatur beschrieben ist.

4.2 Ergebnisse der Säulenversuche

Im Folgenden sind die ermittelten Konzentrationen an \(^{99}\text{Tc}\) in den Eluat­proben sowie in den Bodenschichten der Säulen für die einzelnen Referenzböden gezeigt. Obwohl für jeden Boden insgesamt vier Säulenversuche durchgeführt wurden, wurden nicht für jeden Versuch auswertbare Ergebnisse erhalten. Der Fluss einiger Säulen kam beispielsweise im Versuchsverlauf zum Erliegen, was möglicherweise auf eine zu starke Verdichtung der Böden bei der Befüllung der Säulen zurückzuführen ist.

Für die Darstellung des \(^{99}\text{Tc}\)-Gehalts in den Eluatproben wurden die ermittelten Aktivitäts­konzentrationen auf die Aktivitäts­konzentration der jeweils verwendeten Tracerlösung normiert und gegen das eluierte Volumen aufgetragen. Dieses wiederum wurde auf das
Porenvolumen der Säulen normiert. Der Fehler der normierten Aktivitätskonzentration ergibt sich aus der Standardabweichung der Mehrfachmessung mittels ICP-MS. Der horizontale Fehler der Messwerte entspricht dem Volumen der analysierten Eluatproben und gibt somit an, über welchen Volumenbereich die Aktivitätskonzentration gemittelt wurde.

Für den Gehalt in den Bodenschichten ist jeweils die massenbezogene Aktivitätskonzentration für die einzelnen Schichten angegeben. Als Fehler wurde ebenfalls die Standardabweichung der Mehrfachmessung mittels ICP-MS angenommen, wobei auch die Standardabweichung der Rhenium-Messung zur Ausbeutebestimmung mit berücksichtigt wurde.

4.2.1 RefeSol-01A

Abbildung 4-2: Normierte 99Tc-Aktivitätskonzentration im Eluat der Säulen mit RefeSol-01A; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-01A.
Dass das Maximum der Aktivität nach der Elution etwa eines Porenvolumens detektiert wird, deutet darauf hin, dass ein großer Teil des zugegebenen 99TcO$_4^-$ die Säule nahezu ungehindert passiert. Dies ist auch in der Literatur für Säulenversuche mit Pertechnetat beschrieben [81, 82] und ist auf die geringe Wechselwirkung des Anions mit den Bodenbestandteilen zurückzuführen [83]. Die Durchbruchskurven lassen jedoch eine leichte Asymmetrie in Form eines Tailings erkennen, was darauf hindeutet, dass ein Teil des 99Tc durch Sorption in der Säule zurückgehalten wird [52]. Die Betrachtung des 99Tc-Gehalts in den Bodenschichten der Säulen in Abbildung 4-3 bestätigt die Rückhaltung von Technetium in den Säulen. So war für die drei Säulen in allen Tiefen 99Tc zu finden.

Abbildung 4-3: Massenbezogene 99Tc-Aktivität in den Bodenschichten der Säulen mit RefeSol-01A; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-01A.

Insbesondere die Säule SBW a weist eine hohe Aktivität in den Bodenschichten auf, etwa 44 % der insgesamt aufgegebenen Aktivität. Sie ist jedoch mit den anderen beiden Säulen kaum zu vergleichen, da die Elution früher beendet wurde. Es ist anzunehmen, dass ein großer Teil des detektierten Technetiums, welches sich insbesondere in den höheren Säulenschichten fand, mobil ist und die Säule bei einer längeren Elution verlassen hätte.

Die anderen beiden Säulen weisen ein ähnliches eluiertes Volumen auf und unterscheiden sich somit vor allem durch die für die Elution verwendete Bodenlösung voneinander. Die individuelle Bodenlösung für RefeSol-01A ist dem SBW nach Bors et al. in seiner Zusammensetzung recht ähnlich, was der Grund sein dürfte, weshalb sich die Säulen in ihren 99Tc-Gehalten im Boden, sowie in den Durchbruchskurven in Abbildung 4-2 nur geringfügig unterscheiden.
Auffällig ist jedoch, dass aus der Analyse der Aktivitätskonzentration in den Bodenschichten entnommen werden kann, dass in der Säule BLR-1 weniger Technetium vorliegt (6 % der Gesamtaktivität) als in der vergleichbaren Säule SBW b (9 % der Gesamtaktivität), während die entsprechenden Durchbruchskurven einen gegensätzlichen Eindruck vermitteln. Die Durchbruchskurve der Säule BLR-1 weist eine geringere maximale Aktivitätskonzentration auf, was bedeuten würde, dass ein größerer Anteil des Technetiums in der Säule verblieben ist. Zudem steigt die Aktivitätskonzentration im Eluat geringfügig später an als für die mit SBW eluierten Säulen, was ein Hinweis auf eine stärkere Retention in der Säule sein könnte.

Ein möglicher Grund für diesen Widerspruch liegt in einer unvollständigen chemischen Trennung bei der Aufbereitung der Proben aus den Säulenschichten. So zeigten sich bei der Messung des 99Tc-Gehalts in den Bodenproben für die Säulen, die mit SBW eluiert wurden, höhere Signale des Analyten 59Co. Es kann also vermutet werden, dass bei diesen Messungen ein höherer Untergrund durch das Vorliegen von 59Co40Ar bestand, wodurch der ermittelte 99Tc-Gehalt in den Proben größer als der tatsächliche ist [10]. Dies ist möglicherweise auch der Grund dafür, dass die Standardabweichungen der Einzelmessungen mittels ICP-MS und somit die angegebenen Fehler in Abbildung 4-3 für die Säulen mit SBW größer sind, da die Bildung von 59Co40Ar zeitlichen Schwankungen unterliegen dürfte.

Im vorliegenden Fall scheinen die Ergebnisse aus den Messungen der Eluatproben also verlässlicher zu sein, weshalb angenommen werden kann, dass bei der Elution mit der individuellen Bodenlösung in geringem Maße mehr 99Tc in der Säule retardiert wird.

Die Retention des Technetiums in den Säulen könnte auf die Reduktion zu Tc(IV) zurückzuführen sein, welches eine deutlich geringere Mobilität als Tc(VII) aufweist [84]. Zum einen weil Technetium in der Oxidationsstufe +IV durch organische Bodenbestandteile komplexiert wird [85], zum anderen weil es in Form von TcO$_2$ \cdot x H$_2$O oder auch TcS$_2$ schwerlösliche Verbindungen bildet und so durch (Ko-)Fällung immobilisiert werden kann [86].

Einen großen Einflussfaktor auf die Redoxchemie des Technetiums stellen Mikroorganismen dar [89]. So sind beispielsweise mehrere anaerobe metall- und sulfatreduzierende Bakterien bekannt, die an der Reduktion und Immobilisierung von Tc(VII) beteiligt sein können [90–92]. Dabei ist sowohl eine direkte enzymatische Reduktion des Tc(VII) beschrieben als auch eine indirekte Reduktion, indem Fe(III) unter anaeroben Bedingungen zu Fe(II) umgesetzt wird, welches wiederum Tc(VII) zu Tc(IV) reduzieren kann [93].

Wenn angenommen wird, dass keine Reduktion des Technetiums erfolgt und dieses ausschließlich als TcO⁴⁻ in den Säulen vorliegt, ist der Anionenaustausch als Sorptionsmechanismus in Betracht zu ziehen. Wie in Abschnitt 2.2.2 erläutert wurde, weisen Tonmineralen und Huminstoffe in Böden überwiegend eine negative Oberflächenladung auf, weshalb dem Kationenaustausch im Allgemeinen eine höhere Bedeutung zukommt [21]. Dennoch finden im geringen Maße auch Anionenaustauschreaktionen statt, insbesondere an Aluminium- und Eisen-(Oxid-)Hydroxiden. Diese können teilweise unter sauren Bedingungen protoniert vorliegen und infolgedessen eine positive Oberflächenladung aufweisen. Die Zahl der positiven Oberflächenladungen und somit die Anionenaustauschkapazität des Bodens nimmt dabei im Allgemeinen mit sinkendem pH-Wert zu [96].

Die individuelle Bodenlösung für ReFeSol-01A weist mit 5,4 einen niedrigeren pH-Wert auf als das synthetische Bodenwasser mit einem pH-Wert von 6,1. Es kann also angenommen werden, dass der Boden ReFeSol-01A bei der Elution mit der individuellen Bodenlösung eine höhere Anionenaustauschkapazität aufweist und die Retention von TcO⁴⁻ begünstigt wird.

Der pH-Wert der Lösungen dürfte sich jedoch ähnlich wie das Redoxpotential bei der Elution durch die Säulen infolge chemischer Reaktionen verändern [21]. Auch mikrobielle Aktivität hat einen Einfluss auf den pH-Wert, da beispielsweise bei anaeroben Prozessen Protonen umgesetzt werden [97, 98].

anzuzweifeln, dass die geringe Differenz in den Ionenstärken des SBW nach Bors et al. (36,7 mmol · l⁻¹) und der Lösung BLR-1 (35,9 mmol · l⁻¹) einen signifikanten Effekt hat.

4.2.2 RefeSol-02A

Die Bodenlösung BLR-2 weist in ihrer Zusammensetzung größere Unterschiede zum SBW auf, was unter anderem in der geringeren Ionenstärke von 6,5 mmol · l⁻¹ deutlich wird. Wenn eine geringere Ionenstärke die Sorption von TcO₄⁻ begünstigt, wie zuvor diskutiert wurde, wäre demnach für die individuelle Bodenlösung eine stärkere Retention zu erwarten. Tatsächlich zeigt sich dies auch bei Betrachtung der Durchbruchskurven in Abbildung 4-4.

Abbildung 4-4: Normierte ⁹⁹Tc-Aktivitätskonzentration im Eluat der Säulen mit RefeSol-02A; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-02A.

Allerdings unterscheiden sich auch die Durchbruchskurven der Säulen, die beide mit SBW eluiert wurden voneinander, da für die Säule SBW a eine höhere maximale Aktivitätskonzentration erreicht wird als für die Säule SBW b. Die Ursache für dieses unterschiedliche Verhalten trotz ähnlicher Versuchsbedingungen könnte in Inhomogenitäten der Porensysteme beider Säulen liegen.

Der ⁹⁹Tc-Gehalt der Bodenschichten ist für die beiden mit SBW eluierten Säulen wiederum sehr ähnlich, wie aus Abbildung 4-5 hervorgeht. Beide Säulen enthalten etwa 7 % der insgesamt eluierten Aktivität. Demgegenüber weist die Säule BLR-2 einen deutlich höheren ⁹⁹Tc-Gehalt von etwa 17 % der gesamten Aktivität auf, wobei allein 13 % der Gesamtaktivität in den oberen beiden Schichten zu finden sind.

32
Anders als für die Säule SBW a aus dem Versuch mit RefeSol-01A ist diese hohe Aktivitätskonzentration in den oberen Säulenschichten wohl nicht mit einer unvollständigen Elution zu erklären. In Abbildung 4-4 ist deutlich die Durchbruchskurve der Säule BLR-2 zu erkennen und die gemessene Aktivitätskonzentration sinkt in der letzten Eluatprobe wieder auf einen Wert von etwa 0,03 % der Aktivitätskonzentration der Tracerlösung. Es kann also vermutet werden, dass die hohe Aktivität in den oberen Säulenschichten auf immobiles Technetium zurückzuführen ist.

Sauerstoff, der eventuell zusammen mit der Bodenlösung von unten der Säule zugeführt wird, würde nach und nach durch Mikroorganismen innerhalb der Säule umgesetzt werden, sodass angenommen werden kann, dass in den oberen Schichten der Säule das niedrigste Redoxpotential vorliegt. Dass das Technetium vor allem in den oberen Säulenschichten immobilisiert wurde, kann somit als Indiz für die Reduktion zu Tc(IV) gewertet werden.

Abbildung 4-5: Massenbezogene 99Tc-Aktivität in den Bodenschichten der Säulen mit RefeSol-02A; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-02A.

Wenn die Retention in der Säule BLR-2 auf eine Reduktion zurückzuführen wäre, könnte das unterschiedliche initiale Redoxpotential der Bodenlösungen der Grund dafür sein, dass der Effekt nicht in gleicher Weise für die mit SBW eluierten Säulen zu beobachten war, da das SBW oxidierender war als die Lösung BLR-2.

zufolge keinen nennenswerten Einfluss auf die Oxidation von Tc(IV) [103]. Dennoch ist beschrieben, dass Nitrat die Reduktion von Tc(VII) in Böden hemmt [104]. Als Ursache hierfür wird der Einfluss des Nitrats auf die Mikroflora von Böden angeführt. Nitrat kann von anaeroben Mikroorganismen reduktiv umgesetzt werden, was als Nitratatmung oder Denitrifikation bezeichnet wird [21, 105]. Es ist beschrieben, dass Tc(VII) reduziert wird, wenn sich im Boden eisenreduzierende Bedingungen ausbilden. Dies erfolgt jedoch nicht, solange im Boden Nitrat als Oxidationsmittel vorliegt und die Denitrifikation erfolgen kann [79, 106].

Die Lösung BLR-2 weist mit 1,30 mmol ⋅ l⁻¹ eine signifikant niedrigere Konzentration an Nitrat auf als das SBW mit 8,92 mmol ⋅ l⁻¹, sodass dies als möglicher Grund dafür angeführt werden kann, dass sich die stärkere Retention nur bei der Elution mit BLR-2 zu beobachten war. Für die Nitratkonzentration lässt sich ähnlich wie für den Sauerstoffgehalt annehmen, dass sie infolge der mikrobiellen Aktivität innerhalb der Säule von unten nach oben abnimmt, was ebenfalls erklären könnte, weshalb die Retention vor allem in den oberen Schichten erfolgt.

Es ist denkbar, dass neben der Nitrat-Konzentration auch die allgemeine Ionenstärke der Lösung BLR-2 Einfluss auf die Reduktion von Tc(IV) hat. In der Literatur ist beispielsweise angegeben, dass Tc(VII) an der Oberfläche von Magnetit (Fe₃O₄) zu Tc(IV) reduziert werden kann. Dafür muss zunächst eine Sorption des Pertechnetats an die Mineraloberfläche erfolgen, was als geschwindigkeitsbestimmender Schritt beschrieben ist [84]. Da die Sorption von Pertechnetat-Ionen mit zunehmender Konzentration konkurrierender Anionen in der Lösung im Allgemeinen abnimmt [107], kann gefolgert werden, dass eine niedrige Ionenstärke, wie sie in der Lösung BLR-2 vorliegt, die Reduktion von Tc(VII) zu Tc(IV) begünstigt.

4.2.3 RefeSol-03G

Werden die Durchbruchskurven für die Säulenversuche mit dem Boden RefeSol-03G in Abbildung 4-6 betrachtet, wird deutlich, dass für die Elution mit der Bodenlösung BLR-3 eine höhere maximale Aktivitätskonzentration erhalten wird als für die Elution mit SBW. Das Eluatvolumen, nach dem ein Ansteigen der Aktivitätskonzentration festzustellen ist, unterscheidet sich zudem für die einzelnen Säulen. Da dies auch für die Säulen der Fall ist, die beide mit SBW eluiert wurden, ist dies möglicherweise lediglich auf Inhomogenitäten im Porenraum zurückzuführen.

Zusätzlich fällt auf, dass sich für jede der drei Säulen zum Zeitpunkt der Beendigung des Versuchs noch Aktivitätskonzentrationen detektieren ließen, die bei über 5 % der Technetium-Konzentration der Tracerlösung liegen. Obwohl die Säulen über einen ähnlich langen Zeitraum betrieben wurden, wie die Säulen mit den anderen Böden, ließ sich also keine „vollständige“ Elution beobachten. Dies ist darauf zurückzuführen, dass die Säulen mit RefeSol-03G ein größeres Porenvolumen aufwiesen als die Säulen mit anderen Böden. Die Folge daraus ist, dass die Daten aus der Analyse der Bodenschichten der Säulen nur wenig aussagekräftig sind, da die
Säulen noch große Mengen Technetiums enthalten, die wahrscheinlich bei einem Weiterbetrieb der Säulen zu großen Teilen aus der Säule eluiert wären. Aufgrund des nötigen Zeitaufwandes, der für die Durchführung von Säulenversuchen nötig ist, war eine Wiederholung der Versuche jedoch im Rahmen dieser Arbeit nicht darstellbar.

Abbildung 4-6: Normierte 99mTc-Aktivitätskonzentration im Eluat der Säulen mit RefeSol-03G; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-03G.

Abbildung 4-7: Massenbezogene 99mTc-Aktivität in den Bodenschichten der Säulen mit RefeSol-03G; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-03G.
Allein anhand der Durchbruchskurven kann jedoch vermutet werden, dass bei der Elution mit SBW eine höhere Retention von 99Tc zu beobachten ist als für die Elution mit BLR-3. Im Gegen- satz zu den Lösungen BLR-1 und -2 weist die Bodenlösung BLR-3 mit 53,6 mmol · l$^{-1}$ eine höhere Ionenstärke auf als das synthetische Bodenwasser, sodass dies im Einklang mit der zuvor diskutierten Hypothese steht, dass eine hohe Ionenstärke der Bodenlösung die Mobilität von Technetium in den Säulen fördert. Auch die Konzentration von Nitrat in der Lösung BLR-3 ist mit 19,48 mmol · l$^{-1}$ höher als im SBW, sodass vermutet werden kann, dass eine mögliche Retention infolge der Reduktion von Tc(VII) bei der Elution mit BLR-3 erschwert ist.

Aus den Durchbruchskurven kann zudem die Schlussfolgerung gezogen werden, dass der Einfluss des pH-Werts der Lösungen auf die Migration von Technetium nur gering ist. Die Lösung BLR-3 weist ähnlich wie die Lösung BLR-1 mit 5,6 einen niedrigeren pH-Wert auf als das SBW, was wie zuvor diskutiert die Anionensorption begünstigen könnte. Da jedoch für die Versuche mit synthetischem Bodenwasser eine stärkere Sorption zu beobachten war, scheint für die Retention des Technetiums der Einfluss anderer Faktoren zu überwiegen. Auch das geringere Redoxpotential der Lösung BLR-3 gegenüber dem SBW lässt sich für den Boden RefeSol-03G nicht mit einer stärkeren Retention korrelieren.

4.2.4 RefeSol-04A

Für den Boden RefeSol-04A wurde zusätzlich zu SBW und BLR-4 auch eine Säule mit der Lösung BLR-3 betrieben, sodass insgesamt drei verschiedene Lösungen eluiert wurden. Dabei war für die mit SBW eluierte Säule die höchste maximale Aktivitätskonzentration im Eluat festzustellen, wie in Abbildung 4-8 zu sehen ist. Somit zeigt sich für den Boden RefeSol-04A ein gegensätzliches Verhalten wie für den Boden RefeSol-03G, wo für die individuelle Bodenlösung eine höhere 99Tc-Konzentration im Eluat messbar war als für die Elution mit SBW.

Dies könnte ein Hinweis darauf sein, dass nicht allein die Bodenlösung Einfluss auf die Sorption von Technetium hat, sondern ein komplexes Zusammenspiel aus Bodenlösung und Boden besteht und nicht allein anhand einzelner Faktoren wie dem Redoxpotential oder der Zusammensetzung der Bodenlösung Vorhersagen für das Verhalten von Technetium getroffen werden können.

Für die Elution mit der Lösung BLR-4 wird im Gegensatz zu den Versuchen mit den anderen beiden Bodenlösungen eine geringere maximale Technetium-Konzentration im Eluat gemessen. Da die Bodenlösung mit 6,1 mmol · l$^{-1}$ die geringste Ionenstärke und mit 0,93 mmol · l$^{-1}$ die niedrigste Nitrat-Konzentration aller verwendeten Bodenlösungen aufweist, entspricht dies dem Verhalten, welches für die Säulenversuche mit den anderen drei Böden beobachtet wurde.
Abbildung 4-8: Normierte 99Tc-Aktivitätskonzentration im Eluat der Säulen mit RefeSol-04A; in Rot für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Blau und Grün für die Elution mit der individuellen Bodenlösung für RefeSol-03G bzw. -04A.

Wenn angenommen wird, dass bei der Elution mit BLR-3 eine stärkere Retention als für die Elution mit SBW erfolgt, wie es aus den Durchbruchskurven abzulesen ist, bleibt fraglich, wieso dies der Fall ist, obwohl die Lösung BLR-3 eine höhere Ionenstärke sowie eine höhere Nitrat-Konzentration aufweist. Möglich wäre, dass anders als für den Versuch mit dem Boden RefeSol-03G, der pH-Wert eine Rolle für die Sorption von Technetium spielt.

Versuche mit Bodenproben aus der Nähe der kerntechnischen Anlage Sellafield zeigten, dass der pH-Wert einenentscheidenden Einfluss auf die Reduktion von Tc(VII) haben kann. Der untersuchte Boden wies einen sauren pH-Wert von 5,5 auf. Unter diesen Bedingungen war die mikrobielle Aktivität sulfat- und metallreduzierender Mikroorganismen gehemmt, sodass sich
keine Reduktion von Tc(VII) beobachten ließ. Die Zugabe von Nitrat, welches wie zuvor beschrieben die Reduktion von Tc(VII) ebenfalls hemmen kann, förderte in diesem Fall die Immobilisierung von Technetium, da durch die Aktivität nitratreduzierender Mikroorganismen der pH-Wert der Versuchslösungen so weit angehoben wurde, dass nach der vollständigen Denitrifikation die Reduktion von Fe(III) und Tc(VII) möglich war [104].

Da es sich bei RefeSol-03G und -04A um Böden mit unterschiedlichen pH-Werten und mutmaßlich unterschiedlicher Mikroflora handelt, kann davon ausgegangen werden, dass Einflussfaktoren wie beispielsweise die hohe Nitratkonzentration der Bodenlösung BLR-3 unterschiedliche Effekte auf die Chemie der Böden haben und dies möglicherweise der Grund für die scheinbar widersprüchlichen Ergebnisse aus den Versuchen mit den unterschiedlichen Böden ist.

Abbildung 4-9: Massenbezogene 99Tc-Aktivität in den Bodenschichten der Säulen mit RefeSol-04A; in Rot für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Blau und Grün für die Elution mit der individuellen Bodenlösung für RefeSol-03G bzw. -04A.

Die Säule BLR-4 zeigt im Vergleich zu den anderen Säulen einen höheren Gehalt von 99Tc in den Bodenschichten, so wie es anhand der Durchbruchskurve zu erwarten war. Insgesamt befinden sich etwa 27 % der Gesamtaktivität innerhalb der Säule, wobei allein die obere Hälfte etwa 20 % der Gesamtaktivität beinhaltet. Dass ähnlich wie beim Boden RefeSol-02A insbesondere die oberen Schichten hohe Konzentrationen an 99Tc aufweisen, deutet darauf hin, dass die Retention des Technetiums auf eine Reduktion zu Tc(IV) zurückzuführen sein könnte. Da die Bodenlösung BLR-4 eine ähnliche Zusammensetzung aufweist wie die Lösung BLR-2, können ähnliche Schlussfolgerungen gezogen werden, wie bereits in Abschnitt RefeSol-02A diskutiert wurden. So kann vermutet werden, dass eine niedrige Ionenstärke und eine niedrige Nitrat-Konzentration entscheidende Faktoren für die Reduktion von Tc(VII) in Böden darstellen.
Zusammenfassung und Ausblick

Die entwickelten individuellen Bodenlösungen für die Böden RefeSol-02A und -04A wiesen demzufolge eine vergleichsweise geringe Ionenstärke auf, während für den Boden RefeSol-03G eine Lösung mit einer hohen Ionenstärke entwickelt wurde. Für RefeSol-01A wurde eine Lösung entworfen, die entsprechend der Untersuchung der Bodensättigungsextrakte eine Ionenstärke aufwies, die im Vergleich eher in der Mitte liegt und ähnlich der des synthetischen Bodenwassers (SBW) nach Bors et al. ist.

Dementsprechend zeigten sich auch bei den Durchlaufsäulen mit dem Boden RefeSol-01A keine großen Unterschiede in der Retention von Technetium bei Verwendung der verschiedenen Bodenlösungen.

Ein größerer Unterschied war für den Boden RefeSol-02A festzustellen. Für die Elution mit der individuellen Bodenlösung war eine deutlich stärkere Retention des Technetiums zu
beobachten. Die Aktivität befand sich dabei überwiegend in den oben Schichten der Säule. Da
davon auszugehen ist, dass Oxidationsmittel wie Sauerstoff und Nitrat, die der Säule zusammen
mit den synthetischen Bodenlösungen von unten zugeführt werden, nach und nach durch mik-
robielle Aktivität verbraucht werden, kann dies als Hinweis auf eine Reduktion zu immobilem
Tc(IV) gedeutet werden. Als Ursache dafür, dass die Retention nicht im gleichen Maße für die
Elution mit SBW zu beobachten war, wurden insbesondere die höhere Ionenstärke und die hö-
here Nitrat-Konzentration des synthetischen Bodenwassers gegenüber der individuellen Bo-
denlösung diskutiert. Eine höhere Ionenstärke wird auch in der Literatur als hemmender Fak-
tor für die Sorption von TcO₄⁻ und Anionen im Allgemeinen beschrieben, insbesondere auf-
grund eines kompetitiven Effekts [83, 96, 99]. Nitrat wiederum dient als Oxidationsmittel für
Mikroorganismen und kann so die Einstellung eisenreduzierender Bedingungen verhindern,
die als Bedingung für die effektive Reduktion von Tc(VII) beschrieben sind [79, 104, 106].

Aufgrund einer unvollständigen Elution konnten für den Boden RefeSol-03G keine genauen
Aussagen über die Verteilung von Technetium in den Säulen getroffen werden. Anhand der
Durchbruchskurven ließ sich jedoch vermuten, dass die Elution mit SBW zu einer stärkeren
Retention von Technetium führte als die Elution mit der individuellen Bodenlösung, die eine
höhere Ionenstärke und eine höhere Nitratkonzentration aufwies.

Für den Boden RefeSol-04A wurde eine Säule mit der individuellen Bodenlösung für den
Boden RefeSol-03G betrieben, sodass Säulenversuche mit insgesamt drei verschiedenen Bo-
denlösungen durchgeführt wurden. Bezüglich der Retention von Technetium bei der Elution
mit der Lösung für RefeSol-03G und dem synthetischen Bodenwasser nach Bors et al. zeigte
sich dabei in den Durchbruchskurven ein umgekehrtes Verhalten im Vergleich zu den Versu-
chen mit dem Boden RefeSol-03G. Dies deutet darauf hin, dass sich kein einfacher Zusammen-
hang zwischen der Zusammensetzung der Bodenlösung und der Sorption des Technetiums her-
stellen lässt, sondern dass ein komplexes Zusammenspiel mehrerer Faktoren das Verhalten von
Technetium im Boden bestimmt.

Für die Elution mit der individuellen Bodenlösung für den Boden RefeSol-04A ließ sich im
Vergleich zu den Versuchen mit dem Boden RefeSol-03G eine stärkere Retention
beobachten. Die entsprechende Säule wies insbesondere in den oberen Bodenschichten höhere
Technetium-Gehalte auf, weshalb erneut vermutet werden kann, dass eine Reduktion von
Tc(VII) zu Tc(IV) in den oberen Säulenschichten erfolgte. Die individuelle Bodenlösung für den
Boden RefeSol-04A ähnelt in ihrer Zusammensetzung der individuellen Bodenlösung für den
Boden RefeSol-02A, sodass eine niedrige Ionenstärke und eine niedrige Nitratkonzentration als
wichtige Einflussfaktoren für die Retention von Technetium vermutet werden können.

Um dies zu verifizieren sind jedoch weitere Versuche wünschenswert. Aus Zeitgründen wa-
ren in der Arbeit keine weiteren Säulenversuche durchzuführen, jedoch ist kritisch

Bei einer kritischen Betrachtung der Säulenversuche muss zudem festgestellt werden, dass die Planung der Versuche mit einem festgelegten Zeitrahmen für die Elution der Unterschiedlichkeit der Böden nicht gerecht wird. So ergab sich das Problem, dass für die Säulen mit Refe-Sol-03G, die ein signifikant größeres Porenvolumen aufwiesen, nur eine unvollständige Elution erzielt wurde. Es empfiehlt sich, bei zukünftigen Säulenversuchen hinsichtlich einer Vergleichbarkeit zwischen den Durchgängen die Dauer der Elution nicht nach einer vorgegebenen Zeitspanne vorzugeben, sondern an das eluierte Volumen im Verhältnis zum Porenvolumen anzupassen. Darüber hinaus könnte bei zukünftigen Versuchen die Verwendung eines Fraktionssammlers für alle Säulen mehr Datenpunkte für die Darstellung der Durchbruchskurven liefern.

Neben Säulen- sollten jedoch auch Batchversuche für weitere Untersuchungen in Betracht gezogen werden. Damit könnten größere Versuchsreihen durchgeführt werden, in denen nur einzelne Bestandteile der synthetischen Bodenlösung variiert werden, um so den Einfluss einzelner Parameter auf die Sorption von Technetium gezielter analysieren zu können.

Um die erstellten Bodenlösungen noch näher an die realen Bedingungen in den untersuchten Böden anzupassen, wären zudem Untersuchungen durchzuführen, die die Konzentrationen der Anionen in den Bodenlösungen aufklären, beispielsweise die Analyse von Bodensättigungsextrakten mittels Ionenchromatographie. Zu bedenken ist jedoch, dass die Auswahl der Anionen für die synthetischen Bodenlösungen Einschränkungen unterliegt. So wurde bewusst auf die Nutzung von Anionen wie Phosphaten oder (Hydrogen-)Carbonaten verzichtet, um die Bildung schwerlöslicher Verbindungen zu vermeiden.

Wie in Abschnitt 4.2 an verschiedenen Stellen diskutiert wurde, haben Mikroorganismen im Boden einen entscheidenden Einfluss auf die Chemie des Technetiums und die Redoxchemie im Allgemeinen. Für zukünftige Untersuchungen mit den in dieser Arbeit behandelten
Referenzböden empfiehlt es sich also, diese Böden hinsichtlich ihrer Mikroflora zu charakterisieren, um ein besseres Verständnis der Prozesse in den Böden zu ermöglichen.

Dies ist unter anderem für das Verbundprojekt TRAVARIS (Förderkennzeichen: 15S9437C) unter Beteiligung des Instituts für Radioökologie und Strahlenschutz vorgesehen. Im Mittelpunkt des Projekts stehen Untersuchung und Modellierung des Verhaltens langlebiger Radionuklide im Wirkungsgefüge Boden-Pflanze, wobei unter anderem mikrobielle Prozesse nähere Berücksichtigung finden sollen.

Literaturverzeichnis

Geoff Tyler (2003) ICP-OES, ICP-MS and AAS Techniques Compared. TECHNICAL NOTE (05), Longjumeau, France.

Abbildungsverzeichnis

Abbildung 2-1: Bildung und Zerfall von 99Tc.. 2
Abbildung 2-2: Pourbaix-Diagramm des Systems Tc-O-H ($T = 298,15$ K, $p = 105$ Pa, $c = 10 - 10$ mol $\cdot l^{-1}$) [12] .. 3
Abbildung 2-3: Tc(IV)-Löslichkeit in Abhängigkeit des pH-Werts bei $T = 298,15$ K; die Kästchen entsprechen experimentell ermittelten Werten aus der Literatur (weiß: [14], schwarz: [15]), die durchgezogene, sowie die beiden gestrichelten Linien geben die berechnete Löslichkeit von TcO2 \cdot 1,6 H2O mit Vertrauensbereich an [16]......................... 4
Abbildung 2-4: Bodenprofil mit Bezeichnung der Haupthorizonte; über dem nahezu unverwittertem Ausgangsgestein (C) befindet sich der Unterboden (B) aus vorwiegend mineralischer Substanz, darüber der Oberboden (A) aus mineralischer und organischer Substanz, auf dem ein organischer Horizont (O) liegt [25].. 5
Abbildung 2-5: Übersicht über das RefeSol-System des Fraunhofer IME; nach [40].................. 8
Abbildung 2-6: Aufbau einer Plasmafackel [43].. 9
Abbildung 2-7: Strahlengang in einem ICP-Emissionsspektrometer mit Echelle-Gitter [46]..... 10
Abbildung 2-8: Strahlengang in einer Zirkularoptik in Paschen-Runge-Aufstellung [49]....... 11
Abbildung 2-9: Schema eines ICP-Massenspektrometers; nach [50]...................................... 12
Abbildung 2-10: Schema eines Quadrupol-Massensfilters; nach [50].................................... 12
Abbildung 3-1: Standorte der Probenahme für RefeSol-01A (Region Hannover), -02A (Kreis Soest), -03G (Hochsauerlandkreis) und -04A (Kreis Osnabrück); Karte nach [61]........ 15
Abbildung 3-2: Schematischer Aufbau der Deckelkonstruktion... 19
Abbildung 3-3: Versuchsaufbau des Säulenversuchs; aus Vorratsgefäßen (1) wurden die Bodenlösungen mittels einer peristaltischen Schlauchpumpe IPC-4 von ISMATEC (2) von unten in die Säulen (3) gepumpt. Das Eluat der Säulen wurde in Sammelgefäßen (4) aufgefangen.. 20
Abbildung 3-4: Struktur des Trialkylmethylammoniumnitrats bzw. -chlorids im TEVA-Harz. 21
Abbildung 3-5: Aufbau der Extraktionschromatographie über TEVA-Harz mittels Vakuumbox. ... 21
Abbildung 3-6: Kapazitätsfaktor k' für die Sorption von Tc(VII) an TEVA-Harz in Abhängigkeit von der Konzentration an Salpetersäure; nach [65]... 22
Abbildung 4-1: Geographische Verteilung von mobilem Mangan in Böden; Karte nach [61], Daten zur Manganverteilung aus [69].. 26
Abbildung 4-2: Normierte 99Tc-Aktivitätskonzentration im Eluat der Säulen mit RefeSol-01A; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-01A............................... 28
Abbildung 4-3: Massenbezogene 99Tc-Aktivität in den Bodenschichten der Säulen mit RefeSol-01A; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-01A.

Abbildung 4-4: Normierte 99Tc-Aktivitätskonzentration im Eluat der Säulen mit RefeSol-02A; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-02A.

Abbildung 4-5: Massenbezogene 99Tc-Aktivität in den Bodenschichten der Säulen mit RefeSol-02A; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-02A.

Abbildung 4-6: Normierte 99Tc-Aktivitätskonzentration im Eluat der Säulen mit RefeSol-03G; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-03G.

Abbildung 4-7: Massenbezogene 99Tc-Aktivität in den Bodenschichten der Säulen mit RefeSol-03G; in Rot und Blau für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Grün für die Elution mit der individuellen Bodenlösung für RefeSol-03G.

Abbildung 4-8: Normierte 99Tc-Aktivitätskonzentration im Eluat der Säulen mit RefeSol-04A; in Rot für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Blau und Grün für die Elution mit der individuellen Bodenlösung für RefeSol-03G bzw. -04A.

Abbildung 4-9: Massenbezogene 99Tc-Aktivität in den Bodenschichten der Säulen mit RefeSol-04A; in Rot für die Elution mit synthetischem Bodenwasser nach Bors et al. [1], in Blau und Grün für die Elution mit der individuellen Bodenlösung für RefeSol-03G bzw. -04A.

Abbildung A-1: Probenahmeprotokoll für den verwendeten Boden RefeSol-01A.

Abbildung A-2: Probenahmeprotokoll für den verwendeten Boden RefeSol-02A.

Abbildung A-3: Probenahmeprotokoll für den verwendeten Boden RefeSol-03G.

Abbildung A-4: Probenahmeprotokoll für den verwendeten Boden RefeSol-04A.
Tabellenverzeichnis

Tabelle 3-1: Textur, pH-Wert, Anteil organischen Kohlenstoffs und Kationenaustauschkapazität der untersuchten Referenzböden. 13

Tabelle 3-2: Wassergehalte der Bodenproben für die Herstellung von Bodensättigungsextrakten im lufttrockenen Zustand und beim Erreichen der Fließgrenze. 16

Tabelle 3-3: Menge an Salzen und Lösungen, die für die Herstellung des synthetischen Bodenwassers nach Bors et al. (SBW) [1] sowie der individuellen ReFeSol-Bodenlösungen (BLR-1 bis BLR-4) verwendet wurden. 18

Tabelle 3-4: Zusammensetzung des synthetischen Bodenwassers nach Bors et al. (SBW) [1] sowie der ReFeSol-Bodenlösungen (BLR-1 bis -4) mit den berechneten Ionenstärken sowie gemessenen pH- und Eh-Werten. 18

1 berechnet aus Literaturwerten für Sulfat;
2 berechnet aus Literaturwerten für (Di-)Hydrogenphosphat; < LOD: unterschreitet Nachweigrenze; (): außerhalb Kalibration. 23

Tabelle 4-2: Mittels ICP-OES (iCAP 6200) bestimmte Massenkonzentrationen der angegebenen Elemente in den Bodensättigungsextrakten der Referenzböden. Aus den Ergebnissen für die drei Proben wurde der Mittelwert bestimmt und zusammen mit der Standardabweichung aufgeführt; < LOD: unterschreitet Nachweigrenze; (): außerhalb Kalibration. 25

Tabelle A-1: Einwaagen, Wassergehalt der eingefüllten Böden und ermittelte Porenvolumina der verwendeten Durchlaufsäulen; ausgefallene Säulen sind grau hinterlegt. 62

Tabelle A-2: Mittels ICP-OES (iCAP) bestimmte Massenkonzentrationen der angegebenen Elemente in den Bodensättigungsextrakten unter Angabe der genutzten Analysewellenlänge. 62

Tabelle A-3: Mittels ICP-OES (ARCOS) bestimmte Massenkonzentrationen der angegebenen Elemente in den Bodensättigungsextrakten unter Angabe der genutzten Analysewellenlänge. 63
Abbildung A-1: Probenahmeprotokoll für den verwendeten Boden RefeSol-01A.
Abbildung A-2: Probenahmeprotokoll für den verwendeten Boden RefeSol-02A.
Abbildung A-3: Probenahmeprotokoll für den verwendeten Boden RefeSol-03G.
Abbildung A-4: Probenahmeprotokoll für den verwendeten Boden RefeSol-04A.
Tabelle A-1: Einwaagen, Wassergehalt der eingefüllten Böden und ermittelte Porenvolumina der verwendeten Durchlaufsäulen; ausgefallene Säulen sind grau hinterlegt.

<table>
<thead>
<tr>
<th>Bodenlösung</th>
<th>Boden</th>
<th>Säule</th>
<th>(m(\text{Boden, lufttrocken}))</th>
<th>Wassergehalt</th>
<th>Porenvolumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBW</td>
<td>RefeSol-01A</td>
<td>a</td>
<td>950,39</td>
<td>5,3</td>
<td>222,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>974,21</td>
<td>5,3</td>
<td>213,89</td>
</tr>
<tr>
<td></td>
<td>RefeSol-02A</td>
<td>a</td>
<td>896,15</td>
<td>8,6</td>
<td>252,87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>877,54</td>
<td>8,6</td>
<td>257,36</td>
</tr>
<tr>
<td></td>
<td>RefeSol-03G</td>
<td>a</td>
<td>816,24</td>
<td>16,9</td>
<td>299,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>812,46</td>
<td>16,9</td>
<td>302,87</td>
</tr>
<tr>
<td></td>
<td>RefeSol-04A</td>
<td>a</td>
<td>901,18</td>
<td>6,5</td>
<td>243,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>893,78</td>
<td>6,5</td>
<td>246,24</td>
</tr>
<tr>
<td>NSBW</td>
<td>RefeSol-01A</td>
<td>a</td>
<td>983,28</td>
<td>5,1</td>
<td>212,93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>1001,20</td>
<td>5,1</td>
<td>204,91</td>
</tr>
<tr>
<td></td>
<td>RefeSol-02A</td>
<td>a</td>
<td>863,71</td>
<td>9,4</td>
<td>264,98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>829,56</td>
<td>9,4</td>
<td>277,37</td>
</tr>
<tr>
<td></td>
<td>RefeSol-03G</td>
<td>a</td>
<td>839,62</td>
<td>17,0</td>
<td>294,84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>828,60</td>
<td>17,0</td>
<td>299,16</td>
</tr>
<tr>
<td></td>
<td>RefeSol-04A</td>
<td>a</td>
<td>899,25</td>
<td>6,2</td>
<td>242,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>904,55</td>
<td>6,2</td>
<td>242,66</td>
</tr>
</tbody>
</table>

Tabelle A-2: Mittels ICP-OES (iCAP) bestimmte Massenkonzentrationen der angegebenen Elemente in den Bodensättigungsextrakten unter Angabe der genutzten Analysewellenlänge.

<table>
<thead>
<tr>
<th>Element</th>
<th>(\lambda) [nm]</th>
<th>Probe</th>
<th>RefeSol-01A (\omega) [mg · l(^{-1})]</th>
<th>RefeSol-02A (\omega) [mg · l(^{-1})]</th>
<th>RefeSol-03G (\omega) [mg · l(^{-1})]</th>
<th>RefeSol-04A (\omega) [mg · l(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>393,3</td>
<td>1</td>
<td>(> 100) 71,99</td>
<td>(> 100) 70,81</td>
<td>(> 100) 80,35</td>
<td>(> 100) 86,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>(> 100) 70,81</td>
<td>(> 100) 70,81</td>
<td>(> 100) 80,35</td>
<td>(> 100) 86,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>(> 100) 80,35</td>
<td>(> 100) 80,35</td>
<td>(> 100) 80,35</td>
<td>(> 100) 86,09</td>
</tr>
<tr>
<td>Mg</td>
<td>279,5</td>
<td>1</td>
<td>59,43 2,66</td>
<td>82,32 7,54</td>
<td>92,95 6,84</td>
<td>86,09 7,40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>67,57 2,64</td>
<td>92,95 6,84</td>
<td>86,09 7,40</td>
<td>92,95 6,84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>65,10 2,87</td>
<td>92,95 6,84</td>
<td>86,09 7,40</td>
<td>92,95 6,84</td>
</tr>
<tr>
<td>K</td>
<td>766,4</td>
<td>1</td>
<td>46,27 0,62</td>
<td>34,06 19,88</td>
<td>43,11 18,21</td>
<td>38,92 17,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>53,63 1,72</td>
<td>43,11 18,21</td>
<td>38,92 17,73</td>
<td>38,92 17,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>56,77 0,21</td>
<td>38,92 17,73</td>
<td>38,92 17,73</td>
<td>38,92 17,73</td>
</tr>
<tr>
<td>Na</td>
<td>589,5</td>
<td>1</td>
<td>6,80 7,30</td>
<td>27,49 7,93</td>
<td>32,18 8,68</td>
<td>30,13 7,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6,81 7,42</td>
<td>32,18 8,68</td>
<td>30,13 7,70</td>
<td>32,18 8,68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>7,53 7,20</td>
<td>30,13 7,70</td>
<td>30,13 7,70</td>
<td>30,13 7,70</td>
</tr>
<tr>
<td>B</td>
<td>208,9</td>
<td>1</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
<td>< LOD < LOD</td>
</tr>
<tr>
<td>Al</td>
<td>208,9</td>
<td>1</td>
<td>0,41 2,18</td>
<td>4,57 4,25</td>
<td>4,50 2,46</td>
<td>4,26 2,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2,22 2,21</td>
<td>4,50 2,46</td>
<td>2,96 4,13</td>
<td>2,96 4,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2,70 2,65</td>
<td>2,96 4,13</td>
<td>2,96 4,13</td>
<td>2,96 4,13</td>
</tr>
<tr>
<td>Mn</td>
<td>257,61</td>
<td>1</td>
<td>< LOD < LOD</td>
<td>6,56 0,45</td>
<td>7,37 0,29</td>
<td>6,91 0,37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>< LOD < LOD</td>
<td>7,37 0,29</td>
<td>7,37 0,29</td>
<td>7,37 0,29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>< LOD < LOD</td>
<td>6,91 0,37</td>
<td>6,91 0,37</td>
<td>6,91 0,37</td>
</tr>
</tbody>
</table>
Tabelle A-3: Mittels ICP-OES (ARCOS) bestimmte Massenkonzentrationen der angegebenen Elemente in den Bodensättigungsextrakten unter Angabe der genutzten Analysewellenlänge

<table>
<thead>
<tr>
<th>Element</th>
<th>λ [nm]</th>
<th>Probe</th>
<th>RefeSol-01A ω [mg · l$^{-1}$]</th>
<th>RefeSol-02A ω [mg · l$^{-1}$]</th>
<th>RefeSol-03G ω [mg · l$^{-1}$]</th>
<th>RefeSol-04A ω [mg · l$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>317,933</td>
<td>1</td>
<td>324,47</td>
<td>69,54</td>
<td>501,52</td>
<td>50,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>336,81</td>
<td>70,62</td>
<td>557,52</td>
<td>46,78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>314,65</td>
<td>73,21</td>
<td>515,26</td>
<td>48,40</td>
</tr>
<tr>
<td>Mg</td>
<td>279,553</td>
<td>1</td>
<td>57,54</td>
<td>2,46</td>
<td>69,35</td>
<td>7,27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>60,42</td>
<td>2,47</td>
<td>74,51</td>
<td>6,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>57,42</td>
<td>2,62</td>
<td>71,14</td>
<td>7,16</td>
</tr>
<tr>
<td>K</td>
<td>766,491</td>
<td>1</td>
<td>55,97</td>
<td>3,45</td>
<td>37,15</td>
<td>20,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>60,77</td>
<td>3,75</td>
<td>40,34</td>
<td>21,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>61,83</td>
<td>3,55</td>
<td>39,68</td>
<td>21,74</td>
</tr>
<tr>
<td>Na</td>
<td>588,995</td>
<td>1</td>
<td>6,11</td>
<td>6,57</td>
<td>26,66</td>
<td>7,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6,24</td>
<td>6,74</td>
<td>29,13</td>
<td>7,96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6,40</td>
<td>6,85</td>
<td>27,82</td>
<td>7,11</td>
</tr>
<tr>
<td>B</td>
<td>249,773</td>
<td>1</td>
<td>3,69</td>
<td>3,56</td>
<td>3,59</td>
<td>3,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3,66</td>
<td>3,58</td>
<td>3,62</td>
<td>3,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3,64</td>
<td>3,55</td>
<td>3,62</td>
<td>3,62</td>
</tr>
<tr>
<td>Al</td>
<td>396,152</td>
<td>1</td>
<td>4,05</td>
<td>2,30</td>
<td>3,89</td>
<td>2,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4,10</td>
<td>2,09</td>
<td>4,12</td>
<td>2,34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4,16</td>
<td>2,34</td>
<td>4,04</td>
<td>2,26</td>
</tr>
<tr>
<td>Mn</td>
<td>257,611</td>
<td>1</td>
<td>< LOD</td>
<td>< LOD</td>
<td>5,65</td>
<td>(<0,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>< LOD</td>
<td>< LOD</td>
<td>6,25</td>
<td>(<0,5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>< LOD</td>
<td>< LOD</td>
<td>5,95</td>
<td>(<0,5)</td>
</tr>
<tr>
<td>S</td>
<td>180,731</td>
<td>1</td>
<td>63,89</td>
<td>9,43</td>
<td>45,64</td>
<td>10,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>71,14</td>
<td>9,14</td>
<td>51,75</td>
<td>9,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>72,65</td>
<td>9,49</td>
<td>47,18</td>
<td>10,20</td>
</tr>
<tr>
<td>Si</td>
<td>251,612</td>
<td>1</td>
<td>35,18</td>
<td>35,60</td>
<td>34,40</td>
<td>31,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>35,16</td>
<td>35,19</td>
<td>35,13</td>
<td>31,78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>35,11</td>
<td>35,59</td>
<td>34,99</td>
<td>31,85</td>
</tr>
<tr>
<td>P</td>
<td>178,287</td>
<td>1</td>
<td>2,23</td>
<td>1,01</td>
<td>2,40</td>
<td>1,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2,50</td>
<td>1,00</td>
<td>2,62</td>
<td>1,71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2,77</td>
<td>1,06</td>
<td>2,54</td>
<td>1,76</td>
</tr>
</tbody>
</table>