

Gottfried Wilhelm Leibniz Universität Hannover Institut für Radioökologie und Strahlenschutz (IRS)

Masterarbeit:

Untersuchungen zur Extrahierbarkeit von Radionukliden aus Bodenproben an einem Beispiel aus Tschernobyl

Mark Viebrock

Prüfer:

Prof. Dr. Georg Steinhauser

Prof. Dr. Clemens Walther

1 INHALT

2	E	Einle	itung4			
2.1 BioVeStRa			BioVeStRa			
	2.2		Das Reaktorunglück von Tschernobyl	5		
	2.3		Das Versuchsfeld	7		
3	3 Theoretische Grundlagen					
	3.1		Radioaktiver Zerfall	9		
	Э	3.1.1	2.1 Zerfallsgleichgewichte			
	3.2		Fraktionierte Extraktion nach Zeien und Brümmer			
	3.3		Gammadetektoren			
	3.4		Liquid Scintillation Counter (LSC)			
	Э	3.4.1	l.1 Cocktail			
	Э	3.4.2	I.2 Photomultiplier			
	Э	3.4.3	1.3 Signalverarbeitung			
	Э	3.4.4	I.4 Quench			
	Э	3.4.5	1.5 Sonstige Störeffekte			
4	[Durc	rchführung			
	4.1		Sequentielle Extraktion der Bodenproben			
4.2 Gammamessung der Bodenextrakte						
	4.3		Aufarbeitung der Extrakte für die Strontium-Extraktion			
	Z	1.3.1	8.1 Reextraktion verunreinigter Proben			
	4.4		Strontium-Extraktion			
	4.5		Messung der Sr-Extrakte mittels Liquid Scintillation Counting (LSC)			
	Z	1.5.1	5.1 Weitere hergestellte Proben zur LSC-Messung			
5 Auswertung						
5.1 Gammaspektrometrische Messungen zur Bestimmung des ¹³⁷ Cs Gehaltes		es 34				
5.2 Hidexmessungen zur Bestimmung des ⁹⁰ Sr Gehaltes		Hidexmessungen zur Bestimmung des ⁹⁰ Sr Gehaltes				
	5.2.1		2.1 Untergrundkorrektur			
5.2.2		5.2.2	8.2 Bestimmung der chemischen Wiederfindungsrate			
	5.2.3 5.2.4		2.3 ⁹⁰ Sr Kalibration			
			2.4 Ergebnisse			
	5.3		Quantulusmessungen zur Bestimmung des ⁹⁰ Sr Gehaltes			
	5	5.3.1	3.1 Untergrundkorrektur			
	5.3.2		B.2 Bestimmung der chemischen Wiederfindungsrate			
5.3.3		5.3.3	8.3 ⁹⁰ Sr Kalibration			

	5.3.4	.4 Ergebnisse	52
6 Disk		kussion	53
	6.1	Kalibrationsgeraden	53
	6.2	Übersicht über die Spezifischen Aktivitäten der Bodenproben	55
	6.3	Generelle Verteilung der ⁹⁰ Sr Aktivitäten	57
	6.4	⁹⁰ Sr der Fraktionen 2 bis 6	60
	6.5	Vergleich mit stabilem Strontium	64
	6.6	Generelle Verteilung der ¹³⁷ Cs Aktivitäten	66
	6.7	Vergleich der Ergebnisse mit der Literatur	68
7	Fazit	it	70
8	Liter	eratur	72
9	Anh	nang	75
9.1 Einwaage der Bodenproben		75	
	9.2	Gammamessungen ¹³⁷ Cs	75
	9.2.2	.1 Untergrundmessung	75
	9.2.2	.2 Bestimmung der Zählausbeuten	75
	9.2.3	.3 Gammamessung der Proben	76
	9.3	Für LSC-Messungen angesetzte Standards	78
	9.3.2	.1 ⁸⁵ Sr Standards	78
	9.3.2	.2 ⁹⁰ Sr Standards	79
	9.4	Zugegebene ⁸⁵ Sr-Aktivitäten	80
	9.5 Bestimmung der chemischen Wiederfindungsrate		84
9.6 ⁹⁰ Sr Kalibration Hidex		⁹⁰ Sr Kalibration Hidex	88
9.7 ⁹⁰ Sr Kalibration Quantulus		⁹⁰ Sr Kalibration Quantulus	89
	9.8	Gemessene Aktivitäten der Probenlösungen	90
9.9		Gesamt Sr-Gehalte aus vorheriger Arbeit	92

2.1 BIOVESTRA

Diese Arbeit ist Teil des Verbundprojektes BioVeStRa (**Bio**logische **Ve**rfahren zur **St**rahlenschutzvorsorge bei **Ra**dionuklidbelastungen) das vom Bundesministerium für Bildung und Forschung gefördert wird. Gegenstand des Projektes, an dem neben dem Institut für Radioökologie und Strahlenschutz (IRS) auch das Institut für Ressourcenökologie des Helmholtz-Zentrums Dresden Rossendorf, die Friedrich-Schiller-Universität Jena, der Verein VKTA - Strahlenschutz, Analytik und Entsorgung Rossendorf e. V. und die State Ecological Academy of Postgraduate Education and Management (Kiev) beteiligt sind, ist die Untersuchung des Einflusses ausgewählter Pilzkulturen auf die Radionuklidaufnahme von Nutzpflanzen aus dem Boden.

Pilze spielen eine wichtige Rolle im Nährstoffkreislauf des Bodens. Sie sind unter anderem durch Bioakkumulation dazu in der Lage, Schwermetalle und Radionuklide aus dem Boden zu binden. Durch das Einbringen besonders geeigneter Pilzkulturen kann so die Radionuklidaufnahme von Nutzpflanzen verringert werden und somit können einige kontaminierte Anbauflächen wieder nutzbar gemacht werden.

Zur Untersuchung des Effektes werden unter anderem Pflanzexperimente durchgeführt, bei denen dem Boden Pilzkulturen von *Schizophyllum commune* oder *Leucoagaricus naucinus* zugesetzt werden. Diese Pflanzexperimente werden sowohl im Labor in einem Klimaschrank, als auch auf einem Versuchsfeld in der Sperrzone von Tschernobyl durchgeführt.

Gegenstand dieser Arbeit war es, die Verteilung von ⁹⁰Sr und ¹³⁷Cs in drei Bodenproben dieses Versuchsfeldes zu charakterisieren und die ⁹⁰Sr Aktivität mit der Verteilung des stabilen Strontiums zu vergleichen. Es sollte dabei sowohl das Augenmerk auf die Tiefenverteilung in den Bodenproben gelegt werden, als auch auf die Bindungsstärke der Radionuklide zu den Bodenbestandteilen. Mit diesen Informationen lässt sich die Pflanzenverfügbarkeit der Radionuklide bewerten.

2.2 DAS REAKTORUNGLÜCK VON TSCHERNOBYL

Der Reaktorunfall in Block 4 des Kernkraftwerkes Tschernobyl ereignete sich am 26.04.1986 in der Folge eines fehlgeschlagenen Experiments. Ziel des Experiments war es festzustellen, ob die restliche Rotationsenergie der Turbine nach einer Notabschaltung ausreicht, um die 40 s Zeit zu überbrücken, bis die Notstromgeneratoren Strom liefern. Dieser Strom wird für die Pumpsysteme zur Reaktorkühlung benötigt.

Im Laufe des Experiments kam es zu einem deutlichen Abfall der Reaktorleistung, dem durch ein Ausfahren der Regelstäbe aus dem Reaktor begegnet wurde. Es kam dadurch zu Kernkraftwerks Tschernobyl.²¹

Abbildung 1: Foto des zerstörten Reaktorblocks 4 des

einer leichten Leistungssteigerung, die allerdings immer noch unterhalb des zulässigen Bereiches war. Aufgrund von Bedienfehlern kam es bei den weiterhin ausgefahrenen Steuerstäben zu einer stärkeren Leistungssteigerung, die bei dem aktuellen Kühlmittelfluss zu einer Dampfbildung des Wassers führte. Durch den konzeptionsbedingten positiven Dampfblasenkoeffizienten des Reaktortyps führte dies zu einer sich noch deutlich verstärkenden Steigerung der Reaktorleistung. Da es dem automatischen Regelsystem nicht gelang, diesen sich selbst beschleunigenden Zustand zu korrigieren, wurde die Notabschaltung angeordnet. Wegen einer ungünstigen Konstruktion führte das Einfahren der vollständig ausgefahrenen Regelstäbe allerdings zu einer vorrübergehenden Steigerung der Reaktivität.

Die Reaktorleistung stieg daraufhin auf das 100-fache der Nennleistung an und es kam hierdurch zu zwei Explosionen. Bei den Explosionen wurden die Kernbrennstäbe zerstört, die ca. 3000 t schwere Reaktordeckplatte angehoben und das umgebende Reaktorgebäude zerstört. Außerdem wurde hierbei Material der Brennstäbe aus dem Reaktor herausgeschleudert.

In der Folge des Unglücks geriet außerdem das Graphit, das als Neutronenmoderator eingesetzt wurde, in Brand und erschwerte damit die Rettungsarbeiten.

In den folgenden Tagen wurde versucht, die Feuer und die Radionuklidemission in die Umwelt zu bekämpfen. Es wurden dazu 40 t Borcarbid zur Absorption von Neutronen, 800 t carbonathaltiges Gestein zur Abgabe von CO₂ zur Bekämpfung der Brände, 1800 t Lehm und Sand zur Filterung radioaktiver Partikel und 2400 t Blei als Abschirmung eingesetzt. Dies wurde durch Helikopter aus der Luft in den offenen Reaktor abgeworfen.

Es wurde außerdem ein Tunnel unter den Reaktor gegraben, um dort eine Betonplatte zum Auffangen des geschmolzenen Reaktorkerns zu installieren. Diese Maßnahme sollte eine Kontamination des Grundwassers verhindern.^{1–3}

In der Folge des Unglücks wurden 5.3 EBq ($5.3 \cdot 10^{18}$ Bq) Gesamtaktivität freigesetzt. Freigesetzte Edelgase sind in diesem Wert jedoch noch nicht berücksichtigt.⁴

Die Zone um den Reaktor wurde evakuiert und ist aufgrund der großflächigen Kontamination bis heute weitgehend unbewohnt. Es wurde eine Sperrzone in einem Radius von 30 km um den Reaktor eingerichtet.

Die Zusammensetzung des Tschernobyl-Fallouts unterscheidet sich jedoch zwischen der Zone in unmittelbarer Reaktornähe und den weiter entfernten Gebieten.

In den weiter entfernten Gebieten, wie zum Beispiel Mitteleuropa und Skandinavien, wurden hauptsächlich volatile Radionuklide wie ¹³¹I und ¹³⁷Cs deponiert. Es wurden zwar auch Fragmente des Kernbrennstoffes in Norwegen gefunden⁵, deren radiologischer Einfluss ist aber vergleichsweise gering.

Im direkten Umfeld um den Reaktor ist der Fallout hingegen sehr viel stärker von Brennstofffragmenten ("Hot Particles") dominiert.² Es liegt daher eine sehr viel größere Vielfalt an Spalt- und Aktivierungsprodukten vor. Refraktäre Radionuklide wie verschiedene Plutoniumisotope, ¹⁵⁴Eu oder ⁹⁰Sr werden hier gefunden.⁴

2.3 DAS VERSUCHSFELD

Das Versuchsfeld liegt in der Sperrzone von Tschernobyl, ca. 5 km südlich des zerstörten Reaktors.

Es wurden auf dem Versuchsfeld drei Bodenstichproben entnommen. Es wurden dazu in der Mitte des Versuchsfeldes in einem Dreieck Bohrkerne entnommen, die die Obersten 30 cm des Bodens abbilden (Abbildung 2). Jeder der Bohrkerne wurde im Labor in verschiedene Tiefensegmente unterteilt, eine um Untersuchungen über die Tiefenverteilung der Radionuklide durchführen zu können.

Abbildung 2: Foto eines der Bohrkerne.

Das Versuchsfeld wurde vor dem Reaktorunglück bereits als landwirtschaftliche Nutzfläche bewirtschaftet. Aufgrund des Pflügens handelt es sich bei der beprobten Schicht um einen anthropogenen Ap-Horizont.

Abbildung 3: Ort des Versuchsfeldes in der Exclusion Zone.

Im Rahmen der Bodendekontamination nach dem Reaktorunglück wurde der Boden nicht weiter behandelt. Es lag in den folgenden 30 Jahren brach, in denen sich ein durch Gräser dominierter Bewuchs herausbildete.

Bei dem Boden handelt es sich um einen mittelschluffigen Sand. Der ursprüngliche Bodentyp ist vermutlich ein schwach ausgeprägter Podsol (pH = 5,6). Diese Arbeitshypothese wurde jedoch bisher nicht abschließend durch die Erstellung eines Bodenprofils geklärt.

3.1 RADIOAKTIVER ZERFALL

Beim Phänomen des radioaktiven Zerfalls wandelt sich ein instabiler, energiereicher Atomkern in einen energetisch günstigeren um. Die überschüssige Energie wird in Form von energiereicher Strahlung abgegeben. Die wichtigsten drei Arten dieser Strahlung sind Alpha-, Beta- und Gammastrahlung.

Alphastrahlung besteht aus ⁴He-Kernen, die vom Kern ausgesandt werden. Sie ist sehr energiereich, hat aufgrund der hohen Masse und Ladung allerdings nur eine sehr geringe Reichweite. Alphastrahlung ist monoenergetisch, wobei die Energie einen Rückschluss auf das zerfallene Nuklid zulässt.

Die häufigste Form der Betastrahlung ist die β -Strahlung. Sie besteht aus hochenergetischen Elektronen. In instabilen, neutronenreichen Kernen kann sich dabei ein Neutron zu einem

Proton umwandeln und dabei ein Elektron und ein Elektron-Antineutrino aussenden. Aufgrund der drei beteiligten Teilchen ist der Anteil der auf das Elektron übertragenen Energie nicht immer gleich. Die Strahlung ist daher nicht monoenergetisch und erstreckt sich über einen relativ breiten Bereich. (Abbildung 4) Charakteristisch ist die Beta-

Abbildung 4: Typischer Verlauf eines Betaspektrums.²²

Endpunktsenergie, da sie einem Zerfall mit vollständigem Energieübertrag auf das Elektron zugeordnet werden kann. Bei zwei vorhandenen Betastrahlern werden sich die Spektren allerdings so überlagern, dass nur die Endpunktsenergie des höherenergetischen Strahlers bestimmt werden kann. Eine Identifizierung von Radionukliden in einem Gemisch ist daher in einem Betaspektrum kaum möglich.

Neben dem β^- Zerfall gibt es außerdem noch den β^+ Zerfall und den Electron Capture Prozess.

Beim β^+ -Zerfall wandelt sich ein Proton des Kerns in ein Neutron, ein Positron und ein Elektron-Neutrino um. Reicht die Energie des Zerfalls nicht aus, um ein Positron zu erzeugen,

kann Electron Capture, also der Einfang eines Elektrons einer kernnahen Schale in den Kern, erfolgen. Die hierbei freigesetzte Energie kann durch die Emission von Photonen oder von Konversionselektronen abgegeben werden. Beim Auffüllen des leeren, kernnahen Orbitals mit einem Elektron aus einer höheren Schale kann es in der Folge zur weiteren Emission von Röntgenstrahlung oder Auger-Elektronen kommen.

Nach einer erfolgten Kernreaktion kann verbliebene Energie in Form von Photonenstrahlung abgegeben werden. Hierbei handelt es sich um Gammastrahlung. Gammastrahlung besitzt ein sehr gutes Durchdringungsvermögen und ist monoenergetisch, lässt sich also zur Identifikation von Radionukliden einsetzen.

3.1.1 Zerfallsgleichgewichte

In der Regel zerfällt ein Radionuklid über einige radioaktive Tochternuklide in ein stabiles Nuklid. Je nach dem Verhältnis der Halbwertszeiten des Mutter- und Tochternuklides stellt sich dabei eines von drei Gleichgewichten ein.⁶

Fehlendes Gleichgewicht:

Wenn die Halbwertszeit des Mutternuklides kleiner oder ähnlich groß ist wie die des Tochternuklides, stellt sich kein Zerfallsgleichgewicht ein. Der Anteil des Tochternuklides an der Gesamtaktivität nimmt mit der Zeit zu.

Abbildung 5: Aktivitätsverlauf bei fehlendem Gleichgewicht. ²⁶

Transientes Gleichgewicht:

Ein transientes Gleichgewicht stellt sich ein, wenn die Halbwertszeit der Mutter nur ein wenig größer ist als die der Tochter. Beim Zerfall des Mutternuklides entsteht das Tochternuklid, dessen Aktivität die der Mutter ab einem gewissen Punkt übersteigt. Im weiteren Verlauf nähert sich die Aktivität des Tochternuklides der Aktivität des Mutternuklides asymptotisch an.

Abbildung 6: Aktivitätsverlauf bei der Einstellung eines transienten Gleichgewichts. ²⁵

Säkulares Gleichgewicht:

Ein säkulares Gleichgewicht stellt sich ein, wenn die Halbwertszeit des Mutternuklides viel größer sehr ist als die des Tochternuklides. Durch den Zerfall des Mutternuklides entsteht das Tochternuklid, das relativ rasch danach selbst zerfällt. Es kommt in dieser Zeit zu keiner nennenswerter Aktivitätsreduzierung des Mutternuklides. Die Aktivität des

Abbildung 7: Aktivitätsverlauf bei der Einstellung eines säkularen Gleichgewichts. ²⁷

Tochternuklides nähert sich der des Mutternuklides asymptotisch an. Im Gleichgewichtszustand ist die Gesamtaktivität dadurch doppelt so groß wie die des Mutternuklides. Als Faustregel lässt sich sagen, dass sich das Gleichgewicht nach 10 Halbwertszeiten des Tochternuklides eingestellt hat.

Ein weiteres Beispiel für ein säkulares Gleichgewicht findet sich in dem ⁹⁰Sr/⁹⁰Y Paar, das in dieser Arbeit untersucht werden soll. Direkt nach einer chemischen Trennung der beiden Nuklide wird die Gesamtaktivität lediglich durch das ⁹⁰Sr erzeugt. Mit dem nachträglichen Einwachsen von ⁹⁰Y erhöht sich die Gesamtaktivität allerdings.

3.2 FRAKTIONIERTE EXTRAKTION NACH ZEIEN UND BRÜMMER

Um die Bioverfügbarkeit von Elementen im Boden zu bewerten, reicht es nicht aus, bloß deren Konzentration im Bodensubstrat zu bestimmen. Je nachdem, an welche Bodenpartikel diese Elemente adsorbiert sind oder ob sie in diese eingebaut wurden, ist ein Element für eine Pflanze besser oder schlechter verfügbar.

Um die unterschiedliche Bindungsform der Elemente zu untersuchen, haben Zeien und Brümmer⁷ eine sequenzielle Extraktionsmethode vorgeschlagen, um die Mobilität von Schwermetallen bewerten zu können.

Hierbei wird der Boden nacheinander mit sieben verschiedenen Extraktionslösungen extrahiert, wobei die Extraktionskraft der Lösungsmittel zunimmt und so die herausgelösten Elemente einer bestimmten Bodenphase zugeordnet werden können.

Fraktion 1: Mobile Schwermetalle

2 g getrockneter Boden wird mit einer Ammoniumnitratlösung (50 mL, 1 M) für 24 h im Überkopfschüttler extrahiert und die Lösung durch konzentrierte HNO₃ (0.5 mL) stabilisiert.

In dieser Fraktion finden sich die Elemente, die in der Bodenlösung gelöst oder unmittelbar durch Desorption nachlieferbar sind. Die Elemente dieser Fraktion sind sehr gut pflanzenverfügbar.

Fraktion 2: leicht nachlieferbare Schwermetalle

Die verbliebene Bodenprobe wird mit einer Ammoniumacetatlösung (50 mL, 1 M, auf pH 6 mit Essigsäure eingestellt) für 24 h im Überkopfschüttler extrahiert und die Lösung durch konz. HNO₃ (0.5 mL) stabilisiert.

In dieser Fraktion befinden sich die Elemente, die mit geringer Bindungskraft am Boden sorbiert sind. Sie sind ebenfalls gut pflanzenverfügbar.

Fraktion 3: An Mn-Oxide gebundene Schwermetalle

Die verbliebene Bodenprobe wird mit einer Lösung aus Ammoniumacetat und Hydroxylammoniumchlorid (50 mL, 1 M NH₄OAc, 0.1 M [NH₃OH]Cl, auf pH 6 eingestellt mit HCl) für 30 min geschüttelt. Die Bodenprobe wird anschließend noch zweimal mit einer Ammoniumacetatlösung (25 mL, 1 M, auf pH 6 mit Essigsäure eingestellt) gewaschen. Die vereinigten Lösungen werden mit konz. HCl (0.5 mL) stabilisiert.

Die an Manganoxide sorbierten Elemente werden in dieser Fraktion extrahiert.

Fraktion 4: An organische Substanzen gebundene Schwermetalle

Die verbliebene Bodenprobe wird mit einer NH₄-EDTA-Lösung (50 mL, 0.025 M, auf pH 4.6 eingestellt mit NH₄-Lösung) für 90 min geschüttelt. Um die im Boden verbliebene Restlösung zu gewinnen, wird dieser zweimal mit einer Ammoniumacetatlösung (25 mL, 1 M, auf pH 4.6 eingestellt mit Essigsäure) gewaschen und die Lösungen vereinigt.

In dieser Fraktion befinden sich die Elemente, die stärker mit organischen Bodenbestandteilen komplexiert sind. Die schwach komplexierten Elemente werden bereits in den ersten beiden Fraktionen gelöst.

Fraktion 5: An schlecht kristalline Fe-Oxide gebundene Schwermetalle

Die verbliebene Bodenprobe wird mit einer gepufferten Ammoniumoxalatlösung (50 mL, 0.2 M NH₄-Oxalat, 0.2 M Oxalsäure, auf pH 3.25 eingestellt mit NH₃-Lösung) für 4 h geschüttelt. Die Bodenprobe wird anschließend zweimal mit der gleichen Lösung (25 mL) gewaschen und die Lösungen vereinigt.

Die an amorphe Eisenoxide gebundenen Elemente werden in dieser Fraktion extrahiert.

Fraktion 6: An kristalline Fe-Oxide gebundene Schwermetalle

Die verbliebene Bodenprobe wird mit einer gepufferten Lösung aus Ascorbinsäure und Ammoniumoxalat (50 mL, 0.1 M Ascorbinsäure, 0.2 M NH₄-Oxalat, 0.2 M Oxalsäure, auf pH 3.25 eingestellt mit NH₃-Lösung) für 30 min im kochenden Wasserbad erhitzt. Die Bodenprobe wird anschließend zweimal mit einer gepufferten Ammoniumoxalatlösung (50 mL, 0.2 M NH₄-Oxalat, 0.2 M Oxalsäure, auf pH 3.25 eingestellt mit NH₃-Lösung) gewaschen und die Lösungen vereinigt.

Es werden in dieser Fraktion die Elemente gelöst, die an die sehr viel stabileren, kristallinen Eisenoxide gebunden sind.

Fraktion 7: Residual gebundene Schwermetalle

Die verbliebene Bodenprobe wird anschließend mit konz. HNO_3 (15 mL) und konz. $HClO_4$ (5 mL) versetzt, je eine Stunde bei 80 °C und 120 °C erhitzt und anschließend bei größerer Hitze bis zur Trockene eingedampft. Der Rückstand wird in HNO_3 (100 mL, 5 M) gelöst.

Die sehr stark im übrigen Bodenmineral fixierten Elemente werden in dieser Fraktion freigesetzt.

Zeien und Brümmer empfehlen in der Publikation die Verwendung von Ammoniumsalzen, da sie nur sehr geringe Störeffekte bei Atomabsorptionsmessungen verursachen.

Weitergehend hat dies allerdings auch den Vorteil, dass die eingebrachten Salze thermisch zu gasförmigen Zersetzungsprodukten umsetzbar sind. Es lassen sich somit mit einigem Aufwand störende Matrixeffekte bei zum Beispiel einer Ionentauscherextraktion entfernen.

3.3 GAMMADETEKTOREN

Die einfachsten und vom Funktionsprinzip verständlichsten Strahlungsdetektoren sind gasgefüllte Zählrohre. Zu dieser Gruppe gehören Ionisationskammern, Proportionalzählrohre und Geiger-Müller-Zählrohre.

Diese drei Detektortypen haben gemeinsam, dass sie vereinfacht gesagt aus zwei Kondensatorplatten bestehen, die durch einen gasgefüllten Bereich voneinander getrennt sind. Praktisch wird dies oft dadurch realisiert, dass das zylinderförmige Gehäuse als Kathode fungiert. Die Anode ist als mittig im Gehäuse befindlicher Draht realisiert.

Durch die anliegende Spannung unterscheiden sich die drei Zählrohrtypen voneinander.

In einer Ionisationskammer liegt eine vergleichsweise geringe Spannung an. Einfallende Strahlung ionisiert einige der Gasmoleküle zu positiv geladenen Ionen und Elektronen. Ist die Spannung groß genug, werden die beiden Teilchen zu der entsprechenden Elektrode gezogen und eine Rekombination wird verhindert. Beim Auftreffen der Teilchen auf den Elektroden, erzeugen sie einen Stromfluss, der proportional 7Ur deponierten Energie ist.

Bei einem Proportionalzählrohr werden die Elektronen durch eine höhere anliegende Spannung beschleunigt,

sodass sie auf dem Weg zur Anode ^{Abbildung 8: Verstärkungsbereiche in den Verschiedenen Zählrohrtypen.⁹ lawinenartig weitere Elektronen aus anderen Gasmolekülen herausschlagen. Es kommt dadurch zu einer Signalverstärkung, wodurch einzelne Ereignisse besser detektiert werden können und ihnen leichter eine Energie zugeteilt werden kann.}

Bei einer weiteren Erhöhung der Spannung erfasst die Lawine das gesamte Zählrohr und sorgt somit für eine starke Entladung bei jedem einzelnen Strahlungsereignis. Im Gegenzug wird die Information über die Energie verloren. Bei dieser Bauart handelt es sich um ein Geiger-Müller-Zählrohr.⁸

Zur Identifikation unbekannter Radionuklidgemische wird eine möglichst scharfe Energieauflösung der Detektoren benötigt. Halbleiterdetektoren weisen hierbei deutlich bessere Eigenschaften auf.

Bei diesen Detektoren handelt es sich prinzipiell um eine Diode, die in Gegenstromrichtung betrieben wird. Durch die angelegte Spannung wird eine an Ladungsträgern verarmte Zone im Detektor erzeugt. Ein eintreffendes Strahlungsteilchen hebt in dieser verarmten Zone eine Reihe von Elektronen aus dem Valenz- in das Leitungsband. Die so erzeugten Elektron-Loch-Paare können sich nun durch den Kristall bewegen und analog zum Proportionalzählrohr einen Stromfluss erzeugen, der proportional zur Energie des Strahlungsereignisses ist.⁹

In Abbildung 9 ist exemplarisch der Aufbau eines lithiumdotierten Silicium-Halbleiterdetektors (Si(Li)-Detektor) gezeigt. Besonders zur Detektion hochenergetischen von Gammaguanten wird außerdem Germanium als Halbleitermaterial

gegenüber Silicium

den Abbildung 9: Schematische Darstellung eines Si(Li)-Halbleiterdetektors. 9

Vorteil, dass es eine kleinere Bandlücke besitzt. Das gleiche Strahlungsereignis führt somit zu einem stärkeren elektrischen Signal. Außerdem absorbiert Germanium aufgrund seiner höheren Dichte Gammastrahlung besser.⁸

Trifft ein Gammaphoton auf den Detektor, erzeugt es dort eine große Anzahl Ladungsträger, die zu einem detektierbaren Strompuls führen. In einem Multichannel Analyser wird jede Impulshöhe einem Kanal zugeordnet und die Anzahl der Ereignisse pro Kanal gespeichert. Werden die Kanäle nach den zugehörigen Energien sortiert, ergibt sich daraus ein Spektrum. Ein Beispiel eines solchen Spektrums ist in Abbildung 10 dargestellt. Es handelt sich dabei um das Spektrum des Multielementstandards zur Zählausbeutekalibration von Fraktion 3 (vgl. Kapitel 5.1). Jedem scharfen Peak lässt sich ein Radionuklid zuordnen.

Abbildung 10: Beispielhaftes Gammaspektrum einer Messung eines Multielementstandards.

In einem realen Gammaspektrum beobachtet man neben dem typischen, scharfen Peak, dem Photopeak, auch einen breiten Signalbereich bei niedrigeren Energien. Diesen Energiebereich

nennt man das Comptonkontinuum und er endet mit der Comptonkante. (siehe Abbildung 11)

Bei der Entstehung des Photopeaks wird die gesamte Energie des Gammaphotons im Detektor deponiert. Es kann durch Comtonstreuung allerdings dazu kommen, dass das Gammaphoton an einem Elektron im Detektionskristall gestreut wird und den Detektor wieder verlässt. Abhängig vom Stoßwinkel zwischen Elektron und Photon

Abbildung 11: Vereinfachte Darstellung eines Gammaspektrums eines einzelnen Strahlers mit Photopeak (P) und Comptonkante (C). ²⁴

wird dabei ein nur ein Teil der Energie im Detektor abgegeben. Ein maximaler Energieübertrag entsteht bei einem Winkel von 180°. Dies ist der maximale Wert des Comptonkontinuums und entspricht der Comptonkante. Kleinere Winkel sorgen entsprechend für einen geringeren Energieübertrag, woraus der kontinuierliche Bereich entsteht.

Zur Quantifizierung des Gammastrahlers, wird typischerweise die Fläche des Photopeaks pro Zeit verwendet. Hier muss allerdings eine Reihe von Einflussfaktoren beachtet werden. Die Geometrie und Position der Probe hat hiervon den größten Einfluss, da sie darüber entscheidet, welcher Anteil der in alle Richtungen emittierten Strahlung den Detektor trifft. Außerdem werden nicht zwangsläufig bei jedem Zerfall Photonen derselben Energie ausgesandt. Jede Gammalinie besitzt eine gewisse Emissionswahrscheinlichkeit. Ein weiterer Einflussfaktor ist zum Beispiel die Detektionswahrscheinlichkeit oder die Energieabhängigkeit des Detektors.

Diese Einflüsse werden typischerweise in der Messeffizienz zusammengefasst. Am einfachsten lässt sie sich bestimmen, indem ein Standard des untersuchten Radionuklids mit bekannter Aktivität und gleicher Geometrie gemessen wird. Aus dem Verhältnis von Aktivität und gemessenen Zerfallsereignissen lässt sich die Effizienz bestimmen.

3.4 LIQUID SCINTILLATION COUNTER (LSC)

Die bisher behandelten Detektoren haben das Problem, dass sie zur Detektion sehr geringer Aktivitäten relativ lange brauchen. Die Probe emittiert Strahlung zufällig in jede Richtung, während der Detektor meist nur einen Teil der nach unten abgegebenen Strahlung absorbieren kann. Bei sehr geringen Aktivitäten bietet sich daher die Flüssigszintillation an, da der Strahler im Detektrionsmedium gelöst und somit vollständig umgeben ist.

Zur Detektion wird der Effekt ausgenutzt, dass bestimmte Substanzen nach Anregung durch ionisierende Strahlung UV-Licht emittieren. Dieser Lichtblitz lässt sich relativ einfach detektieren.

3.4.1 Cocktail

Die Probenlösung wird zur Messung mit einem sogenannten Cocktail versetzt. Die Hauptkomponente des Cocktails ist ein aromatisches Lösungsmittel wie zum Beispiel Diisopropylnaphthalin (DIPN). Die aromatischen Moleküle sind in der Lage die Strahlung zu absorbieren, wobei ein angeregtes Lösungsmittelmolekül erzeugt wird. Diese

Abbildung 12: Der häufig verwendete Szintillator 2,5-Diphenyloxazol (DPO).

Anregung wird auf ein Szintillatormolekül übertragen, das durch Emission von UV-Licht in den Grundzustand zurückkehrt. Ein häufig verwendeter Szintillator ist 2,5-Diphenyloxazol (DPO) (siehe Abbildung 12). Die Emission erfolgt im Bereich von 375 – 430 nm. In einigen Szintillationscocktails wird außerdem ein Wellenlängenshifter wie zum Beispiel 1,4-Bis-(5-phenyloxazol-2-yl)-benzol (POPOP) zugesetzt, um die Emissionswellenlänge zu einer längeren Wellenlänge zu verschieben, bei der die Detektoren ein besseres Ansprechvermögen zeigen.

Um die häufig in wässriger Lösung vorliegenden Proben mit dem unpolaren Cocktail mischen zu können, werden für diese Anwendungen außerdem Emulgatoren hinzugegeben.

Ein einzelnes Strahlungsteilchen besitzt sehr viel Energie, die beim Durchgang durch den Cocktail an eine Vielzahl verschiedener Moleküle abgegeben wird. Es kommt somit beim Durchdringen von Korpuskularstrahlung durch den Cocktail zu einer ganzen Reihe an freigesetzten Photonen. Die Intensität dieses Lichtblitzes lässt dabei auf die Energie der Strahlung schließen.¹⁰

3.4.2 Photomultiplier

Die Detektion des Lichtblitzes erfolgt üblicherweise durch den Einsatz von Photomultipliern. In einem Photomultiplier treffen die zu detektierenden Photonen zuerst auf eine photosensitive Kathode, aus der sie aufgrund des photoelektrischen Effekts Elektronen herausschlagen. Diese Photoelektronen werden durch ein anliegendes Potenzial zu einer Dynode hin beschleunigt, aus der sie beim Auftreffen zusätzliche Elektronen herausschlagen. Dies wird durch eine Reihe weiterer Dynoden wiederholt, wodurch sich die Anzahl der Elektronen exponentiell erhöht. An einer Anode werden die Elektronen schließlich gesammelt und als Strom detektiert. Photomultiplier sind so in der Lage, sehr empfindlich eine geringe Anzahl Photonen zu detektieren.⁹

Abbildung 13: Schematischer Aufbau eines Photomultipliers.¹¹

3.4.3 Signalverarbeitung

Abbildung 14: Schema der Signalverarbeitungskette in der LSC.¹⁰

Aufgrund von thermischem und elektronischem Hintergrundrauschen würde es bei der Verwendung von einem einzelnen Photomultiplier zu einem relativ starken Untergrundrauschen von ca. 10000 Counts pro Minute in einem Messbereich von 0 – 2000 keV kommen.¹⁰ Um dieses Rauschen zu verhindern, werden üblicherweise zwei Photomultiplier in Koinzidenz eingesetzt. Ein Signal wird nur dann aufgezeichnet, wenn es auf beiden Photomultipliern simultan gemessen wurde.

Da bei einem Zerfall eine ganze Reihe an Photonen richtungsunabhängig freigesetzt wird, müssen hierbei zwangsläufig beide Multiplier ausschlagen. Störende thermische und elektrische Effekte der einzelnen Photomultiplier sind voneinander unabhängig und treten nur zufällig gemeinsam auf und erzeugen somit in der Konizidenzanordnung nur selten ein Signal.

Anschließend werden die beiden Signale addiert. Neben dem Effekt der Signalverstärkung sorgt dies außerdem dafür, dass die Energie des Signals unabhängig vom Ort des Zerfalls wird. Findet ein Zerfall in der Nähe der Gefäßwand eines der Detektoren statt, wird der eine einen sehr ungestörten Lichtblitz sehen. Das Licht, das den anderen Detektor erreichen wird, muss eine vergleichsweise lange Wegstrecke durch den Cocktail zurücklegen und kann dabei durch Absorption geschwächt werden. Durch Addieren dieser beiden Signale hebt sich der Einfluss der Position auf. Anschließend wird in einem Multichannel Analyser analog zur Gammaspektroskopie jede Energie einem Kanal zugeordnet und die Anzahl der Ereignisse pro Kanal gezählt.¹⁰

In einigen Geräten, wie zum Beispiel dem in dieser Arbeit verwendeten Hidex 300 SL, wird ein dritter Photomultiplier verwendet. Die erzielte Dreifachkoinzidenz der Messungen verbessert die Sicherheit der Zählereignisse nochmals. Außerdem ist es möglich, durch den Vergleich von Doppel- und Trippelkoinzidenz die Aktivität kalibrationsfrei zu bestimmen. Diese Methode wurde in dieser Arbeit allerdings nicht verwendet, da nach Aussage des Herstellers der Fehler bei drei vorhandenen Radionukliden zu groß ist.

Abbildung 15: Schema der verschiedenen Quenchvorgänge. Die gestrichelten roten Pfeile stellen die Weitergabe von Anregungsenergie dar.¹²

Da der Szintillatorcocktail die Probe vollständig umgibt, führt nahezu jeder radioaktive Zerfall zu einem messbaren Signal. Die Zählausbeute liegt daher theoretisch bei nahezu 100%. In der Praxis wird diese Ausbeute allerdings durch Quencheffekte verringert. Sie sorgen dafür, dass die Menge der pro Zerfall emittierten Photonen abnimmt oder bei stärkerem Quench auch einzelne Zerfälle nicht detektiert werden können. Dabei lässt sich zwischen dem chemischen Quench und dem Farbquench unterscheiden.

Der chemische Quench ist davon der häufigste. Bei der Weitergabe der Anregungsenergie der absorbierten Strahlung zwischen den Lösungsmittelmolekülen kann es vorkommen, dass diese Energie auf ein Fremdmolekül mit quenchenden Eigenschaften übertragen wird. Dieses Molekül ist nicht dazu in der Lage, diese Energie an andere Moleküle weiterzugeben, wodurch hierbei keine weiteren Photonen emittiert werden. Der Farbquench hingegen findet nach der Emission der Photonen statt. Treffen die emittierten Photonen im LSC-Cocktail auf einen Farbstoff oder ein intransparentes Partikel, können sie absorbiert werden und erreichen somit den Detektor nicht mehr.

Ein schwacher Quench macht sich im Spektrum zunächst durch eine Verschiebung der Energien bemerkbar. Jedes Strahlungsereignis wird nach der Gesamtenergie der emittierten

Photonen einem Kanal zugeordnet. Der Quench sorgt dafür, dass weniger Photonen den Detektor erreichen und somit die Energie des Zerfalls als zu gering eingeschätzt wird. Die Zählrate wird davon allerdings nicht beeinflusst. (Siehe 1 in Abbildung 16)

Abbildung 16: Die Wirkung des Quenches auf das LSC-Spektrum. Dargestellt ist die Verringerung der Energien (1) und die Abnahme der Zählereignisse (2). ²³

Bei einem stärkeren Quench oder auch bei einem schwächeren Strahler kann es vorkommen, dass keine Photonen mehr den Detektor erreichen und somit der Zerfall nicht mehr registriert werden kann. Dies hat eine Abnahme der Zählrate der Probe zur Folge. ¹⁰

3.4.5 Sonstige Störeffekte

Neben dem Quench kann es zu weiteren Störungen der LSC-Messung kommen. Sehr häufig treten hiervon Lumineszenzeffekte auf. Durch den Einfall von Licht in den LSC-Cocktail kann es zu einer Phosphoreszenz kommen. Dies betrifft vor allem frisch zubereitete Proben.

Der phosphoreszierende Cocktail emittiert dabei unabhängig von Zerfallsereignissen sehr viele Photonen. Aufgrund der hohen Anzahl kommt es vor, dass in den Koinzidenzdetektoren zeitgleich Photonen eintreffen und somit fälschlicherweise für ein Signal sorgen. Der Phosphoreszenz lässt sich durch eine Adaptionszeit entgegnen, in der die Probe vor der Messung im Gerät unter Lichtausschluss aufbewahrt wird, um die Phosphoreszenz abklingen zu lassen. Einen ähnlichen Effekt hat chemische Lumineszenz. Hierbei kommt es aufgrund von chemischen Reaktionen zur Emission von Photonen. Im Gegensatz zur Phosphoreszenz klingt die Chemolumineszenz allerdings sehr viel langsamer ab. Da sie vor allem bei alkalischem pH und Anwesenheit von Wasserstoffperoxid auftritt, lässt sie sich durch Vermeiden dieser chemischen Umgebung umgehen. Außerdem gibt es spezielle Cocktails mit Zusätzen, die diese Reaktionen unterdrücken können.

Eine weitere Störquelle können statische Entladungen sein. Auf der Oberfläche von Isolatoren kann es durch statische Aufladung zu einer Potenzialdifferenz von einigen kV kommen, die bei Entladung eine große Menge Photonen freisetzen kann. Dies lässt sich im Gerät durch einen eingebauten Ionisator verhindern. Der Ionisator erzeugt einen ionisierten Luftstrom, der auf das Probengefäß geleitet wird und hier zu einem schnelleren Abbau der statischen Ladungen führt.

Die Intensität von störender Strahlung aus externen Quellen lässt sich durch eine ausreichende Abschirmung des Messgerätes mit zum Beispiel Blei verringern. Sehr energiereiche kosmische Strahlung ist allerdings meist dennoch in der Lage, diese Abschirmung zu durchdringen. Um diesen Einfluss zu verhindern wird meist auf einen "active Guard" gesetzt. Dabei handelt es sich um ein weiteres Szintillationsmedium, das die Messkammer umgibt. Wird ein Ereignis simultan in diesem Medium und in der Probe detektiert, handelt es sich mit hoher Wahrscheinlichkeit um von außen eingetretene kosmische Strahlung. Das zugehörige Signal wird verworfen.¹⁰

4 DURCHFÜHRUNG

4.1 SEQUENTIELLE EXTRAKTION DER BODENPROBEN

Die drei, jeweils 30 cm langen Bohrkerne wurden in vorherigen Versuchen bereits in 2-4 cm lange Segmente zersägt und getrocknet. Diese Proben wurden so vereinigt, dass aus jedem Bohrkern ein dreiteiliges Tiefenprofil mit jeweils 10 cm Dicke entstand.

Von diesen Bodenproben wurden bei einer vorhergegangenen Arbeit¹³ bereits die Extrakte nach Zeien und Brümmer⁷ hergestellt.

Es wurde außerdem pro Fraktion eine Blindprobe angefertigt, in der kein Boden verwendet wurde. Ansonsten wurden alle Schritte der Abbildung 17: Übersichtsbild der Extraktionslösungen der Bodenproben. Extraktionen durchgeführt.

Aus den getrockneten, vermengten und homogenisierten Bodenproben wurden jeweils 2 g entnommen. Die exakten Einwaagen der Proben sind im Anhang 9.1 angegeben.

Für die Auswertung der Messergebnisse wurden die einzelnen Bodenproben mit den Ziffern P1 bis P9 versehen. Das genaue Benennungsschema ist in Tabelle 1 dargestellt.

Proben- nummer	Bodenprobe + Tiefe	Proben- nummer	Bodenprobe + Tiefe	Proben- nummer	Bodenprobe + Tiefe
P1	Boden 1, 0-10 cm	P4	Boden 2, 0-10 cm	P7	Boden 3, 0-10 cm
P2	Boden 1, 10-20 cm	Р5	Boden 2, 10-20 cm	Р8	Boden 3, 10-20 cm
P3	Boden 1, 20-30 cm	P6	Boden 2, 20-30 cm	Р9	Boden 3, 20-30 cm

Tabelle 1: Benennungsschema der Bodenproben.

4.2 GAMMAMESSUNG DER BODENEXTRAKTE

Zur Bestimmung der ¹³⁷Cs-Aktivität wurden gammaspektroskopische Messungen durchgeführt. Dazu wurden die jeweiligen Extrakte in ihrer Gesamtheit auf einem Intertechnique EGPC 115 P-15B HPGe-Detektor (Detektor 1 und 2) und einem Ortec 29-TP20009B HPGe-Detektor (Detektor 3) für ein bis drei Tage gemessen. Zur Bestimmung der Messeffizienz wurde zu jeder Fraktion ein eigener Geometriestandard mit gleicher Matrixzusammensetzung und bekannter ¹³⁷Cs-Aktivität hergestellt und ebenfalls vermessen.

Die zur Auswertung gewählten Kanäle sind in Tabelle 2 dargestellt. Sie entsprechen auf dem jeweiligen Detektor der 661 keV Gammalinie. Für die Subtraktion des Untergrundsignals wurde eine möglichst lange Untergrundmessung aus dem bestehenden Datensatz ausgewählt, die zeitlich möglichst nahe an den durchgeführten Messungen liegt.

Tabelle 2: Übersicht über die ausgewerteten Kanäle der Gammadetektoren.

Detektor	Det 1	Det 2	Det 3
Ausgewertete Kanäle	5239-5307	5277-5367	3934-4000

4.3 AUFARBEITUNG DER EXTRAKTE FÜR DIE STRONTIUM-EXTRAKTION

Erste Messungen an den Proben haben gezeigt, dass die Aktivität der einzelnen Extrakte nur sehr gering ist. Um die Nachweisbarkeit von ⁹⁰Sr zu verbessern, wurde für die ⁹⁰Sr-Bestimmung das gesamte Extrakt in der Messung verwendet.

Zuerst wurden 1-2 Bq⁸⁵Sr als Tracer hinzugegeben, um die Wiederfindungsrate zu bestimmen. Die genaue Traceraktivität wurder bestimmt, variierte aufgrund des schnellen Zerfalls von ⁸⁵Sr allerdings von Tag zu Tag. Anschließend wurde ca. 1 mL der Probe für spätere massenspektrometrische Messungen zurückgestellt.

Um den Einfluss der sehr hohen Salzfracht aus der Extraktion zu minimieren, wurden die in der Bodenextraktion hinzugegebenen Salze auf einer Heizplatte thermisch zersetzt. Das exakte Vorgehen unterschied sich dabei je nach Fraktion. Eine exakte Temperaturkontrolle erfolgt nicht. <u>Fraktion 1 (NH₄NO₃)</u>: Die Probe wurde nach und nach in einem 50 mL Erlenmeyerkolben eingedampft, das Probengefäß zwei Mal mit je 10 mL 0.01 M HNO₃ gewaschen. Die Waschlösung wurde zu der Probe gegeben, bis zur Trockene eingedampft und die zurückbleibende Salzschmelze thermisch zersetzt. Der Rückstand wurde mit ca. 20 mL 8 M HNO₃ aufgenommen und unter Sieden auf ca. 5 mL eingedampft.

Die Verwendung von einem Überschuss war nötig, um die mit ⁹⁰Sr beaufschlagte Glasfläche ausreichend zu benetzen. Das anschließende Sieden diente der besseren Lösung des Rückstandes und der Verringerung des Volumens.

Fraktion 2 (NH₄Ac): Verfahren wie bei Fraktion 1.

<u>Fraktion 3 (NH₄Ac, [NH₃OH]Cl)</u>: Um die Bildung von explosivem [NH₃OH]NO₃ zu verhindern, wurde in den ersten Schritten die Zugabe von jeglichen Nitraten vermieden.

Die Probe wurde nach und nach in einem 50 mL Erlenmeyerkolben eingedampft, das Probengefäß zwei Mal mit je 10 mL Reinstwasser gewaschen. Die Waschlösung wurde zu der Probe gegeben, bis zur Trockene eingedampft und die zurückbleibende Salzkruste thermisch zersetzt. Anschließend wurde der Rückstand mit ca. 10 mL 1 M HCl aufgenommen und erneut eingedampft und thermisch zersetzt, um eine vollständige Zersetzung des [NH₃OH]Cl sicherzustellen. Der Rückstand wurde mit ca. 20 mL 8 M HNO₃ aufgenommen und unter Sieden auf ca. 5 mL eingedampft.

<u>Fraktion 4 (NH₄Ac, EDTA)</u>: Verfahren wie bei Fraktion 1.

<u>Fraktion 5 (NH₄-Oxalat)</u>: Verfahren wie bei Fraktion 1.

<u>Fraktion 6 (NH₄-Oxalat, Ascorbinsäure)</u>: Die Probe wurde nach und nach in einem 50 mL Erlenmeyerkolben eingedampft, das Probengefäß zwei Mal mit je 10 mL 0.01 M HNO₃ gewaschen. Die Waschlösung wurde zu der Probe gegeben, bis zur Trockene eingedampft und der Rückstand thermisch zersetzt. Hierbei durfte die Temperatur nicht zu hoch werden, um ein Überschäumen der karamellisierenden Ascorbinsäure zu verhindern. Der verkohlte Rückstand wurde mit ca. 10 mL konz. HNO₃ versetzt und erneut eingedampft und thermisch zersetzt, um ihn in eine lösliche Form zu überführen. Der Rückstand wurde mit ca. 20 mL 8 M HNO₃ aufgenommen und unter Sieden auf ca. 5 mL eingedampft.

<u>Fraktion 7 (5 M HNO₃)</u>: Die Probe wurde nach und nach in einem 50 mL Erlenmeyerkolben eingedampft, das Probengefäß zwei Mal mit je 10 mL 0.01 M HNO₃ gewaschen. Die Waschlösung wurde zu der Probe gegeben und auf ca. 5 mL eingedampft.

Die aufgearbeiteten Lösungen waren durch Pyrolyseprodukte teilweise noch sehr stark gefärbt. (vgl. Abbildung 18) Diese Färbung nahm im letzten Schritt, dem Eindampfen der 8 M HNO₃ oft merklich ab. Ein störender Einfluss auf die Sr-Extraktion konnte nicht festgestellt werden.

Abbildung 18: Foto der unterschiedlichen Färbung der Proben durch Pyrolyseprodukte. Zu sehen sind zufällig ausgewählte Proben der Fraktionen 2, 3, 4 und 6.

4.3.1 Reextraktion verunreinigter Proben

Zwei Proben waren nach der Extraktion noch mit einem anderen Radionuklid unbekannter Herkunft verunreinigt, was eine ⁹⁰Sr-Quantifizierung verhinderte. Um diese Proben erneut abzutrennen, musste der LSC-Cocktail abgetrennt werden. Das Proben-LSC-Cocktail-Gemisch wurde mit 10 mL 8 M HNO₃ extrahiert und die organische Phase anschließend erneut mit 10 mL 8 M HNO₃ gewaschen. Zur besseren Phasentrennung wurden die Gemische zentrifugiert.

Die wässrigen Phasen wurden auf ca. 5 mL eingedampft, wobei sich eine hochviskose organische Phase bildete. Das Gemisch wurde in ein Zentrifugenröhrchen überführt, das Gefäß mit 5 mL 8 M HNO₃ gewaschen und die organische Phase mit 5 mL Toluol extrahiert. Die organische Phase wurde verworfen und der gebildete weiße Niederschlag wurde mit 5 mL 8 M HNO₃ erneut gewaschen. Die wässrigen Phasen wurden vereinigt und wie die anderen Proben weiterbehandelt.

4.4 STRONTIUM-EXTRAKTION

Zur Trennung des ⁹⁰Sr von anderen Radionukliden wurde eine Extraktion mit einem Kronenetherharz durchgeführt. Es wurde dazu das Sr-Resin der Firma Eichrom mit einer Partikelgröße von 50 – 100 μ m verwendet. Zur Extraktion des Sr wurde eine Vorschrift von Maxwell et al.¹⁴ in abgewandelter Form befolgt. Im Gegensatz zur Vorschrift wurde lediglich eine Sr-Resin Kartusche verwendet und die Elutionslösung bestand lediglich aus 0.01 M HNO₃, statt 0.05 M HNO₃.

Vor der Abtrennung wurde das Harz ca. 30 min mit 8 M HNO₃ konditioniert.

Anschließend wurden 7 mL 8 M HNO₃ zu dem aufgearbeiteten Extrakt gegeben, und durch Anlegen eines Vakuums durch das Resin gezogen. Das Gefäß wurde mit 5 mL 8 M HNO₃ gewaschen und diese Lösung ebenfalls auf das Resin gegeben. Das Resin wurde nun mit 15 mL 8 M HNO₃, einer Lösung aus 3 M HNO₃ und 0.05 M Oxalsäure und schließlich 10 mL 8 M HNO₃ gewaschen, um störende Radionuklide zu entfernen.

Das auf dem Resin noch fixierte ⁹⁰Sr wurde mit 18 mL 0.01 M HNO₃ eluiert und die Lösung in einem Erlenmeyerkolben auf ca. 3 mL eingedampft. Um eine konstante Zusammensetzung der Messlösung zu gewährleisten, wurde das eingedampfte Eluat mit Reinstwasser auf 5 mL verdünnt und in einem HD-PE-LSC-Vial mit 15 mL des LSC-Cocktails Ultima Gold AB von Perkin Elmer versetzt.

4.5 Messung der Sr-Extrakte mittels Liquid Scintillation Counting (LSC)

Die LSC-Messungen wurden aus Zeitgründen an zwei Geräten parallel durchgeführt. Verwendet wurde ein Hidex 300 SL und ein 1220 Quantulus.

Ursprünglich war geplant, jede Probe zwei Mal zu vermessen: Zuerst direkt am Tag der Extraktion, um das ⁹⁰Sr ohne ⁹⁰Y zu messen und anschließend nach mindestens 3 Wochen im ⁹⁰Sr/⁹⁰Y-Gleichgewicht.

Aus zeitlichen Gründen wurden von den Fraktionen 3, 4 und 6 nur die Blindproben und die ersten drei Extrakte doppelt gemessen. Die anderen Proben dieser Fraktionen wurden nur nach Einstellung des ⁹⁰Sr/⁹⁰Y-Gleichgewichts gemessen.

Am Hidex wurden jeweils 4 Wiederholmessungen zu je 20000 s ohne vorherige Wartezeit durchgeführt. Es wurden die Doppel- und die Dreifachkoinzidenz der Messungen aufgezeichnet und drei Regions of Interest festgelegt: Kanal 0-280 für ⁸⁵Sr, Kanal 281-680 für ⁹⁰Sr und Kanal 681-820 für ⁹⁰Y.

Am Quantulus wurden ebenfalls 4 Wiederholmessungen zu je 333.33 min ohne vorherige Wartezeit durchgeführt. Es wurden dieselben Regions of Interest gewählt: Kanal 0-280 für ⁸⁵Sr, Kanal 281-680 für ⁹⁰Sr und Kanal 681-820 für ⁹⁰Y.

Die Verwendung der gleichen Messfenster auf beiden Geräten hat sich im Experiment als angemessen herausgestellt. Während die Lage des Peakmaximums des ⁸⁵Sr Peaks zwischen den Messgeräten leicht variiert, ist das Ende des ⁸⁵Sr Bereichs auf beiden Messgeräten gleich.

Der Verlauf der Spektren im höherenergetischen Bereich ist auf beiden Geräten identisch. (siehe Abbildung 19)

Abbildung 19: Darstellung der gewählten Messfenster. Es ist das Spektrum der gleichen Probe auf jedem der Messgeräte angezeigt.

Die Messungen wurden anschließend nach DIN ISO 18589-5¹⁵ ausgewertet. Dazu wurden lediglich die Messungen im ⁹⁰Sr/⁹⁰Y-Gleichgewicht verwendet und die ⁹⁰Sr-Fenster und ⁹⁰Y-Fenster addiert und gemeinsam betrachtet. Hierdurch kommt es zu einer deutlich größeren Signalmenge, was die statistische Reinheit der Ergebnisse verbessert.

4.5.1 Weitere hergestellte Proben zur LSC-Messung

Zur Quantifizierung der chemischen Ausbeute über ⁸⁵Sr in der LSC wurden drei Standards mit bekannter ⁸⁵Sr-Aktivität hergestellt, indem das entsprechende Volumen der ⁸⁵Sr-Stammlösung mit Wasser auf 5 mL verdünnt wurde und anschließend mit 15 mL des LSC-Cocktails gemischt wurde.

Zur Erstellung einer Kalibriergeraden wurden für jedes Messgerät drei ⁹⁰Sr-Standards hergestellt. Die Volumina der Stammlösung wurden mit 7 mL 8 M HNO₃ und einem ⁸⁵Sr Ausbeutetracer versetzt und nach dem Standardverfahren extrahiert. Messungen wurden jeweils direkt nach der Extraktion und im ⁹⁰Sr/⁹⁰Y Gleichgewicht durchgeführt.

Es wurden nachträglich noch zwei weitere Kalibrationsstandards pro Messgerät angefertigt, um den betrachteten Bereich zu optimieren. Hierfür wurden die entsprechenden Volumina der ⁸⁵Sr und ⁹⁰Sr Standards zusammengegeben, mit Wasser auf 5 mL verdünnt und ohne Extraktion zu 15 mL LSC-Cocktail hinzugegeben. Die Zugabe von ⁸⁵Sr diente zur Angleichung der Matrixzusammensetzung um gleichbleibende Einflüsse auf das Untergrundsignal zu gewährleisten.

5.1 GAMMASPEKTROMETRISCHE MESSUNGEN ZUR BESTIMMUNG DES ¹³⁷CS GEHALTES

Zum Ansetzen der Geometriestandards wurde ein QCY-48 Multielementstandard der Firma

Eckert & Ziegler Isotope Products verwendet, der vom Deutschen Kalibrierdienst zertifiziert wurde.

Dieser Multielementstandard enthielt am 01.05.2016 eine
spezifische ¹³⁷ Cs-Aktivität von 2320 Bq/g (± 2.3 %). Im Haus
wurde dieser Standard um den Faktor 0,0255 verdünnt. Aus
diesem Standard wurden die Standards mit den in Tabelle 3
dargestellten Aktivitäten hergestellt. Die exakten Einwaagen
sind im Anhang 9.2.2 angegeben.

Tabelle 3: Spezifische Aktivität der ¹³⁷ Cs				
Geometriestandards zum Bezugszeitpunkt				
des Standards.				

Fraktion	¹³⁷ Cs-Aktivität in Bq	
1	60.7 ± 1.4	
2	60.9 ± 1.4	
3	60.7 ± 1.4	
4	60.7 ± 1.4	
5	60.7 ± 1.4	
6	60.6 ± 1.4	
7	60.7 ± 1.6	

Mit diesen Standards wurde auf jedem für die Fraktion

verwendeten Detektor die Zählausbeute der Proben bestimmt. Es wurde dazu eine Einzelmessung mit mindestens 10000 Counts durchgeführt.

Die Zählausbeute ε wurde aus dem Verhältnis des Signals *S* und der zerfallskorrigierten Aktivität der Probe *A* berechnet (Formel (5.1)). Der Fehler $u(\varepsilon)$ wird dabei nach der Gaußschen Fehlerfortpflanzung in Formel (5.2) bestimmt.

$$\varepsilon = \frac{S}{A} \tag{5.1}$$

$$u(\varepsilon) = \sqrt{\left(\frac{1}{A}\right)^2 \cdot u(S)^2 + \left(\frac{S}{A^2}\right)^2 \cdot u(A)}$$
(5.2)

Die Signalintensität *S* wurde gemäß DIN ISO 11929^{16} aus den Summierten Counts *n* der Messungen und der Messzeit *t* bestimmt. Der Index g steht dabei für die Messung der Probe und der Index 0 für die Untergrundmessung.

$$S = \frac{n_{\rm g}}{t_{\rm g}} - \frac{n_{\rm 0}}{t_{\rm 0}}$$
(5.3)

$$u(S) = \sqrt{\frac{n_{\rm g}}{t_{\rm g}^2} - \frac{n_0}{t_0^2}}$$
(5.4)

Die Zählausbeuten sind in Tabelle 4 dargestellt.

		zerfallskorrigierte Aktivität in Bq	Zählausbeute <i>ɛ</i> in Counts/Bq	
	Fraktion 3	59.1 ± 1.4	0.00536 ±0.00014	
Detektor 1	Fraktion 4	59.0 ± 1.4	0.00628 ±0.00016	
Detektor 1	Fraktion 5	59.0 ± 1.4	0.00616 ±0.00017	
	Fraktion 6	59.2 ± 1.4	0.00627 ±0.00016	
	Fraktion 1	59.2 ± 1.4	0.01832 ±0.00044	
Detektor 2	Fraktion 2	59.3 ± 1.4	0.01687 ±0.00042	
Detektor 2	Fraktion 5	59.0 ± 1.4	0.01670 ±0.00040	
	Fraktion 7	59.3 ± 1.4	0.01382 ±0.00032	
Detektor 2	Fraktion 1	59.2 ± 1.4	0.01773 ±0.00044	
Delektor 3	Fraktion 4	59.1 ± 1.4	0.01715 ±0.00042	

Tabelle 4: Zählausbeuten auf den verschiedenen Detektoren.

Die Aktivität der Proben wurde nach DIN ISO 11929¹⁶ berechnet.

$$y = \left(\frac{n_{\rm g}}{t_{\rm g}} - \frac{n_0}{t_0}\right) \cdot w \tag{5.5}$$

$$w = \frac{1}{\varepsilon}$$
(5.6)

Mit dem Standardfehler *u*(*y*) gemäß folgender Gleichung:

$$u(y) = \sqrt{w^2 \cdot \left(\frac{n_{\rm g}}{t_{\rm g}^2} - \frac{n_0}{t_0^2}\right) + y^2 \cdot u_{\rm rel}^2(w)}$$
(5.7)

Da der Standardfehler lediglich einen Fehlerbereich von 1σ, also 68%, abbildet, wurde er zur Angabe der Ergebnisse verdoppelt um eine 95% Sicherheit wiederzugeben.

Als charakteristische Grenzen ergeben sich nach dieser Norm die Erkennungsgrenze y^* und die Nachweisgrenze $y^{\#}$. Die Wahrscheinlichkeit für den Fehler erster Art und den Fehler zweiter Art wurde hierbei gleich 5% gesetzt, womit sich die beiden k-Werte zu $k_{1-\alpha} = k_{1-\beta} = k = 1.65$ vereinfachen.

$$y^* = k \cdot w \cdot \sqrt{\frac{n_0}{t_g^2} - \frac{n_0}{t_0^2}}$$
(5.8)

$$y^{\#} = \frac{2 \cdot y^{*} + \frac{k^{2} \cdot w}{t_{g}}}{1 - k^{2} \cdot u_{rel}^{2}(w)}$$
(5.9)

Die so ermittelten Aktivitäten sind in Tabelle 5 dargestellt und außerdem auf die Masse der dafür extrahierten Bodenproben (vgl. Anhang 9.1) bezogen. Alle Rohdaten sind im Anhang 9.2.3 zu finden.
Tabelle 5: Ergebnisse der ¹³⁷Cs-Bestimmung.

Fraktion	Probe	Aktivität der	Aktivität	Fraktion	Probe	Aktivität der	Aktivität
		Probelösung	in Bq pro			Probelösung	in Bq pro
		in Bq	kg Boden			in Bq	kg Boden
1	Blind	<0.08		5	Blind	<0.09	
	P1	0.778 ± 0.069	386 ± 34		P1	<0.06	<32
	P2	0.077 ± 0.039	38 ± 20		P2	<0.07	<33
	P3	<0.03	<17		P3	<0.05	<25
	P4	4.29 ± 0.23	2141 ± 117		P4	0.212 ± 0.038	106 ± 19
	P5	0.560 ± 0.070	280 ± 35		P5	<0.05	<27
	P6	<0.05	<23		P6	<0.08	<42
	P7	2.07 ± 0.12	1031 ± 59		P7	0.084 ± 0.042	42 ± 21
	P8	0.407 ± 0.048	203 ± 24		P8	<0.08	<41
	P9	0.042 ± 0.024	21 ± 12		Р9	<0.06	<28
2	Blind	<0.07		6	Blind	<0.13	
	P1	0.083 ± 0.040	41 ± 20		P1	0.368 ± 0.052	183 ± 26
	P2	<0.06	<27	-	P2	<0.12	<60
	P3	<0.06	<28		P3	<0.07	<34
	P4	0.408 ± 0.072	204 ± 36		P4	1.99 ± 0.19	992 ± 97
	P5	<0.08	<41		P5	0.252 ± 0.065	126 ± 32
	P6	<0.05	<27		P6	<0.09	<43
	P7	0.221 ± 0.053	110 ± 26		P7	1.20 ± 0.16	596 ± 68
	P8	<0.09	<45		P8	0.166 ± 0.060	83 ± 30
	P9	<0.06	<32		Р9	<0.10	<50
3	Blind	<0.14		7	Blind	<0.11	
	P1	<0.11	<54		P1	2.72 ± 0.18	1348 ± 87
	P2	<0.09	<46	-	P2	0.220 ± 0.071	110 ± 35
	P3	<0.08	<40		P3	<0.06	<30
	P4	0.159 ± 0.069	79 ± 35		P4	13.18 ± 0.65	6584 ± 327
	P5	0.117 ± 0.070	58 ± 35	-	P5	1.59 ± 0.12	792 ± 59
	P6	<0.12	<58		P6	<0.07	<33
	P7	<0.08	<40		P7	12.75 ± 0.62	6357 ± 307
	P8	<0.11	<55		P8	1.057 ± 0.076	528 ± 38
	P9	<0.09	<46		P9	<0.10	<49
4	Blind	<0.05				<u> </u>	
	P1	<0.06	<32				
	P2	<0.08	<39				
	P3	<0.04	<20				
	P4	0.085 ± 0.050	43 ± 25				
	P5	< 0.03	<17				
	P6	<0.05	<23				
	P7	0.044 ± 0.024	22 ± 12				
	P8	<0.12	<62				
	P9	<0.07	<34				

5.2 HIDEXMESSUNGEN ZUR BESTIMMUNG DES ⁹⁰Sr GEHALTES

5.2.1 Untergrundkorrektur

Von den vier Wiederholmessungen wurde die erste Messung verworfen, um störende Chemolumineszenzeffekte und Effekte durch statische Aufladung zu vermeiden. Es wurden die Rohdaten der Spektren in Dreifachkoinzidenz exportiert und manuell ausgewertet. Es wurden dazu jeweils die Counts der verschiedenen Kanäle in den Regions of Interest (vergl. Absatz 4.5) summiert, durch die Messzeit dividiert und der Mittelwert der drei übrigen Wiederholmessungen gebildet. Pro Vierfachmessung wurde so jeweils ein Wert der Counts pro Sekunde für jedes der drei Messfenster erhalten. Mit diesen Werten wurden alle weiteren Rechnungen durchgeführt.

Zur Korrektur des Untergrundes in den ⁹⁰Sr und ⁹⁰Y Fenstern, wurden die jeweiligen Werte der Blindproben verwendet. Da in keiner der Proben ⁹⁰Sr nachgewiesen werden konnte und keine signifikanten Unterschiede festgestellt werden konnten, wurden sowohl die Ergebnisse der Messung direkt nach der Extraktion, als auch die der Messung nach drei Wochen verwendet. Dies dient einem besseren Ausgleich statistischer Schwankungen.

Es wurde so ein separater Untergrundwert für das ⁹⁰Sr Fenster und einer für das ⁹⁰Y Fenster erhalten, der von allen weiteren Messungen subtrahiert wurde.

Zur Bestimmung des Untergrundsignals im ⁸⁵Sr Fenster wurde eine Leermessung (5 mL Reinstwasser, 15 mL Cocktail) verwendet. Es wurde analog zu dem bisherigen die erste Messung verworfen und ein Mittelwert der verbliebenen Counts pro Sekunde im ⁸⁵Sr Messfenster gebildet.

Einen weiteren Einfluss auf den Untergrund im ⁸⁵Sr Messfenster hat der Gehalt der Probe an ⁹⁰Sr und ⁹⁰Y. Betastrahler emittieren Strahlung in einem kontinuierlichen Energiebereich, bis zu ihrer Endpunktsenergie. Es werden daher nicht alle ⁹⁰Sr und ⁹⁰Y Signale in die danach benannten Fenster fallen, sondern zu einem gewissen Anteil im niederenergetischeren ⁸⁵Sr Fenster detektiert werden.

Das Verhältnis zwischen dem tatsächlich im ⁹⁰Sr/⁹⁰Y Fenster gemessenen Signal und dem fälschlicherweise im ⁸⁵Sr Fenster gemessenen Signal ist konstant. Um dieses Verhältnis zu

38

quantifizieren, wurde eine ⁹⁰Sr Probe ohne ⁸⁵Sr Zugabe von ⁹⁰Y getrennt und direkt nach der Extraktion, sowie nach der Wiedereinstellung des Gleichgewichts gemessen. Die Exakte Aktivität der Probe ist dabei irrelevant, da sie das Verhältnis nicht beeinflusst.

Aus dieser Messung konnte bestimmt werden, dass bei der Messung direkt nach der Extraktion 10.6% der Intensität des ⁹⁰Sr-Fensters als zusätzlicher Untergrund im ⁸⁵Sr Fenster gefunden werden kann. Bei der Messung im Zerfallsgleichgewicht befinden sich 5.9% der Intensität des gemeinsamen Fensters von ⁹⁰Sr und ⁹⁰Y im ⁸⁵Sr-Fenster als zusätzlicher Untergrund.

Mit diesen Verhältnissen konnte die Bestimmung de ⁸⁵Sr-Aktivität auf den Einfluss des ⁹⁰Sr/⁹⁰Y korrigiert werden.

5.2.2 Bestimmung der chemischen Wiederfindungsrate

Zur Bestimmung der Wiederfindungsrate wurde das Verhältnis aus der zerfallskorrigierten zugegebenen ⁸⁵Sr Aktivität und der in der LSC gemessenen ⁸⁵Sr Aktivität gebildet.

Zur Bestimmung der ⁸⁵Sr-Aktivität in der LSC wurde eine Kalibration an drei Standards durchgeführt. In Tabelle 6 ist die auf den Messtag zerfallskorrigierte ⁸⁵Sr-Aktivität mit dem zugehörigen Signal der Hidex-Messungen dargestellt. Die exakten Einwaagen der Standards sind im Anhang 9.3.1 zu finden.

Die Steigung wurde zu 2.123 \pm 0.051 cps/Bq und der Achsenabschnitt zu -0.0081 \pm 0.0062 cps bestimmt.

Tabelle 6: Daten der ⁸⁵Sr Kalibrationsmessung am Hidex.

Messdatum	⁸⁵ Sr Aktivität in Bq	LSC-Signal in cps
13.12.2017	2.49	1.075
11.12.2017	1.56	0.6737
12.12.2017	0.401	0.1649

Abbildung 20: Kalibrationsgerade der ⁸⁵Sr-Kalibration am Hidex.

Mit den Daten dieser Kalibration wurden die Wiederfindungsraten aus den Messungen im ⁹⁰Sr/⁹⁰Y Gleichgewicht bestimmt. (Tabelle 7)

Fraktion	Probo	Wiederfindungs-	Eraktion	Probo	Wiederfindungs-
Flaktion	PIODE	rate in %	FIAKUOII	PIODe	rate in %
	Blind	36.3 ± 1.1		Blind	60.5 ± 7.3
	P1	63.1 ± 1.7		P1	68.3 ± 1.7
F1	P2	51.5 ± 1.7		P2	59.4 ± 4.2
	P3	59.0 ± 1.8		P3	62.0 ± 1.8
	P4	68.7 ± 1.9	FF	P4	71.9 ± 2.0
	P5	57.4 ± 1.8	гэ	P5	57.2 ± 1.7
	P6	57.3 ± 1.9		P6	70.3 ± 1.8
	P7	65.6 ± 2.0		P7	69.8 ± 1.8
	P8	57.2 ± 1.9		P8	66.7 ± 2.0
	Р9	62.7 ± 2.0		P9	62.8 ± 1.8
	Blind	59.7 ± 2.0		Blind	59.0 ± 6.9
	P1	66.4 ± 1.9		P1	80.4 ± 8.6
	P2	66.3 ± 2.2		P2	82.2 ± 9.9
	P3	71.7 ± 3.0		P3	64.1 ± 1.6
50	P4	74.4 ± 2.8		P4	72.9 ± 1.9
FZ	P5	76.8 ± 2.8	F/	P5	61.2 ± 1.8
	P6	49.3 ± 2.9		P6	73.4 ± 3.0
	P7	72.1 ± 2.9		P7	83.4 ± 2.7
	P8	74.1 ± 2.9		P8	71.5 ± 1.7
	P9	65.6 ± 3.0		P9	71.2 ± 1.8
	Blind	65.1 ± 2.6	⁹⁰ Sr	2 Bq	71.3 ± 1.4
	P1	57.6 ± 3.1	Standard	0.7 Bq	65.0 ± 1.3
	P2	71.6 ± 1.7	Hidex	0.07 Bq	72.5 ± 1.4
	P3	72.5 ± 1.7			11
	P4	79.5 ± 1.9			
F4	P5	74.0 ± 1.6			
	P6	70.5 ± 1.7			
	P7	79.7 ± 1.9			
	P8	74.5 ± 1.8			
	P9	71.0 ± 1.7			

Tabelle 7: Wiederfindungsraten der auf dem Hidex gemessenen Proben.

5.2.3 ⁹⁰Sr Kalibration

Zur Erstellung einer Kalibriergeraden wurden drei Kalibrierlösungen mit 3 Bq, 1 Bq und 0.1 Bq ⁹⁰Sr hergestellt und sowohl direkt nach der ⁹⁰Sr-Extraktion, als auch im ⁹⁰Sr/⁹⁰Y-Gleichgewicht gemessen.

Die Messpunkte direkt nach der ⁹⁰Sr-Extraktion streuten allerdings recht stark (Abbildung 21) und ließen keine ausreichend genaue Kalibration Eine mögliche Ursache zu. hierfür ist möglicherweise das schnelle Einwachsen von 90Y nach der Trennung. Unterschiedliche Wartezeiten zwischen Abtrennung und

Abbildung 21: Kalibrationsgerade des ⁹⁰Sr Fensters der Messungen direkt nach der ⁹⁰Sr- Extraktion.

Messbeginn können zu der Streuung geführt haben. Da außerdem nicht an allen Proben eine Messung direkt nach der ⁹⁰Sr-Extraktion durchgeführt wurde, wurden die Messwerte dieser Messungen verworfen und die Auswertung wurde anhand der Daten nach der Gleichgewichtseinstellung durchgeführt.

Es wurden nachträglich außerdem noch zwei weitere Kalibrationslösungen mit 6.4 Bq und 0.02 Bq ⁹⁰Sr angesetzt, da einige der Proben unerwartet hohe und andere unerwartet niedrige Aktivitäten aufwiesen und dem Rechnung getragen werden sollte. Aus diesen Lösungen wurde allerdings nicht erst ⁹⁰Sr extrahiert, sondern sie wurden direkt gemischt und im ⁹⁰Sr/⁹⁰Y-Gleichgewicht gemessen. Um eine gleichbleibende Matrix zu gewährleisten, wurde zu diesen Lösungen ebenfalls ⁸⁵Sr in der Größenordnung der anderen Proben hinzugegeben. Es ergaben sich somit fünf Kalibrationspunkte.

42

Die Signale der ⁹⁰Sr- und ⁹⁰Y-Fenster wurden addiert und gemeinsam betrachtet. (Tabelle 8)

Tabelle 8: Daten der ⁹⁰Sr Kalibration am Hidex

	⁹⁰ Sr Aktivität in	Mittelwert des LSC-
	Kalibrationslösung in Bq	Signals in cps
6.5 Bq	6.452	13.473
2 Bq	2.086	5.042
0.7 Bq	0.659	1.645
0.07 Bq	0.071	0.202
0.02 Bq	0.019	0.085

Die Kalibrationsgerade ist in Abbildung 22 und eine Vergrößerung der schwachen Aktivitäten in Abbildung 23 dargestellt.

Abbildung 22: Kalibrationsgerade der ⁹⁰Sr Kalibration am Hidex.

Die Ausgleichsgerade wurde so gewählt, dass sie durch den Nullpunkt geht, da der Achsenabschnitt ansonsten größer als der zugehörige Wert der beiden zugehören Kalibrationspunkte gewesen wäre. Außerdem fällt auf, dass die Steigung mit 2.12 cps/Bq ⁹⁰Sr zu groß ist.

Da sich die gemessene Gesamtaktivität aus der Summe der ⁹⁰Sr Aktivität und der ⁹⁰Y Aktivität zusammensetzt, wären pro Bq ⁹⁰Sr

Abbildung 23: Vergrößerung der Kalibrationspunkte der geringeren Aktivitäten.

maximal 2 cps zu erwarten. Durch den Ausschluss einiger Kanäle und ein nicht ideales Verhalten des Szintillatorcocktails und des Detektors müsste die Steigung noch kleiner als 2 cps/Bq ⁹⁰Sr sein. Dies wird im Kapitel 6.1 noch einer gründlicheren Betrachtung unterzogen.

Die Steigung wurde zu 2.123 \pm 0.051 cps/Bq ⁹⁰Sr bestimmt.

5.2.4 Ergebnisse

Aufgrund der schlechten Kalibrationsgerade der Messungen des frisch abgetrennten ⁹⁰Sr wurden nur die Messungen im ⁹⁰Sr/⁹⁰Y-Gleichgewicht ausgewertet. Dies hat den zusätzlichen Vorteil, dass durch das eingewachsene Tochternuklid die Gesamtaktivität und damit die Signalintensität verdoppelt ist.

Aus der Signalsumme der beiden Messfenster wurde die Aktivität a_{s_0} der Probenlösungen nach DIN ISO 18589-5¹⁵ ermittelt.

$$a_{90}{}_{\rm Sr} = (r_{\rm g} - r_{\rm 0}) \cdot w$$
 (5.10)

$$w = \frac{1}{R_{\rm chem}} \cdot \varepsilon \tag{5.11}$$

Hierbei steht r_g für die Zählrate der Probe und r_0 für die des Untergrundes. R_{chem} gibt die in 5.2.2 bestimmte chemische Wiederfindungsrate an und ε die Zählausbeute; in diesem Fall die Steigung der Kalibrationsgeraden. In der Norm wird zur Berechnung von w noch der Faktor 0.5 multipliziert, um der Signalverdopplung durch ⁹⁰Y Rechnung zu tragen. Bei dieser Auswertung wurde dies bereits bei der Erstellung der Kalibrationsgeraden berücksichtigt und ist daher nicht mehr notwendig.

Die Standardunsicherheit wurde gemäß der Norm ähnlich wie in 5.1 berechnet.

$$u(a_{90}_{\rm Sr}) = \sqrt{w^2 \left(\frac{r_{\rm g}}{t_{\rm g}} + \frac{r_0}{t_0}\right) + a_{90}_{\rm Sr}^2 \cdot u_{\rm rel}^2(w)}$$
(5.12)

Da die Standardunsicherheit lediglich einen Fehlerbereich von 1σ, also 68%, abbildet, wurde er zur Angabe der Ergebnisse verdoppelt um eine 95% Sicherheit wiederzugeben.

Es wurden außerdem die Nachweisgrenze *a*[#] berechnet.

$$a^* = k \cdot w \cdot \sqrt{\frac{r_0}{t_g} + \frac{r_0}{t_0}}$$
 (5.13)

$$a^{\#} = \frac{2 \cdot a^{*} + \frac{k^{2} \cdot w}{t_{g}}}{1 - k^{2} \cdot u_{rel}^{2}(w)}$$
(5.14)

Der Faktor k = 1,65 stellt die Wahrscheinlichkeit eines Fehlers erster oder zweiter Art dar. Die Ergebnisse sind in Tabelle 9 und in Anhang 9.8 aufgeführt. Eine grafische Darstellung befindet sich in Kapitel 6.3.

Tabelle 9: ⁹⁰Sr Aktivitäten der Probenlösungen.

		Aktivität der			Aktivität der
Fraktion	Probe	Probenlösung in Bq	Fraktion	Probe	Probenlösung in Bq
	P1	2.88 ± 0.21		P1	0.143 ± 0.047
	P2	0.501 ± 0.071		P2	<0.015
	P3	0.165 ± 0.056		P3	<0.014
	P4	9.44 ± 0.69		P4	0.247 ± 0.050
F1	P5	1.29 ± 0.12	F5	P5	0.054 ± 0.054
	P6	0.069 ± 0.058		P6	0.026 ± 0.047
	P7	5.11 ± 0.40		P7	0.202 ± 0.050
	P8	1.92 ± 0.17		P8	0.078 ± 0.046
	P9	0.186 ± 0.055		P9	0.016 ± 0.051
	P1	0.231 ± 0.048		P1	0.214 ± 0.064
	P2	0.042 ± 0.050		P2	<0.011
	P3	0.017 ± 0.044		P3	0.033 ± 0.053
	P4	0.851 ± 0.090		P4	1.53 ± 0.12
F2	P5	0.165 ± 0.043	F7	P5	0.442 ± 0.061
	P6	<0.018		P6	<0.012
	P7	0.580 ± 0.069		P7	3.39 ± 0.28
	P8	0.178 ± 0.048		P8	0.596 ± 0.060
	Р9	0.022 ± 0.050		P9	0.030 ± 0.042
	P1	<0.015			
	P2	0.031 ± 0.042			
	P3	0.023 ± 0.042			
	P4	0.094 ± 0.039			

0.039 ± 0.043

0.017 ± 0.044 0.083 ± 0.040

 0.038 ± 0.044

<0.012

P5

P6

P7 P8

P9

F4

5.3 QUANTULUSMESSUNGEN ZUR BESTIMMUNG DES ⁹⁰Sr Gehaltes

5.3.1 Untergrundkorrektur

Die Untergrundkorrektur wurde analog zur der der Hidexmessungen durchgeführt. Bei den Messungen am Quantulus wurde ebenfalls die erste der vier Wiederholmessungen verworfen, um störende Chemolumineszenzeffekte und Effekte durch statische Aufladung zu eliminieren.

Es wurde die vom Gerät ausgegebene Intensität in cps pro gewählter Region of Interest für die Berechnungen verwendet.

Zur Untergrundkorrektur der ⁹⁰Sr und ⁹⁰Y Fenster wurde ebenfalls der Mittelwert aller Messungen der Blindproben verwendet.

Zur Korrektur des Untergrundes im ⁸⁵Sr Fenster wurde ebenfalls die Zählrate einer Leerprobe (5 mL Reinstwasser, 15 mL Cocktail) verwendet.

Der Anteil des ⁹⁰Sr/⁹⁰Y Signals, der auf das ⁸⁵Sr Fenster fällt, wurde analog zur Hidexmessung aus einer Messung eines ⁸⁵Sr freien Standards bestimmt. Bei der Messung im Zerfallsgleichgewicht konnten 7.9% der Intensität der Summe des ⁹⁰Sr- und ⁹⁰Y-Fensters als zusätzlicher Untergrund im ⁸⁵Sr Fenster gefunden werden.

5.3.2 Bestimmung der chemischen Wiederfindungsrate

Zur Bestimmung der Wiederfindungsrate wurde analog zu Kapitel 5.2.2 vorgegangen. Es wurde das Verhältnis aus der zerfallskorrigierten zugegebenen ⁸⁵Sr Aktivität und der in der LSC gemessenen ⁸⁵Sr Aktivität gebildet.

Zur Bestimmung der ⁸⁵Sr-Aktivität in der LSC wurde eine Kalibration an denselben drei Standards durchgeführt. Die Ergebnisse sind in Tabelle 10 und Abbildung 24 dargestellt.

Die Steigung wurde zu 0.504 ± 0.003 und der Achsenabschnitt zu -0.0036 ± 0.0051 bestimmt.

Tabelle 10: Daten der ⁸⁵Sr Kalibration am Quantulus.

Messdatum	⁸⁵ Sr Aktivität in Bq	LSC-Signal in cps
22.12.2017	2.262	1.137
23.12.2017	1.367	0.681
24.12.2017	0.353	0.176

Abbildung 24: Darstellung der ⁸⁵Sr Kalibrationsgeraden am Quantulus.

Mit den Daten dieser Kalibration wurden die Wiederfindungsraten aus den Messungen im ⁹⁰Sr/⁹⁰Y Gleichgewicht bestimmt. (Tabelle 11)

Fraktion	Probe	Wiederfindungsrate in %	Fraktion	Probe	Wiederfindungsrate in %
F3	Blind	71.1 ± 1.2	F6	Blind	71.4 ± 2.2
	P1	76.2 ± 3.1		P1	73.3 ± 1.1
	P2	58.7 ± 2.5		P2	70.8 ± 1.5
	P3	76.1 ± 3.3		Р3	61.7 ± 1.2
	P4	74.0 ± 3.1		P4	74.2 ± 1.2
	P5	72.2 ± 2.9		P5	75.1 ± 1.7
	P6	74.3 ± 3.0		P6	76.1 ± 1.6
	P7	74.8 ± 3.2		P7	73.5 ± 1.7
	P8	72.3 ± 3.2		P8	77.5 ± 3.2
	P9	72.7 ± 3.2		P9	76.1 ± 3.1
⁹⁰ Sr	2 Bq	84.4 ± 1.6			
Standard Quantulus	0.7 Bq	78.1 ± 1.3			
	0.07 Bq	72.0 ± 1.2			

Tabelle 11: Chemische Wiederfindungsraten der am Quantulus gemessenen Proben.

5.3.3 ⁹⁰Sr Kalibration

Zur Erstellung einer Kalibriergeraden wurden ebenfalls drei Kalibrierlösungen mit 3 Bq, 1 Bq und 0.1 Bq ⁹⁰Sr hergestellt, mit einem Sr-Resin extrahiert und sowohl direkt nach der Trennung, als auch im ⁹⁰Sr/⁹⁰Y-Gleichgewicht gemessen. Um eine konsistente Auswertung der Messungen durchzuführen, wurde allerdings im Nachhinein nur die Messung im Gleichgewicht verwertet. Aufgrund der sehr geringen Aktivitäten der Proben auf dem Quantulus wurden im Nachhinein noch zwei weitere Kalibrationslösungen mit 0.04 Bq und 0.008 Bq ⁹⁰Sr angesetzt. Aus diesen Lösungen wurde allerdings ⁹⁰Sr nicht extrahiert, sondern sie wurden direkt gemischt und im ⁹⁰Sr/⁹⁰Y-Gleichgewicht gemessen. Um eine gleichbleibende Matrix zu gewährleisten, wurde zu diesen Lösungen ⁸⁵Sr in der Größenordnung der anderen Proben hinzugegeben.

Die vom Gerät automatisch ausgegebene Zählrate in Counts pro Minute pro gewähltem Messfenster wurden zur besseren Vergleichbarkeit in cps umgerechnet und die Signale des ⁹⁰Sr- und ⁹⁰Y-Fensters wurden addiert. Die Ergebnisse sind in Tabelle 12 und Abbildung 25 dargestellt. In Abbildung 26 ist der Bereich der geringen Aktivitäten dargestellt.

	⁹⁰ Sr Aktivität in	Mittelwert des LSC-		
	Kalibrationslösung in Bq	Signals in cps		
2 Bq	2.056	4.798		
0.7 Bq	0.740	1.678		
0.07 Bq	0.0697	0.157		
0.04 Bq	0.0373	0.106		
0.007 Bq	0.00668	0.0497		

Tabelle 12: Daten der ⁹⁰Sr Kalibration am Quantulus.

Abbildung 25: Kalibrationsgerade der 90Sr Kalibration am Quantulus.

Auch hier fällt auf, dass die Steigung erneut größer als 2 ist. Während die Gerade den Trend für den Bereich von 0.5 Bq bis 2.5 Bq recht gut wiederzugeben scheint, ist der Trend im Bereich niedriger Aktivitäten deutlich weniger repräsentativ. In diesem Bereich scheint die Steigung deutlich geringer auszufallen. Dieser Sachverhalt wird im Kapitel 6.1 noch genauer betrachtet.

Die Steigung wurde 2.326 ± 0.014 cps/Bq ⁹⁰Sr bestimmt.

zu Abbildung 26: Vergrößerung des Bereichs mit geringen Aktivitäten.

5.3.4 Ergebnisse

Die Auswertung wurde analog zur Auswertung der Hidexmessungen (siehe Kapitel 5.2) durchgeführt. Es wurden ausschließlich die Messungen im ⁹⁰Sr/⁹⁰Y-Gleichgewicht verwendet und die Signale des ⁹⁰Sr- und des ⁹⁰Y-Fensters addiert. Die Ergebnisse sind in Tabelle 9 und in Anhang 9.8 aufgeführt. Eine grafische Darstellung befindet sich in Kapitel 6.3.

Fraktion	Probe	Aktivität der Probenlösung in Bq	Fraktion	Probe	Aktivität der Probenlösung in Bq
	P1	0.0650 ± 0.0066		P1	0.0479 ± 0.0028
	P2	0.0044 ± 0.0046		P2	0.0046 ± 0.0060
	P3	0.0055 ± 0.0028		P3	<0.0020
	P4 0.3	0.185 ± 0.017		P4	0.0650 ± 0.0038
F3		0.0391 ± 0.0040	F6	P5	0.0095 ± 0.0027
	P6	<0.0017		P6	<0.0016
	P7 0.131 ± 0.013			P7	0.0425 ± 0.0026
	P8	0.0495 ± 0.0068		P8	0.0109 ± 0.0015
	P9 <0.0017			Р9	<0.0016

Tabelle 13: ⁹⁰Sr Aktivitäten der Probenlösungen.

6.1 KALIBRATIONSGERADEN

Bei der Betrachtung der Kalibrationsgeraden für die ⁹⁰Sr-Kalibration fällt auf, dass die Steigung der Geraden mit 2.1 cps/Bq ⁹⁰Sr beim Hidex, bzw 2.3 cps/Bq ⁹⁰Sr beim Quantulus in beiden Fällen größer als zwei ist. Aufgrund des Gleichgewichtes, dass sich zwischen ⁹⁰Sr und ⁹⁰Y eingestellt hat, wäre zu erwarten, dass pro vorhandenem Bq ⁹⁰Sr maximal zwei Zerfälle pro Sekunde detektiert werden können. Im Experiment wäre allerdings eine geringere Zahl zu erwarten gewesen, da beim Hidex 6% und beim Quantulus 8% der Zerfälle auf das ⁸⁵Sr-Fenster fallen und somit nicht berücksichtigt werden. Außerdem geht eine Steigung von 2 cps/Bq ⁹⁰Sr von einem idealen Detektor ohne Störeffekte aus, der in der Realität nicht existiert.

Mögliche Ursachen könnten in der geringen Anzahl der Kalibrationspunkte liegen. Aufgrund der sehr zeitintensiven Messungen konnten nur jeweils fünf Kalibrationslösungen gemessen werden, was den möglichen Einfluss von statistischen Ausreißern erhöht. Die Aktivitäten verteilen sich außerdem über einen sehr großen Bereich von 3 Größenordnungen.

Möglicherweise liegt außerdem im Bereich geringerer Aktivitäten ein anderes Ansprechnvermögen des Detektors vor als im Bereich höherer Aktivitäten. Durch die geringe Abdeckung durch Kalibrationspunkte lässt sich dies in den Experimenten nicht feststellen.

Betrachtet man die Kalibrationspunkte der geringen Aktivitäten am Quantulus (Abbildung 26, Seite 51), so lässt sich ein derartiger Trend erahnen.

Verschiedene Kalibrationen für verschiedene Aktivitätsbereiche oder eventuell auch ein nichtlinearer Kalibrationsansatz würden möglicherweise zu besseren Ergebnissen führen. Beide sind allerdings nur durch eine deutliche Erhöhung der Kalibrationspunktezahl zu realisieren.

Dem bisherigen Verlauf der Punkte nach zu urteilen, wird dies allerdings vor allem im Bereich geringer Aktivitäten einen Einfluss haben. Unter der Annahme, dass die durchgeführten Kalibrationsmessungen nicht systematisch deutlich zu groß ausfallen, wird die zu große

53

Steigung im Bereich höherer Aktivitäten weiterhin präsent sein. Eine gute Erklärung hierfür lässt sich bisher nicht finden.

Eine fehlerhafte Kalibration wird außerdem einen Einfluss auf die absoluten Aktivitätswerte haben. Eine Betrachtung der Verhältnisse untereinander ist davon nicht betroffen.

6.2 ÜBERSICHT ÜBER DIE SPEZIFISCHEN AKTIVITÄTEN DER BODENPROBEN

Aus den berechneten Aktivitäten der Proben lassen sich mit den in Anhang 9.1 angegeben Bodeneinwaagen die spezifischen Aktivitäten der Bodenproben angeben. (Tabelle 14)

		⁹⁰ Sr Aktivität	¹³⁷ Cs Aktivität			90Sr Aktivität	¹³⁷ Cs Aktivität
Fraktion	Probe	in Bq pro kg	in Bq pro kg	Fraktion	Probe	in Bq pro kg	in Bq pro kg
		Boden	Boden			Boden	Boden
	P1	1432 ± 105	386 ± 34		P1	<7.4	<32
	P2	250 ± 36	38 ± 20		P2	15 ± 21	<39
	P3	82 ± 28	<17		P3	12 ± 21	<20
	P4	4717 ± 347	2141 ± 117		P4	47 ± 20	43 ± 25
1	P5	646 ± 61	280 ± 35	4	P5	20 ± 22	<17
	P6	34 ± 29	<23		P6	8 ± 22	<23
	P7	2549 ± 200	1031 ± 59		P7	41 ± 20	22 ± 12
	P8	960 ± 85	203 ± 24	-	P8	19 ± 22	<62
	P9	93 ± 28	21 ± 12		P9	<6.0	<34
-	P1	115 ± 24	41 ± 20	5	P1	71 ± 24	<32
	P2	21 ± 25	<27		P2	<7.3	<33
	P3	9 ± 22	<28		P3	<6.9	<25
	P4	425 ± 45	204 ± 36		P4	123 ± 25	106 ± 19
2	P5	83 ± 22	<41		P5	27 ± 27	<27
	P6	<8.7	<27		P6	13 ± 23	<42
	P7	289 ± 34	110 ± 26		P7	101 ± 25	42 ± 21
	P8	89 ± 24	<45		P8	39 ± 23	<41
	P9	11 ± 25	<32		P9	8 ± 25	<28
	P1	32.2 ± 3.3	<54		P1	23.7 ± 1.4	183 ± 26
	P2	2.2 ± 2.3	<46		P2	2.3 ± 3.0	<60
	P3	2.7 ± 1.4	<40		P3	<1.0	<34
	P4	92.4 ± 8.7	79 ± 35		P4	32.4 ± 1.9	992 ± 97
3	P5	19.5 ± 2.0	58 ± 35	6	P5	4.7 ± 1.3	126 ± 32
	P6	<0.8	<58		P6	<0.8	<43
	P7	65.5 ± 6.7	<40		P7	21.2 ± 1.3	596 ± 68
	P8	24.7 ± 3.4	<55		P8	5.4 ± 0.8	83 ± 30
	P9	<0.9	<46		P9	<0.8	<50

Tabelle 14: spezifische Aktivitäten der Bodenproben.

Fraktion	Probe	⁹⁰ Sr Aktivität in Bq pro kg	¹³⁷ Cs Aktivität in Bq pro kg
		Boden	Boden
	P1	106 ± 32	1348 ± 87
	P2	<5.4	110 ± 35
	P3	16 ± 26	<30
	P4	763 ± 60	6584 ± 327
7	P5	221 ± 30	792 ± 59
	P6	<5.8	<33
	P7	1688 ± 139	6357 ± 307
	P8	298 ± 30	528 ± 38
	P9	15 ± 21	<49

Zur besseren Verständlichkeit der Ergebnisse sollen im Bereich der Diskussion außerdem die Probennummern durch die Angabe des Bohrkerns und die zugehörige Tiefe ersetzt werden. Eine Übersicht ist in Tabelle 15 dargestellt.

Tabelle 15: Austausch der Probennummern durch Bodenprobe und Tiefe.

Proben- nummer	Bodenprobe + Tiefe	Proben- nummer	Bodenprobe + Tiefe	Proben- nummer	Bodenprobe + Tiefe
P1	Boden 1, 0-10 cm	P4	Boden 2, 0-10 cm	P7	Boden 3, 0-10 cm
P2	Boden 1, 10-20 cm	Р5	Boden 2, 10-20 cm	P8	Boden 3, 10-20 cm
P3	Boden 1, 20-30 cm	P6	Boden 2, 20-30 cm	Р9	Boden 3, 20-30 cm

6.3 GENERELLE VERTEILUNG DER ⁹⁰Sr AKTIVITÄTEN

In der Übersicht der spezifischen ⁹⁰Sr-Aktivitäten der Bodenproben in Abbildung 27 ist zu sehen, dass die Gesamtaktivität der Bodenproben mit der Tiefe sehr stark abnimmt. In 20-30 cm Tiefe sind nur noch sehr geringe Gesamtaktivitäten ⁹⁰Sr zu finden.

Außerdem ist ein großer Teil des ⁹⁰Sr in der mobilen Fraktion und damit sehr pflanzenverfügbar. Ein nicht vernachlässigbarer Teil der Aktivität ist außerdem in der Residualfraktion gebunden. Dieser Anteil schwankt allerdings sehr stark. Möglicherweise handelt es sich hierbei um partikulär gebundenes ⁹⁰Sr, das entweder in unvollständig verwitterten Brennstoffpartikeln vorliegen kann oder in Überresten dieser Partikel fixiert und vor der Verwitterung geschützt wurde. Die Anwesenheit von Brennstoffpartikeln in der Nähe des Reaktors wurde in der Literatur bereits nachgewiesen. ¹⁷ Eine genauere Betrachtung der Publikation findet sich in Kapitel 6.7. Die Aktivität der Residualfraktion nimmt mit der Tiefe zwar ab, ist allerdings nicht nur in der oberen Bodenschicht vorhanden. Auch wenn einzelne Partikel in der Regel zu groß sind, um sich zwischen den Bodenpartikeln nach unten zu bewegen, so kann es dennoch in Kapillaren und physikalisch oder biologisch entstandenen Hohlräumen zum Transport in tiefere Schichten kommen.

Abbildung 27: Graphische Darstellung der ⁹⁰Sr Gehalte der Bodenproben.

Betrachtet man den relativen Anteil der Aktivität der einzelnen Fraktionen an der Gesamtaktivität (siehe Abbildung 28), so fällt auf, dass Anteil der verschiedenen Fraktionen relativ konstant bleibt. Es lässt sich weder zwischen den verschiedenen Tiefen, noch zwischen den verschiedenen Böden ein signifikanter Unterschied feststellen.

Nur bei dem Aktivitätsanteil der Residualfraktion gibt es starke Schwankungen. Dies lässt sich durch die Anwesenheit von partikulär gebundenem ⁹⁰Sr erklären. Wenige Partikel beinhalten eine relativ hohe Aktivität auf engem Raum. Eine ursprüngliche inhomogene Verteilung dieser Partikel auf der Fläche, zum Beispiel durch Abdeckung von Bodenbereichen oder Erosion, führt zu einer permanenten Inhomogenität. Gelöste Radionuklide sind im Gegensatz dazu in der Lage, durch Diffusionsprozesse eine homogenere Verteilung wiederherzustellen.

Bei den Anteilen der Proben aus 20-30 cm tiefe ist zu beachten, dass diese Aktivitäten insgesamt sehr gering sind und dadurch die Ungenauigkeit der Werte zunimmt. Außerdem

liegen einige der Gehalte unterhalb der Nachweisgrenze und sind daher in der Grafik nicht berücksichtigt.

Abbildung 28: Darstellung des Anteils der ⁹⁰Sr Aktivität der Fraktionen an der Gesamtaktivität.

Es wurde in allen der mittleren Fraktionen ⁹⁰Sr nachgewiesen. Es gibt zwei mögliche Szenarien über die Ursachen hiervon, die wichtige Hinweise über das Verhalten der Radionuklide im Boden liefern.

Die Aktivität dieser Fraktionen kann durch eine Gleichgewichtseinstellung zwischen den Bodenpartikeln und der Bodenlösung erreicht werden. Bei der Verwitterung der Brennstofffragmente wird ⁹⁰Sr in löslicher Form in die Bodenlösung freigesetzt. Aus dieser Bodenlösung adsorbiert das Strontium an unterschiedliche Bodenpartikel und wird dort fixiert. Trifft dieser Mechanismus zu, entsteht die Aktivität der Fraktionen 2 bis 6 als Folge der Aktivität der ersten Fraktion. Es müsste sich daher in den Bodenproben ein konstantes Verhältnis zwischen der jeweiligen Fraktion und Fraktion 1 finden lassen.

Alternativ ist es möglich, dass die Aktivität direkt aus den unzersetzten Brennstoffpartikeln freigesetzt wird, die in Fraktion 7 aufgelöst werden. Es ist denkbar, dass bereits in den milderen Extraktionsschritten teile des ⁹⁰Sr aus den Partikeln ausgelaugt werden. In diesem Fall müsste ein konstantes Verhältnis zwischen der Aktivität der Fraktion 7 und der jeweils betrachteten Fraktion feststellbar sein.

Zur Überprüfung dieser beiden Hypothesen wurden in Abbildung 29 und Abbildung 30 die Verhältnisse der Aktivität der einzelnen Fraktionen mit der Zugehörigen Aktivität der Fraktionen 1 oder 7 gebildet und graphisch dargestellt.

In Abbildung 29 ist das Verhältnis zu Fraktion 1 dargestellt.

Es ist deutlich zu sehen, dass das die Aktivität der leicht nachlieferbaren Fraktion der der mobilen Fraktion folgt. Dies ist im Einklang mit der Vorhersage über den Verlauf der Aktivitäten.

Die Aktivitäten der Fraktion 3 könnten ebenfalls den Aktivitäten der 1. Fraktionen folgen. Aufgrund der geringen Aktivitäten dieser Fraktion ist eine Aussage hier allerdings unsicher und die Werte schwanken sehr.

60

Abbildung 29: Verhältnisse der Aktivitäten der Fraktionen im Vergleich zu Fraktion 1.

In den Fraktionen 4 und 5 ist aufgrund der großen Unsicherheiten der Verhältnisse keine exakte Aussage möglich. Ein Zusammenhang der Aktivität mit der Aktivität der mobilen Fraktion lässt sich in diesen Fraktionen weder bestätigen, noch ausschließen. Betrachtet man den Wert von Boden 1 in 0-10 cm Tiefe von Fraktion 6 als Ausreißer, so zeigt sich hier eine ähnlich unsichere Situation wie bei Fraktion 3, allerdings mit weniger Datenpunkten und somit einer größeren Unsicherheit.

Die Aktivitäten der Fraktion 7 haben kein gemeinsames Verhältnis zur Aktivität der Fraktion 1.

In Abbildung 30 sind die Werte in Bezug auf Fraktion 7 dargestellt. Es lässt sich keiner der Abbildungen ein konstantes Verhältnis zwischen einer Fraktion und der Fraktion 7 erkennen. Lediglich bei den Werten für Fraktion 4 ist ein Zusammenhang aufgrund der großen Unsicherheiten theoretisch möglich.

Zusammenfassend lässt sich feststellen, dass sich in den Daten keine Hinweise finden lassen, dass in den früheren Fraktionen bereits ⁹⁰Sr aus der Residualfraktion freigesetzt wird.

Eine Korrelation der Aktivitäten lässt sich mit Sicherheit nur von Fraktion 1 zu Fraktion 2 feststellen und zu Fraktion 3 vermuten.

Aufgrund der geringen Aktivitäten einzelner Fraktionen und Proben sind die einzelnen Werte sehr stark fehlerbehaftet und verhindern dadurch weitere Aussagen.

Abbildung 30: Verhältnisse der Aktivitäten der Fraktionen im Vergleich zu Fraktion 7.

6.5 VERGLEICH MIT STABILEM STRONTIUM

In einem vorhergehenden Forschungspraktikum wurde von den untersuchten Bodenproben bereits der Gehalt von stabilem Strontium mittels ICP-MS gemessen.¹³

Die Ergebnisse dieser Messungen sind im Anhang 9.9 genannt und in Abbildung 31 graphisch dargestellt.

Abbildung 31: Graphische Darstellung der Gehalte von stabilem Sr.

Das stabile Strontium verteilt sich größtenteils auf die mobile und die Residualfraktion. Die Werte schwanken jedoch sehr stark und lassen keinen einheitlichen Trend erkennen.

In Abbildung 32 sind die Verhältnisse von ⁹⁰Sr und stabilem Strontium dargestellt. Die Werte der Fraktionen 3, 4 und 6 wurden nicht dargestellt, da bei ihnen in keiner Bodenprobe mehr als ein Wert vorhanden war.

Es fällt auf, dass die Verhältnisse primär von der ⁹⁰Sr Aktivität beeinflusst werden. Sie besitzen nur eine sehr geringe Aussagekraft.

Abbildung 32: Graphische Darstellung der Verhältnisse von ⁹⁰Sr zu stabilem Sr. Die Werte der Fraktionen 3, 4 und 6 wurden nicht dargestellt, da hier nicht mehr als ein Datenpunkt pro Boden existiert.

Generell lässt sich allerdings sagen, dass das stabile Sr in etwa zur Hälfte in der mobilen und zur Hälfte in der Residualfraktion gefunden wird. Dieses Verhältnis lässt sich beim ⁹⁰Sr nicht beobachten, was ein Hinweis darauf ist, dass die Alterung des ⁹⁰Sr nicht abgeschlossen ist und noch kein Gleichgewicht vorliegt.

Es ist allerdings zu beachten, dass bei in der Residualfraktion die Herkunft aus unterschiedlichen Quellen betrachtet wird. Während das ⁹⁰Sr der Residualfraktion vermutlich aus wenigen Brennstoffpartikeln stammt, ist die Quelle für stabiles Strontium der Residualfraktion in den bodenbildenden Mineralbestandteilen zu finden.

6.6 GENERELLE VERTEILUNG DER ¹³⁷CS AKTIVITÄTEN

Die Übersicht über die gemessenen spezifischen ¹³⁷Cs-Aktivtäten der Proben in Abbildung 33 zeigt ähnliche Trends wie die Übersicht der ⁹⁰Sr Aktivitäten in Abbildung 27.

Die ¹³⁷Cs Gesamtaktivität der einzelnen Proben ist ein wenig größer als die ⁹⁰Sr Gesamtaktivität, wobei der Unterschied nur gering ist. Außerdem sind die stärker mit ⁹⁰Sr kontaminierten Bodenproben vergleichbar stark mit ¹³⁷Cs kontaminiert. Der Abfall mit der Tiefe ist vergleichbar stark, auch wenn in der 20-30 cm Schicht in den meisten Proben kein ¹³⁷Cs detektiert wurde. Dies lässt sich durch die schlechteren Nachweisgrenzen der Gammamessung erklären.

Abbildung 33: Graphische Darstellung der ¹³⁷Cs Gehalte der Bodenproben.

Bei der Betrachtung der relativen Aktivitäten in Abbildung 34 fällt auf, dass sich im Gegensatz zum ⁹⁰Sr der Großteil der Aktivität in der Residualfraktion befindet, während die mobile Fraktion nur einen geringeren Anteil der ¹³⁷Cs Aktivität beherbergt. Ein nicht vernachlässigbarer Anteil der Aktivität befindet sich in Fraktion 6.

Dies lässt sich durch die spezifischen Eigenschaften von Cs erklären. Aufgrund der Ähnlichkeit zu Kalium ist Cäsium in der Lage, Kalium aus den Zwischenräumen der Schichtsilikate zu verdrängen und hier sehr feste Bindungen einzugehen.¹⁸ Eine erneute Freisetzung ist somit nur schwer möglich.

Aufgrund der starken Bindung lässt sich außerdem der Einfluss von unzersetzten Partikeln nicht sicher bestimmen. Generell sollte er allerdings geringer sein, als bei ⁹⁰Sr. Cäsium ist deutlich volatiler als Strontium und ist daher aus den Brennstoffpartikeln ausgedampft, an Staubpartikeln kondensiert und auf dem Boden deponiert worden.

Abbildung 34: Darstellung des Anteils der ¹³⁷Cs Aktivität der Fraktionen an der Gesamtaktivität.

Der Anteil der Residualfraktion ist relativ konstant bei ca. 70% der Gesamtaktivität.

Außerdem lässt sich erkennen, dass der Anteil der mittleren Fraktionen an der Gesamtaktivität zwischen den verschiedenen Böden und Tiefen relativ konstant bleibt.

6.7 VERGLEICH DER ERGEBNISSE MIT DER LITERATUR

Zum Vergleich der ¹³⁷Cs Messwerte, bietet sich der Vergleich mit zwei Publikationen von Riise et al und Oughton et al^{19,20} an. In der ersten Publikation wird eine sequentielle Extraktion von norwegischen Bodenproben im Jahre 1988 beschrieben. Die meisten der in der Publikation gewählten Extraktionslösungen lassen sich nur schwer mit den in dieser Arbeit verwendeten vergleichen. Der letzte in der Publikation durchgeführte Extraktionsschritt beinhaltet die Extraktion mit heißer, 7 M HNO₃, was vergleichbar mit der Residualfraktion dieser Arbeit ist. In der Publikation wurde gezeigt, dass bereits zwei Jahre nach dem Reaktorunglück die ¹³⁷Cs Aktivität bereits zu 80% sehr stark an den Boden gebunden ist.¹⁹ Dieser Wert ist sehr ähnlich zu dem in dieser Arbeit betrachteten Boden.

In der zweiten Publikation von Oughton et al wurden mit einem ähnlichen sequentiellen Extraktionsverfahren wie von Riise et al die Aktivitäten von Proben als Norwegen (1989) und Tschernobyl (1990) untersucht. Hier zeigt sich bei beiden Probenkomplexen eine vergleichbare Verteilung von 80% des ¹³⁷Cs an die Residualfraktion.²⁰

Dies steht im Einklang damit, dass ¹³⁷Cs aufgrund seiner Volatilität größtenteils unabhängig von Brennstoffpartikeln freigesetzt wurde und somit direkt in einer mobilen Form deponiert wurde. Das Gleichgewicht im Boden hat sich in der Folge relativ schnell eingestellt, was zu einem Konstanten Verhältnis zwischen den verschiedenen Fraktionen führt. Es kann daher angenommen werden, dass keine nennenswerte weitere Freisetzung des ¹³⁷Cs im Boden stattfinden wird.

Die letztgenannte Publikation hat außerdem die Bindungsform von ⁹⁰Sr im Boden von Tschernobyl beschrieben. Hierbei wurde ca. 2/3 der ⁹⁰Sr Aktivität in stärker gebundener Form und nur 1/3 in mobiler Form gefunden.²⁰ In dieser Arbeit wurden hingegen nur noch ca. 20% der Aktivität in der Residualfraktion gefunden.

Dies ist ein starker Hinweis auf eine fortschreitende Freisetzung von ⁹⁰Sr in den Boden.

Eine Ursache hierfür wird von Kashparov et al¹⁷ in Form von unverwitterten Brennstoffpartikeln genannt. In der Publikation wurden die hauptsächlichen Radionuklide in einer Deponie im "Red Forest", 2.5 km SW vom Reaktor in Tschernobyl, untersucht. In dieser Deponie wurde bei den Dekontaminationsarbeiten nach dem Unglück anfallender Boden gelagert.

Die bei dem Reaktorunglück freigesetzten Brennstoffpartikel wurden in drei Kategorien eingeteilt:

- Oxidierte Brennstoffpartikel: Im Rahmen der Graphitbrände im Reaktorkern kam es zu einer Oxidation des Brennstoffes. Die Zusammensetzung der Partikelmatrix wird mit UO_{2+x} angegeben. (Zersetzungsrate: 28% pro Jahr)
- Nichtoxidierte Brennstoffpartikel: Diese Partikel wurden direkt zu Beginn des Unglücks aufgrund der mechanischen Zerstörung des Brennstoffs freigesetzt. Die Partikelmatrix besteht aus UO₂ und ist damit chemisch vergleichsweise inert. (Zersetzungsrate: 1,8% pro Jahr)
- Chemisch sehr stabile Brennstoffpartikel: Diese Partikel sind in den ersten Momenten des Unglücks durch eine Reaktion des Brennstoffes mit dem Zirkon der Hüllstäbe entstanden. Die Matrixzusammensetzung wird als ZrU_yO_x angegeben. (Zersetzungsrate: 0% pro Jahr)

Alle drei Partikelgruppen konnten gefunden und elektronenmikroskopisch identifiziert werden. In den um 2000 gesammelten Proben waren die chemisch sehr stabilen Partikel mit 86% am häufigsten Vertreten. Es wird allerdings auch angegeben, dass die Uranoxide teilweise bereits zersetzt wurden und der ursprüngliche Anteil der sehr stabilen Partikel kleiner war.¹⁷

Dies stützt die in Kapitel 6.4 aufgestellte Hypothese, dass die stark streuende ⁹⁰Sr Aktivität der Residualfraktion auf die Anwesenheit von Brennstoffpartikeln zurückzuführen ist. Die mittlerweile große Dominanz der sehr inerten zirkonhaltigen Partikel würde außerdem erklären, wieso die Aktivitäten der mittleren Fraktionen unabhängig von der Residualfraktion sind.

69

Ziel der Arbeit war es, eine Charakterisierung der im Boden befindlichen Radionuklide ⁹⁰Sr und ¹³⁷Cs in Bezug auf ihre Bindungsform vorzunehmen. Dafür wurden drei Bodenproben in je drei Tiefenprofile aufgeteilt und diese mit der Extraktionsvorschrift nach Zeien und Brümmer⁷ in sieben Fraktionen extrahiert.

Aus diesen Lösungen wurde durch Gammaspektroskopie die ¹³⁷Cs Aktivität und durch LSC die ⁹⁰Sr Aktivität bestimmt.

Es konnte bei beiden Radionukliden ein deutlicher Abfall der Aktivität mit der Tiefe festgestellt werden, wobei die ¹³⁷Cs Aktivität in 20-30 cm Tiefe nicht mehr nachweisbar war und die ⁹⁰Sr Aktivität weniger als 120 Bq pro kg Boden betrug.

Es wurde festgestellt, dass der Großteil der ¹³⁷Cs Aktivität in der Residualfraktion gefunden wurde. Dies ist durch die starke Bindung in Schichtsilikaten zu erklären und wurde bereits wenige Jahre nach dem Unglück in vergleichbarem Maße beschrieben.

Nennenswert hoch waren ansonsten die Aktivitäten der mobilen Fraktion und der an kristalline Fe-Oxide gebundenen Fraktion.

⁹⁰Sr war größtenteils in der mobilen Fraktion zu finden. Nennenswert hohe Aktivitäten ließen sich außerdem in der Residualfraktion und der leicht nachlieferbaren Fraktion finden. Es konnte außerdem gezeigt werden, dass die Aktivität der leicht nachlieferbaren Fraktion der der mobilen Fraktion folgt. Ein ähnlicher Zusammenhang lässt sich auch im Bezug auf die an Mn-Oxide gebundene Fraktion formulieren, ist allerdings aufgrund der geringen Aktivitäten unsicher.

Eine hohe Streuung der Messwerte für die Residualfraktion lässt auf die Anwesenheit von inerten Brennstoffpartikeln schließen, die nur sehr langsam zersetzt werden können. Die Aktivität der zirkonhaltigen Partikel ist allerdings für die Betrachtung der Nuklidaufnahme durch Pflanzen nicht relevant.

Für zukünftige Messungen der Böden des Versuchsfeldes lassen sich auf Basis der Ergebnisse einige der Extraktionsschritte als unnötig zeitraubend identifizieren, um Zeit zu sparen. Für eine Bewertung der ⁹⁰Sr Verteilung reicht die Betrachtung der Fraktionen 1, 2 und 7 aus. Die

70

Aktivitäten der anderen Fraktionen spielen eine untergeordnete Rolle zur Bewertung der Verfügbarkeit der Radionuklide.

Für weitere Messungen wäre eine Verbesserung der Kalibrierung sehr wichtig.

Zur sicheren Bewertung des Radionuklidinventars wäre es gut, eine genaue Untersuchung der vorhandenen Brennstoffpartikel im Boden vorzunehmen. Das Verhältnis von zirkoniumhaltigen und reinen Uranoxidpartikeln ist entscheidend für den weiteren Verlauf der Radionuklidfreisetzung.

- (1) Deutsches Atomforum e.V (DAtF). Der Reaktorunfall in Tschernobyl; 2011.
- (2) Kratz, J.-V.; Lieser, K. H. *Nuclear and Radiochemistry Fundamentals and Aplications Volume 2*, 3., e.; Wiley-VCH: Weinheim, 2013.
- (3) THE INTERNATIONAL NUCLEAR SAFETY ADVISORY GROUP. *THE CHERNOBYL* ACCIDENT: UPDATING OF INSAG-1 INSAG-7; 1992.
- (4) Steinhauser, G.; Brandl, A.; Johnson, T. E. Sci. Total Environ. 2014, 470–471, 800–817.
- (5) Salbu, B. In *Recent advances in reactor accident consequence assessment*; Rome, 1988; Vol. I, pp 53–67.
- (6) Schultz, H.; Vogt, H.-G. *Grundzüge des praktischen Strahlenschutzes*; 2011.
- (7) Zeien, H.; Brümmer, G. W. *mitteilungen der Dtsch. bodenkundlichen Gesellschaft* 1989, 505–510.
- Kratz, J.-V.; Lieser, K. H. Nuclear and Radiochemistry Fundamentals and Aplications
 Volume 1, 3., e.; Wiley-VCH: Weinheim, 2013.
- (9) Skoog, D. A.; Crouch, S. R.; Holler, F. J. *Instrumentelle Analytik : Grundlagen, Geräte, Anwendungen*; Lehrbuch; Springer: Berlin [u.a.], 2013.
- L'Annunziata, M. F. Handbook of radioactivity analysis (2e Ed.) Michael F.
 L'Annunziata, 3. ed.; 2012.
- Photomultiplier Schema
 https://upload.wikimedia.org/wikipedia/commons/a/ab/Photomultiplier_schema_de.
 png (accessed Jan 24, 2018).
- (12) Steinhauser, G. Vorlesung Chemie und physikalische Analyse von Radionukliden, WiSe
 2017/2018, Leibniz Universität Hannover.
- (13) Schulte, V. Untersuchung zur Bindungsform von stabilem Strontium in Bodenprofilen aus der Tschernobylsperrzone (Forschungspraktikum), Leibniz Universität Hannover, 2016.
- (14) Maxwell, S. L.; Culligan, B. K.; Shaw, P. J. J. Radioanal. Nucl. Chem. 2013, 295 (2), 965–971.
- (15) NORM, D. DIN ISO 18589-5: Ermittlung der Radioaktivität in der Umwelt Erdboden Teil 5: Messung von Strontium-90 (ISO 18589-5:2009). 2010.
- (16) DEUTSCHE NORM. DIN ISO 11929: Bestimmung der charakteristischen Grenzen (Erkennungsgrenze, Nachweisgrenze und Grenzen des Vertrauensbereichs) bei Messungen ionisierender Strahlung Grundlagen und Anwendungen (ISO 11929:2010).
 2011.
- Kashparov, V.; Yoschenko, V.; Levchuk, S.; Bugai, D.; Van Meir, N.; Simonucci, C.;
 Martin-Garin, A. Appl. Geochemistry 2012, 27 (7), 1348–1358.
- (18) Szabo, G.; Guczi, J.; Nisbet, A. J. Radioanal. Nucl. Chem. 1997, 226 (1–2), 255–259.
- (19) Riise, G.; Bjornstad, H. E.; Lien, H. N.; Oughton, D. H.; Salbu, B. J. Radioanal. Nucl. Chem. 1990, 142 (2), 531–538.
- (20) Oughton, D. H.; Salbu, B.; Riise, G.; Lien, H.; Oestby, G.; Noren, A. Sect. Title Radiat.
 Biochem. 1992, 117 (3), 481–486.
- (21) Foto des zerstörten Tschernobylreaktors
 https://upload.wikimedia.org/wikipedia/en/1/1b/Chernobyl_Disaster.jpg (accessed Jan 29, 2018).
- (22) Hünniger, D. Beta Ray Spectrum-de https://de.wikibooks.org/wiki/Physikalische_Grundlagen_der_Nuklearmedizin/_Inter aktion_von_Strahlung_mit_Materie#/media/File:Beta_Ray_Spectrum-de.svg (accessed Feb 13, 2018).
- (23) Mewis, A. Strontium-90 in der Umwelt: Migrationsverhalten im Boden, Transfer in die Nahrungskette und Strahlenexposition in der nördlichen Ukraine, Universität Hannover, 2004.
- (24) Gammaspektrum mit Comptonkante https://meyweb.physik.unigiessen.de/1_Lehre/Praktikum/F-Praktikum/VERS11-Dateien/image010.gif (accessed Feb 15, 2018).

(25) transientes Gleichgewicht

https://upload.wikimedia.org/wikipedia/de/thumb/2/28/GleichgewichtTransient.png /1920px-GleichgewichtTransient.png (accessed Feb 15, 2018).

- (26) fehlendes Gleichgewicht file:///C:/Users/Viebrock/AppData/Local/Temp/1920px-GleichgewichtFehlend.png (accessed Feb 15, 2018).
- (27) Säkulares Gleichgewicht
 https://upload.wikimedia.org/wikipedia/de/thumb/0/09/GleichgewichtSaekular.png/
 1920px-GleichgewichtSaekular.png (accessed Feb 15, 2018).

9 A	ANHANG
-----	--------

9.1 EINWAAGE DER BODENPROBEN

Probe	1	2	3	4	5	6	7	8	9
Einwaage Boden	2.01380	2.00490	2.00127	2.00127	2.00243	2.00388	2.00632	2.00123	1.99957

9.2 GAMMAMESSUNGEN ¹³⁷Cs

9.2.1 Untergrundmessung

	Messzeit in s	Messsignal in Counts
Detektor 1	3715349.919	18728
Detektor 2	841388.289	12599
Detektor 3	1149819.962	9444

9.2.2 Bestimmung der Zählausbeuten

Zur Herstellung der Geometriestandards wurde ein Multielementstandard mit einer spezifischen ¹³⁷Cs-Aktivität von 59.16 Bq/g am 01.05.2016 verwendet. Die in Tabelle 16 dargestellten Aktivitäten sind nicht zerfallskorrigiert.

Fraktion	Masse der Vorlage in g	Masse nach Standardzugabe in g	Masse des zugegebenen Standards in g	¹³⁷ Cs-Aktivität in Bq
1	46.60992	47.63521	1.02529 ± 0.00002	60.7 ± 1.4
2	77.46615	78.49540	1.02925 ± 0.00002	60.9 ± 1.4
3	87.52410	88.54948	1.02538 ± 0.00002	60.7 ± 1.4
4	60.51472	61.54039	1.02567 ± 0.00002	60.7 ± 1.4
5	74.97611	76.00138	1.02527 ± 0.00002	60.7 ± 1.4
6	76.61814	77.64292	1.02478 ± 0.00002	60.6 ± 1.4
7	103.6394	104.6658	1.0264 ± 0.0002	60.7 ± 1.6

Tabelle 16: Einwaagen der Geometriestandards zur Bestimmung der ¹³⁷Cs Zählausbeute.

		zerfallskorrigierte Aktivität in Bq	Messzeit in s	Counts	Zählausbeute in Counts/Bq
	Fraktion 3	59.1 ± 1.4	17240.968	5551	0.00536 ±0.00014
Detektor	Fraktion 4	59.0 ± 1.4	20346.202	7645	0.00628 ±0.00016
1	Fraktion 5	59.0 ± 1.4	11050.896	4072	0.00616 ±0.00017
	Fraktion 6	59.2 ± 1.4	17744.371	6668	0.00627 ±0.00016
	Fraktion 1	59.2 ± 1.4	22969.191	25238	0.01832 ±0.00044
Detektor	Fraktion 2	59.3 ± 1.4	10953.756	11127	0.01687 ±0.00042
2	Fraktion 5	59.0 ± 1.4	19288.881	19309	0.01670 ±0.00040
	Fraktion 7	59.3 ± 1.4	65237.632	54400	0.01382 ±0.00032
Detektor	Fraktion 1	59.2 ± 1.4	11871.684	12558	0.01773 ±0.00044
3	Fraktion 4	59.1 ± 1.4	17117.883	17496	0.01715 ±0.00042

Tabelle 17: Zählausbeuten der verscheidenen Fraktionen auf den verschiedenen Detektoren.

9.2.3 Gammamessung der Proben

Tabelle 18: Messungen der Proben zur Bestimmung der ¹³⁷Cs Aktivität.

Fraktion	Probe	verwendeter Detektor	Messzeit in s	Counts	Aktivität der Probe in Bq	Nachweisgrenze in Bq
	Blind	2	94250.811	1368	-0.025 ± 0.045	0.08
	P1	3	88324.22	1944	0.778 ± 0.069	0.06
	P2	3	85180.175	816	0.077 ± 0.039	0.06
	P3	3	340608.938	2891	0.015 ± 0.020	0.03
1	P4	2	86676.747	8102	4.29 ± 0.23	0.08
1	P5	2	74709.747	1885	0.560 ± 0.070	0.09
	P6	2	332483.72	4796	-0.030 ± 0.027	0.05
	P7	3	153996.294	6911	2.07 ± 0.12	0.05
	P8	3	106729.524	1647	0.407 ± 0.048	0.06
	P9	3	245313.395	2196	0.042 ± 0.024	0.04
	Blind	2	159328.149	2299	-0.032 ± 0.039	0.07
	P1	2	174354.269	2855	0.083 ± 0.040	0.06
	P2	2	251676.897	3699	-0.016 ± 0.033	0.06
	P3	2	247094.408	3558	-0.034 ± 0.033	0.06
2	P4	2	69036.981	1509	0.408 ± 0.072	0.10
2	P5	2	99065.58	1518	0.021 ± 0.049	0.08
	P6	2	265167.257	3838	-0.030 ± 0.032	0.05
	P7	2	108076.599	2022	0.221 ± 0.053	0.08
	P8	2	81054.003	1235	0.016 ± 0.054	0.09
	P9	2	174299.683	2537	-0.025 ± 0.038	0.06

Fraktion	Probe	verwendeter	Messzeit in s	Counts	Aktivität der	Nachweisgrenze
	FIODE	Detektor		counts	Probe in Bq	in Bq
	Blind	1	101907.369	503	-0.020 ± 0.083	0.14
	P1	1	177232.183	858	-0.037 ± 0.063	0.11
	P2	1	246907.833	1204	-0.031 ± 0.054	0.09
	P3	1	332139.434	1592	-0.046 ± 0.047	0.08
2	P4	1	180562.193	1064	0.159 ± 0.069	0.11
5	P5	1	169788.565	962	0.117 ± 0.070	0.11
	P6	1	156033.52	799	0.015 ± 0.069	0.12
	P7	1	332828.502	1802	0.070 ± 0.050	0.08
	P8	1	174340.337	936	0.061 ± 0.067	0.11
	Р9	1	249007.782	1226	-0.022 ± 0.054	0.09
	Blind	1	592975.861	2945	-0.012 ± 0.031	0.05
	P1	3	82239.477	677	0.001 ± 0.038	0.06
	P2	1	255901.829	1254	-0.022 ± 0.046	0.08
	P3	3	246862.121	2100	0.017 ± 0.024	0.04
	P4	1	245090.388	1367	0.085 ± 0.050	0.08
4	P5	3	332820.505	2877	0.025 ± 0.021	0.03
	P6	3	174321.067	1470	0.013 ± 0.027	0.05
	P7	3	254453.258	2284	0.044 ± 0.024	0.04
	P8	1	101370.322	495	-0.025 ± 0.071	0.12
	Р9	1	344342.167	1788	0.024 ± 0.041	0.07
	Blind	2	76050.253	1135	-0.003 ± 0.055	0.09
	P1	2	174236.087	2671	0.021 ± 0.039	0.06
	P2	2	169945.554	2549	0.001 ± 0.039	0.07
	P3	2	333145.98	4830	-0.028 ± 0.030	0.05
-	P4	2	251977.209	4664	0.212 ± 0.038	0.06
5	P5	2	265405.669	3898	-0.017 ± 0.032	0.05
	P6	2	95218.298	1359	-0.042 ± 0.049	0.08
	P7	2	156431.942	2563	0.084 ± 0.042	0.07
	P8	1	245106.585	1243	0.005 ± 0.048	0.08
	Р9	2	256075.035	3731	-0.024 ± 0.033	0.06
	Blind	1	94175.68	465	-0.016 ± 0.074	0.13
	P1	1	341824.67	2512	0.368 ± 0.052	0.07
	P2	1	106355.701	510	-0.039 ± 0.069	0.12
	P3	1	340148.12	1750	0.017 ± 0.041	0.07
C	P4	1	66995.546	1171	1.99 ± 0.19	0.15
0	P5	1	172035.257	1139	0.252 ± 0.065	0.09
	P6	1	213974.189	1083	0.003 ± 0.050	0.09
	P7	1	89049.976	1116	1.20 ± 0.14	0.13
	P8	1	184529.964	1122	0.166 ± 0.060	0.09
	P9	1	154971.049	793	0.012 ± 0.059	0.10

Fraktion	Probe	verwendeter Detektor	Messzeit in s	Counts	Aktivität der Probe in Bq	Nachweisgrenze in Bq
	Blind	2	74804.296	1063	-0.055 ± 0.066	0.11
	P1	2	78796.646	4135	2.72 ± 0.18	0.11
	P2	2	83965.709	1513	0.220 ± 0.071	0.11
	P3	2	340432.979	5037	-0.013 ± 0.036	0.06
7	P4	2	89599.724	17651	13.18 ± 0.65	0.11
/	P5	2	96748.544	3568	1.59 ± 0.12	0.10
	P6	2	258590.382	3822	-0.014 ± 0.040	0.07
	P7	2	172230.828	32924	12.75 ± 0.62	0.08
	P8	2	214039.452	6331	1.057 ± 0.076	0.07
	P9	2	106556.196	1496	-0.068 ± 0.056	0.10

9.3 FÜR LSC-MESSUNGEN ANGESETZTE STANDARDS

9.3.1 ⁸⁵Sr Standards

Zur Herstellung der Standards wurde ein 85 Sr Aktivitätststandard der Physikalisch-Technischen Bundesanstalt mit einer spezifischen Aktivität von (1009 ± 10) kBq/g am 01.02.2017 verwendet, der Hausintern um den Faktor 0.021446 verdünnt wurde.

Tabelle 19: Verwendete ⁸⁵Sr Standards.

Verdünnung	Masse des Gefäßes in g	Masse nach Wasserzugabe in g	Masse Nach Standardzugabe	spezifische Aktivität in Bq/g
1:500 14.64388		63.68133	63.77912	43.0657971
1:125	4.19560	14.23005	14.31023	171.5328

Es wurden drei Kalibrationslösungen aus dem 1:125 Standard hergestellt, die auf beiden LSC-Geräten gemessen wurden.

Bezugs- datum	Masse des Gefäßes und der Verdünnungs- lösung in g	Gesamtmasse nach Standard- zugabe in g	Masse der Standard -zugabe in g	Vergangene Zeit in Tagen	Momentane spezifische Aktivität des 1:125 Standards in Bq/g	Zugegeben e Aktivität in Bq
13.12.2017	26.01951	26.44029	0.42078	315	5.918	2.490
11.12.2017	26.26077	26.51788	0.25711	313	6.046	1.555
12.12.2017	26.49079	26.55788	0.06709	314	5.982	0.401

Tabelle 20: ⁸⁵Sr Kalibrationsstandards für die LSC.

9.3.2 ⁹⁰Sr Standards

Zur Herstellung der ⁹⁰Sr-Kalibrierlösungen wurden zwei Verdünnungen einer ⁹⁰Sr-Lösung mit 328.4 Bq/g am 15.05.2017 hergestellt. Für die 0.03 Bq/g Lösung wurde die 3 Bq/g Lösung verdünnt.

Aufgrund der vergleichsweise langen Halbwertszeit von ⁹⁰Sr wurde die Aktivität im Rahmen der Messungen als konstant angenommen.

	Nominelle Aktivität	Masse des Gefäßes in g	Masse nach Wasserzugabe in g	Masse nach Standardzugabe in g	Spezifische Aktivität in Bq/g
3 Bq/g 3.16277		8.16503	8.20976	2.9101	
	0.03 Bq/g	3.99109	14.08818	14.18902	0.0288

Tabelle 21: Übersicht über die hergestellten ⁹⁰Sr Verdünnungen.

9.4 ZUGEGEBENE ⁸⁵Sr-AKTIVITÄTEN

Bei den meisten Proben wurde die 1:500 Verdünnung verwendet. Lediglich bei den mit ^{*)} markierten Proben wurde die 1:125 Verdünnung verwendet. Die zugegebenen Aktivitäten wurden bereits auf den Tag der jeweiligen LSC-Messung zerfallskorrigiert.

Tabelle 22: Zu den Proben hinzugegebene	und zerfallskorrigierte ⁸⁵ Sr Aktivitäten.
---	---

Fraktion	Probe	Messdatum Masse der Probe und des		Gesamtmasse nach Standard-	Masse des Gefäßes	Masse des zugegebenen Standards in g	Vergangene Zeit in d	Zugegebene ⁸⁵ Sr Aktivität in
			Gefäßes in g	zugabe in g	in g			Bq
F1	Blind	24.09.2017	63.80056	64.29770	15.53295	0.49714 ± 0.00002	235	1.737 ± 0.034
	P1	30.09.2017	61.48961	61.98393	14.79063	0.49432 ± 0.00002	241	1.620 ± 0.032
	P2	28.10.2017	63.47217	63.96975	15.38907	0.49758 ± 0.00002	269	1.209 ± 0.024
	P3	29.10.2017	62.39087	62.88889	15.55572	0.49802 ± 0.00002	270	1.197 ± 0.023
	P4	30.10.2017	60.88890	61.38661	14.81759	0.49771 ± 0.00002	271	1.184 ± 0.023
	P5	31.10.2017	56.66459	57.15928	14.4994	0.49469 ± 0.00002	272	1.164 ± 0.023
	P6	11.11.2017	62.06738	62.56637	15.20451	0.49899 ± 0.00002	283	1.044 ± 0.020
	P7	12.11.2017	61.23565	61.73495	14.38248	0.49930 ± 0.00002	284	1.033 ± 0.020
	P8	17.11.2017	60.91653	61.41144	14.92237	0.49491 ± 0.00002	289	0.971 ± 0.019
	P9	18.11.2017	62.61769	63.11619	14.8731	0.49850 ± 0.00002	290	0.968 ± 0.019

Fraktion	Probe	Messdatum	Masse der Probe und des Gefäßes in g	Gesamtmasse nach Standard- zugabe in g	Masse des Gefäßes in g	Masse des zugegebenen Standards in g	Vergangene Zeit in d	Zugegebene ⁸⁵ Sr Aktivität in Bq
F2 F3	Blind	04.11.2017	87.64200	88.14256	20.24453	0.50056 ± 0.00002	276	1.128 ± 0.022
	P1	05.11.2017	88.29914	88.79888	20.47846	0.49974 ± 0.00002	277	1.115 ± 0.022
	P2	19.11.2017	89.02422	89.52124	19.70889	0.49702 ± 0.00002	291	0.954 ± 0.019
	Р3	20.12.2017	87.65121	88.14701	19.3614	0.49580 ± 0.00002	322	0.684 ± 0.013
52	P4	25.12.2017	89.25123	89.74755	19.9832	0.49632 ± 0.00002	327	0.649 ± 0.013
F2	P5	27.12.2017	89.54128	90.03429	19.87763	0.49301 ± 0.00002	329	0.631 ± 0.012
	P6	28.12.2017	87.99635	88.49436	19.44043	0.49801 ± 0.00002	330	0.630 ± 0.012
F2	P7	29.12.2017	87.61526	88.11327	19.60081	0.49801 ± 0.00002	331	0.624 ± 0.012
	P8	30.12.2017	88.82471	89.32065	20.27898	0.49594 ± 0.00002	332	0.614 ± 0.012
	Р9	31.12.2017	89.01304	89.51026	20.66874	0.49722 ± 0.00002	333	0.610 ± 0.012
	Blind	29.12.2017	102.5876	103.5846	846 20.19335 0.9970 ± 0.0002		331	1.249 ± 0.012
	P1 *)	30.12.2017	108.6863	108.9412	20.27435	0.2549 ± 0.0002	332	1.258 ± 0.048
	P2 *)	31.12.2017	112.0229	112.2755	20.13246	0.2526 ± 0.0002	333	1.233 ± 0.048
	P3 *)	01.01.2018	110.9233	111.1779		0.2546 ± 0.0002	334	1.230 ± 0.047
52	P4 *)	09.01.2018	110.5845	110.8423	18.57229	0.2578 ± 0.0002	342	1.143 ± 0.043
FS	P5 ^{*)}	19.01.2018	111.9022	112.1599	19.26051	0.2577 ± 0.0002	352	1.027 ± 0.039
	P6 *)	21.01.2018	111.0195	111.2761	20.331	0.2566 ± 0.0002	354	1.001 ± 0.038
	P7 *)	23.01.2018	111.6441	111.8986	20.5294	0.2545 ± 0.0002	356	0.972 ± 0.037
	P8 *)	24.01.2018	111.5043	111.7623	20.07509	0.2580 ± 0.0002	357	0.975 ± 0.037
	P9 *)	25.01.2018	114.3551	114.6078	20.40543	0.2527 ± 0.0002	358	0.945 ± 0.036

Fraktion	Probe	Probe Messdatum Masse der Gesamtmasse Masse des Masse		Masse des zugegebenen	Vergangene	Zugegebene		
			Probe und des	nach Standard-	Gefäßes	Standards in g	Zeit in d	⁸⁵ Sr Aktivität in
			Gefäßes in g	zugabe in g	in g			Bq
F4	Blind	26.12.2017	78.08033	78.57557	19.84235	0.49524 ± 0.00002	328	0.640 ± 0.013
	P1	15.01.2018	85.53413	86.03095	19.35047	0.49682 ± 0.00002	348	0.519 ± 0.010
	P2	17.12.2017	89.45576	90.45330	19.98035	0.99754 ± 0.00002	319	1.420 ± 0.014
	P3	05.01.2018	89.49964	90.49620	20.42633	0.99656 ± 0.00002	338	1.158 ± 0.011
	P4	06.01.2018	91.02278	92.01347	20.95165	0.99069 ± 0.00002	339	1.139 ± 0.011
	P5	07.01.2018	89.82592	90.82514	20.35136	0.99922 ± 0.00002	340	1.137 ± 0.011
	P6	09.01.2018	90.20953	91.20875	20.89089	0.99922 ± 0.00002	342	1.113 ± 0.011
	P7	10.01.2018	91.04584	92.04624	20.50615	1.00040 ± 0.00002	343	1.102 ± 0.011
	P8	11.01.2018	89.79969	90.79680	19.88908	0.99711 ± 0.00002	344	1.087 ± 0.011
	P9	12.01.2018	89.43486	90.38656	20.5214	0.95170 ± 0.00002	345	1.026 ± 0.010
F5	Blind	20.09.2017	88.20104	88.29845	19.8218	0.09741 ± 0.00002	231	0.355 ± 0.035
	P1	27.09.2017	90.16844	90.65500	21.02197	0.48656 ± 0.00002	238	1.646 ± 0.033
	P2	14.01.2018	89.64753	90.07200	19.546801	0.42447 ± 0.00002	347	0.448 ± 0.010
	P3	05.10.2017	89.90888	90.40311	20.23511	0.49423 ± 0.00002	246	1.535 ± 0.030
	P4	07.10.2017	90.97064	91.45630	20.52378	0.48566 ± 0.00002	248	1.477 ± 0.030
	P5	08.10.2017	91.6889	92.18645	20.73437	0.49755 ± 0.00002	249	1.497 ± 0.029
	P6	14.10.2017	90.35264	90.84674	19.75824	0.49410 ± 0.00002	255	1.394 ± 0.027
	P7	15.10.2017	91.82029	92.31275	20.79972	0.49246 ± 0.00002	256	1.375 ± 0.027
	P8	21.10.2017	89.40800	89.89763	19.53357	0.48963 ± 0.00002	262	1.282 ± 0.025
	P9	22.10.2017	89.34420	89.82471	19.93912	0.48051 ± 0.00002	263	1.245 ± 0.025

Fraktion	Probe Messdatum Masse der Gesamtmasse Ma		Masse des	Masse des zugegebenen	Vergangene	Zugegebene		
			Probe und des nach Standard- Gefäßes		Standards in g	Zeit in d	⁸⁵ Sr Aktivität in	
			Gefäßes in g	zugabe in g	in g			Bq
F6	Blind	25.11.2017	65.16211	65.65878	20.24313	0.49667 ± 0.00002	297	0.895 ± 0.018
	P1	26.11.2017	90.47769	91.47474	20.51011	0.99705 ± 0.00002	298	1.777 ± 0.017
	P2	02.01.2018	90.59605	91.59284	20.30735	0.99679 ± 0.00002	335	1.196 ± 0.012
	P3	03.01.2018	90.27016	91.26461	20.03707	0.99445 ± 0.00002	336	1.181 ± 0.012
	P4	03.01.2018	89.85331	90.85418	19.82304	1.00087 ± 0.00002	336	1.188 ± 0.012
	P5	04.01.2018	90.74281	91.74354	20.27477	1.00073 ± 0.00002	337	1.175 ± 0.011
	P6	05.01.2018	90.42790	91.42738	20.24556	0.99948 ± 0.00002	338	1.161 ± 0.011
	P7	06.01.2018	90.59797	91.59302	20.49365	0.99505 ± 0.00002	339	1.144 ± 0.011
	P8 *)	07.01.2018	91.58270	91.83872	21.0326	0.25602 ± 0.00002	340	1.160 ± 0.044
	P9 *)	08.01.2018	89.74895	90.00694		0.25799 ± 0.00002	341	1.156 ± 0.044
F7	Blind	16.09.2017	83.30268	83.40253	19.67514	0.09985 ± 0.00002	227	0.380 ± 0.037
	P1	17.09.2017	111.5613	111.6634	20.23304	0.1021 ± 0.0002	228	0.384 ± 0.037
	P2	23.09.2017	118.5725	118.6652	20.18034	0.0927 ± 0.0002	234	0.327 ± 0.034
	P3	01.10.2017	127.5316	128.0332	20.34151	0.5016 ± 0.0002	242	1.626 ± 0.032
	P4	02.10.2017	121.8962	122.3967	20.2577	0.5005 ± 0.0002	243	1.605 ± 0.031
	P5	27.10.2017	126.3694	126.8698	20.28794	0.5004 ± 0.0002	268	1.229 ± 0.024
	P6	01.01.2018	123.5222	124.0221	19.74935	0.4999 ± 0.0002	334	0.606 ± 0.012
	P7	02.01.2018	128.8422	129.8437	20.17145	1.0015 ± 0.0002	335	1.202 ± 0.012
	P8	03.01.2018	131.0451	132.0464	20.94279	1.0013 ± 0.0002	336	1.189 ± 0.012
	Р9	04.01.2018	132.6805	133.6803	19.0972	0.9998 ± 0.0002	337	1.174 ± 0.012
Hidex	2 Bq	22.12.2017	3.99520	4.99635		1.00115 ± 0.00002	324	1.351 ± 0.013
Standard	0.7 Bq	23.12.2017	4.06229	5.06464		1.00235 ± 0.00002	325	1.338 ± 0.013
	0.07 Bq	24.12.2017	4.00546	5.00348		0.99802 ± 0.00002	326	1.318 ± 0.013

Fraktion	Probe	Messdatum	Masse der	Gesamtmasse	Masse des	Masse des zugegebenen	Vergangene	Zugegebene
			Probe und des	nach Standard-	Gefäßes	Standards in g	Zeit in d	⁸⁵ Sr Aktivität in
			Gefäßes in g	zugabe in g	in g			Bq
Quantulus	2 Bq	25.12.2017	3.99594	4.99474		0.9988 ± 0.00002	327	1.305 ± 0.013
Standard	0.7 Bq	26.12.2017	4.05981	5.05818		0.99837 ± 0.00002	328	1.291 ± 0.013
	0.07 Bq	27.12.2017	4.19090	5.18991		0.99901 ± 0.00002	329	1.278 ± 0.012

9.5 BESTIMMUNG DER CHEMISCHEN WIEDERFINDUNGSRATE

Tabelle 23: Messwerte und Berechnung der chemischen Wiederfindungsraten.

Fraktion	Probe	Zugegebene ⁸⁵ Sr Aktivität in Bq	Mittelwert des ⁸⁵ Sr-Signals in der LSC in cps	Standardabweichung des ⁸⁵ Sr-Signals in der LSC in cps	⁸⁵ Sr Aktivität nach der Extraktion in Bq	Wiederfindungsrate in %
	Blind	1.737 ± 0.034	0.26694	0.00094	0.631 ± 0.015	36.3 ± 1.1
	P1	1.620 ± 0.032	0.4371	0.0031	1.022 ± 0.018	63.1 ± 1.7
	P2	1.209 ± 0.024	0.2631	0.0031	0.622 ± 0.017	51.5 ± 1.7
	P3	1.197 ± 0.023	0.2996	0.0035	0.706 ± 0.017	59.0 ± 1.8
F1	P4	1.184 ± 0.023	0.3464	0.0002	0.813 ± 0.016	68.7 ± 1.9
FI	P5	1.164 ± 0.023	0.2832	0.0026	0.668 ± 0.016	57.4 ± 1.8
	P6	1.044 ± 0.020	0.2528	0.0017	0.599 ± 0.015	57.3 ± 1.9
-	P7	1.033 ± 0.020	0.2874	0.0018	0.678 ± 0.016	65.6 ± 2.0
	P8	0.971 ± 0.019	0.23396	0.00037	0.555 ± 0.015	57.2 ± 1.9
	P9	0.968 ± 0.019	0.2564	0.0011	0.607 ± 0.015	62.7 ± 2.0

Fraktion	Probe	Zugegebene ⁸⁵ Sr Aktivität in Bq	Mittelwert des ⁸⁵ Sr-Signals in der LSC in cps	Standardabweichung des ⁸⁵ Sr-Signals in der LSC in cps	⁸⁵ Sr Aktivität nach der Extraktion in Bq	Wiederfindungsrate in %
	Blind	1.128 ± 0.022	0.2853	0.0043	0.673 ± 0.018	59.7 ± 2.0
	P1	1.115 ± 0.022	0.3145	0.0013	0.740 ± 0.016	66.4 ± 1.9
	P2	0.954 ± 0.019	0.2676	0.0032	0.633 ± 0.017	66.3 ± 2.2
	P3	0.684 ± 0.013	0.2055	0.0048	0.490 ± 0.018	71.7 ± 3.0
F2	P4	0.649 ± 0.013	0.2022	0.0021	0.482 ± 0.015	74.4 ± 2.8
12	P5	0.631 ± 0.012	0.20308	0.00094	0.485 ± 0.015	76.8 ± 2.8
	P6	0.630 ± 0.012	0.1273	0.0041	0.311 ± 0.017	49.3 ± 2.9
	P7	0.624 ± 0.012	0.1880	0.0027	0.450 ± 0.016	72.1 ± 2.9
	P8	0.614 ± 0.012	0.1904	0.0020	0.455 ± 0.015	74.1 ± 2.9
	P9	0.610 ± 0.012	0.1663	0.0034	0.400 ± 0.016	65.6 ± 3.0
	Blind	1.249 ± 0.012	0.4434	0.0026	0.888 ± 0.013	71.1 ± 1.2
	P1	1.258 ± 0.048	0.4790	0.0046	0.958 ± 0.015	76.2 ± 3.1
	P2	1.233 ± 0.048	0.3610	0.0029	0.724 ± 0.013	58.7 ± 2.5
	P3	1.230 ± 0.047	0.4673	0.0073	0.935 ± 0.019	76.1 ± 3.3
E2	P4	1.143 ± 0.043	0.4221	0.0042	0.845 ± 0.014	74.0 ± 3.1
гэ	P5	1.027 ± 0.039	0.36967	0.00055	0.741 ± 0.011	72.2 ± 2.9
	P6	1.001 ± 0.038	0.37101	0.00042	0.744 ± 0.011	74.3 ± 3.0
	P7	0.972 ± 0.037	0.3622	0.0033	0.727 ± 0.013	74.8 ± 3.2
	P8	0.975 ± 0.037	0.3511	0.0057	0.705 ± 0.016	72.3 ± 3.2
	P9	0.945 ± 0.036	0.3423	0.0039	0.687 ± 0.014	72.7 ± 3.2

Fraktion	Probe	Zugegebene ⁸⁵ Sr Aktivität in Bq	Mittelwert des ⁸⁵ Sr-Signals in der LSC in cps	Standardabweichung des ⁸⁵ Sr-Signals in der LSC in cps	⁸⁵ Sr Aktivität nach der Extraktion in Bq	Wiederfindungsrate in %
	Blind	0.640 ± 0.013	0.1735	0.0013	0.417 ± 0.015	65.1 ± 2.6
	P1	0.519 ± 0.010	0.1221	0.0022	0.299 ± 0.015	57.6 ± 3.1
	P2	1.420 ± 0.014	0.4349	0.0063	1.016 ± 0.022	71.6 ± 1.7
	P3	1.158 ± 0.011	0.3580	0.0041	0.840 ± 0.018	72.5 ± 1.7
E/I	P4	1.139 ± 0.011	0.3865	0.0052	0.906 ± 0.020	79.5 ± 1.9
14	P5	1.137 ± 0.011	0.3585	0.0015	0.841 ± 0.016	74.0 ± 1.6
	P6	1.113 ± 0.011	0.3338	0.0035	0.784 ± 0.017	70.5 ± 1.7
	P7	1.102 ± 0.011	0.3746	0.0046	0.878 ± 0.019	79.7 ± 1.9
	P8	1.087 ± 0.011	0.3448	0.0034	0.810 ± 0.017	74.5 ± 1.8
	P9	1.026 ± 0.010	0.3096	0.0012	0.729 ± 0.016	71.0 ± 1.7
	Blind	0.355 ± 0.035	0.0855	0.0019	0.215 ± 0.015	60.5 ± 7.3
	P1	1.646 ± 0.033	0.4823	0.0020	1.125 ± 0.017	68.3 ± 1.7
	P2	0.448 ± 0.010	0.1079	0.0045	0.266 ± 0.018	59.4 ± 4.2
	P3	1.535 ± 0.030	0.4068	0.0048	0.952 ± 0.020	62.0 ± 1.8
65	P4	1.477 ± 0.030	0.4547	0.0046	1.062 ± 0.020	71.9 ± 2.0
FD	P5	1.497 ± 0.029	0.3648	0.0051	0.856 ± 0.020	57.2 ± 1.7
	P6	1.394 ± 0.027	0.4188	0.0019	0.979 ± 0.017	70.3 ± 1.8
	P7	1.375 ± 0.027	0.4102	0.0022	0.960 ± 0.017	69.8 ± 1.8
-	P8	1.282 ± 0.025	0.3645	0.0041	0.855 ± 0.018	66.7 ± 2.0
	P9	1.245 ± 0.025	0.3327	0.0023	0.782 ± 0.016	62.8 ± 1.8

Fraktion	Probe	Zugegebene ⁸⁵ Sr Aktivität in Bq	Mittelwert des ⁸⁵ Sr-Signals in der LSC in cps	Standardabweichung des ⁸⁵ Sr-Signals in der LSC in cps	⁸⁵ Sr Aktivität nach der Extraktion in Bq	Wiederfindungsrate in %
	Blind	0.895 ± 0.018	0.3181	0.0051	0.639 ± 0.015	71.4 ± 2.2
	P1	1.777 ± 0.017	0.6519	0.0031	1.302 ± 0.015	73.3 ± 1.1
	P2	1.196 ± 0.012	0.4225	0.0059	0.846 ± 0.017	70.8 ± 1.5
	P3	1.181 ± 0.012	0.3632	0.0031	0.729 ± 0.013	61.7 ± 1.2
56	P4	1.188 ± 0.012	0.44006	0.00054	0.881 ± 0.012	74.2 ± 1.2
FO	P5	1.175 ± 0.011	0.4407	0.0069	0.883 ± 0.018	75.1 ± 1.7
	P6	1.161 ± 0.011	0.4415	0.0062	0.884 ± 0.017	76.1 ± 1.6
	P7	1.144 ± 0.011	0.4199	0.0063	0.841 ± 0.017	73.5 ± 1.7
	P8	1.160 ± 0.044	0.4488	0.0031	0.899 ± 0.013	77.5 ± 3.2
	P9	1.156 ± 0.044	0.4397	0.0032	0.881 ± 0.013	76.1 ± 3.1
	Blind	0.380 ± 0.037	0.0897	0.0014	0.224 ± 0.015	59.0 ± 6.9
	P1	0.384 ± 0.037	0.1267	0.0010	0.309 ± 0.015	80.4 ± 8.6
	P2	0.327 ± 0.034	0.1093	0.0027	0.269 ± 0.016	82.2 ± 9.9
	P3	1.626 ± 0.032	0.4460	0.0010	1.042 ± 0.017	64.1 ± 1.6
67	P4	1.605 ± 0.031	0.5022	0.0047	1.171 ± 0.020	72.9 ± 1.9
F7	P5	1.229 ± 0.024	0.3199	0.0016	0.752 ± 0.016	61.2 ± 1.8
	P6	0.606 ± 0.012	0.1860	0.0028	0.445 ± 0.016	73.4 ± 3.0
	P7	1.202 ± 0.012	0.429	0.011	1.002 ± 0.031	83.4 ± 2.7
	P8	1.189 ± 0.012	0.3623	0.0037	0.850 ± 0.018	71.5 ± 1.7
	P9	1.174 ± 0.012	0.3563	0.0054	0.836 ± 0.020	71.2 ± 1.8
⁹⁰ Sr	2 Bq	1.351 ± 0.013	0.4119	0.0012	0.964 ± 0.016	71.3 ± 1.4
Standard	0.7 Bq	1.338 ± 0.013	0.3712	0.0076	0.870 ± 0.016	65.0 ± 1.9
Hidex	0.07 Bq	1.318 ± 0.013	0.4083	0.0012	0.955 ± 0.016	72.5 ± 1.4

Fraktion	Probe	Zugegebene ⁸⁵ Sr Aktivität in Bq	Mittelwert des ⁸⁵ Sr-Signals in der LSC in cps	Standardabweichung des ⁸⁵ Sr-Signals in der LSC in cps	⁸⁵ Sr Aktivität nach der Extraktion in Bq	Wiederfindungsrate in %
⁹⁰ Sr	2 Bq	1.305 ± 0.013	0.4582	0.0064	0.917 ± 0.017	70.3 ± 1.5
Standard	0.7 Bq	1.291 ± 0.013	0.4716	0.0034	0.944 ± 0.014	73.1 ± 1.3
Quantulus	0.07 Bq	1.278 ± 0.012	0.4564	0.0020	0.914 ± 0.012	71.5 ± 1.2

9.6 ⁹⁰Sr Kalibration Hidex

Tabelle 24: Übersicht über die ⁹⁰Sr Kalibrationslösungen der Hidex-Messungen.

	Messdatum	Masse des Gefäßes in g	Masse nach ⁸⁵ Sr Standard- zugabe in g	Masse nach ⁹⁰ Sr-Standard- zugabe in g	Masse des zugegebenen ⁹⁰ Sr Standards in g	zugegebene ⁹⁰ Sr Aktivität in Bq	Wiederfin- dungsrate in %	⁹⁰ Sr Aktivität in Kalibrations- lösung in Bq	Mittelwert des LSC- Signals in cps
6.5 Bq ^{2) III)}	16.01.2018	26.04633	26.40636	26.42601	0.01965	6.452	100	6.452	13.473
2 Bq ^{1) I)}	22.12.2017	3.9952	4.99635	6.00164	1.00529	2.925	71	2.086	5.042
0.7 Bq ^{1) I)}	23.12.2017	4.06229	5.06464	5.41299	0.34835	1.014	65	0.659	1.645
0.07 Bq ^{1) I)}	24.12.2017	4.00546	5.00348	5.03712	0.03364	0.098	72	0.071	0.202
0.02 Bq ^{2) II)}	17.01.2018	25.38365	25.74284	26.39015	0.64731	0.019	100	0.019	0.085

I): Die 3 Bq/g ⁹⁰Sr Verdünnung wurde verwendet.
 II): Die 0.03 ⁹⁰Sr Verdünnung wurde verwendet.
 III): Die ⁹⁰Sr Stammlösung wurde verwendet.

1): Die 1:500 ⁸⁵Sr Verdünnung wurde verwendet.
 2): Die 1:125 ⁸⁵Sr Verdünnung wurde verwendet.

9.7 ⁹⁰SR KALIBRATION QUANTULUS

	Messdatum	Masse des Gefäßes in g	Masse nach ⁸⁵ Sr Standard- zugabe in g	Masse nach ⁹⁰ Sr-Standard- zugabe in g	Masse des zugegebenen ⁹⁰ Sr Standards in g	zugegebene ⁹⁰ Sr Aktivität in Bq	Wiederfin- dungsrate in %	⁹⁰ Sr Aktivität in Kalibrations- lösung in Bq	Mittelwert des LSC- Signals in cps
2 Bq ^{1) I)}	25.12.2017	3.99594	4.99474	6.00043	1.00569	2.927	70%	2.056	4.798
0.7 Bq ^{1) I)}	26.12.2017	4.05981	5.05818	5.40616	0.34798	1.013	73%	0.740	1.678
0.07 Bq ^{1) I)}	27.12.2017	4.1909	5.18991	5.22344	0.03353	0.0976	72%	0.0697	0.157
0.04 Bq ^{2) II)}	18.01.2018	24.65858	25.01641	26.31291	1.2965	0.0373	100	0.0373	0.106
0.007 Bq ^{2) II)}	17.01.2018	25.82145	26.17886	26.41116	0.2323	0.00668	100	0.00668	0.0497

Tabelle 25: Übersicht über die ⁹⁰Sr Kalibrationslösungen der Quantulus-Messungen.

I): Die 3 Bq/g ⁹⁰Sr Verdünnung wurde verwendet. II): Die 0.03 ⁹⁰Sr Verdünnung wurde verwendet. 1): Die 1:500 ⁸⁵Sr Verdünnung wurde verwendet. 2): Die 1:125 ⁸⁵Sr Verdünnung wurde verwendet.

9.8 GEMESSENE AKTIVITÄTEN DER PROBENLÖSUNGEN

Fraktion	Probe	Mittelwert der ⁹⁰ Sr+ ⁹⁰ Y Messungen in cps	Standardab- weichung der ⁹⁰ Sr+ ⁹⁰ Y Messungen in cps	Chemische Wiederfin- dungsrate in %		Aktivität der Probenlösung in Bq
F1	Blind			36.3 ± 1.1		
	P1	3.860	0.024	63.1 ± 1.7	0.014	2.884 ± 0.212
	P2	0.548	0.023	51.5 ± 1.7	0.017	0.501 ± 0.071
	P3	0.206	0.026	59.0 ± 1.8	0.015	0.165 ± 0.056
	P4	13.771	0.049	68.7 ± 1.9	0.012	9.439 ± 0.694
	P5	1.576	0.035	57.4 ± 1.8	0.015	1.293 ± 0.123
	P6	0.084	0.027	57.3 ± 1.9	0.015	0.069 ± 0.058
	P7	7.122	0.037	65.6 ± 2.0	0.013	5.113 ± 0.401
	P8	2.334	0.031	57.2 ± 1.9	0.015	1.922 ± 0.170
	P9	0.247	0.028	62.7 ± 2.0	0.014	0.186 ± 0.055
	Blind			59.7 ± 2.0		
	P1	0.325	0.023	66.4 ± 1.9	0.013	0.231 ± 0.048
	P2	0.059	0.027	66.3 ± 2.2	0.013	0.042 ± 0.050
	P3	0.026	0.025	71.7 ± 3.0	0.012	0.017 ± 0.044
52	P4	1.343	0.031	74.4 ± 2.8	0.012	0.851 ± 0.090
FZ	P5	0.270	0.025	76.8 ± 2.8	0.011	0.165 ± 0.043
	P6	0.012	0.026	49.3 ± 2.9	0.018	<0.018
	P7	0.888	0.024	72.1 ± 2.9	0.012	0.580 ± 0.069
	P8	0.280	0.027	74.1 ± 2.9	0.012	0.178 ± 0.048
	P9	0.030	0.027	65.6 ± 3.0	0.013	0.022 ± 0.050
F3	Blind			71.1 ± 1.2		
	P1	0.1153	0.0033	76.2 ± 3.1	0.0016	0.0650 ± 0.0066
	P2	0.0061	0.0031	58.7 ± 2.5	0.0021	0.0044 ± 0.0046
	P3	0.0097	0.0024	76.1 ± 3.3	0.0016	0.0055 ± 0.0028
	P4	0.3185	0.0067	74.0 ± 3.1	0.0017	0.185 ± 0.017
	P5	0.0657	0.0019	72.2 ± 2.9	0.0017	0.0391 ± 0.0040
	P6	-0.0106	0.0034	74.3 ± 3.0	0.0017	<0.0017
	P7	0.2286	0.0063	74.8 ± 3.2	0.0017	0.131 ± 0.013
	P8	0.0834	0.0043	72.3 ± 3.2	0.0017	0.0495 ± 0.0068
	P9	-0.0078	0.0015	72.7 ± 3.2	0.0017	<0.0017

Tabelle 26: Messergebnisse der Aktivitätsbestimmung der Probenlösungen.

Fraktion	Probe	Mittelwert der ⁹⁰ Sr+ ⁹⁰ Y Messungen in cps	Standardab- weichung der ⁹⁰ Sr+ ⁹⁰ Y Messungen in cps	Chemische Wiederfin- dungsrate in %	Nachweis- grenze in Bq	Aktivität der Probenlösung in Bq
F4	Blind			65.1 ± 2.6		
	P1	0.010	0.026	57.6 ± 3.1	0.015	<0.015
	P2	0.046	0.023	71.6 ± 1.7	0.012	0.031 ± 0.042
	P3	0.036	0.024	72.5 ± 1.7	0.012	0.023 ± 0.042
	P4	0.159	0.024	79.5 ± 1.9	0.011	0.094 ± 0.039
	P5	0.061	0.026	74.0 ± 1.6	0.012	0.039 ± 0.043
	P6	0.025	0.025	70.5 ± 1.7	0.012	0.017 ± 0.044
	P7	0.140	0.026	79.7 ± 1.9	0.011	0.083 ± 0.040
	P8	0.061	0.027	74.5 ± 1.8	0.012	0.038 ± 0.044
	P9	0.018	0.026	71.0 ± 1.7	0.012	<0.012
	Blind			60.5 ± 7.3		
	P1	0.208	0.025	68.3 ± 1.7	0.013	0.143 ± 0.047
	P2	-0.012	0.024	59.4 ± 4.2	0.015	<0.015
F5	P3	0.034	0.025	62.0 ± 1.8	0.014	<0.014
	P4	0.377	0.028	71.9 ± 2.0	0.012	0.247 ± 0.050
	P5	0.066	0.024	57.2 ± 1.7	0.015	0.054 ± 0.054
	P6	0.039	0.027	70.3 ± 1.8	0.012	0.026 ± 0.047
	P7	0.299	0.027	69.8 ± 1.8	0.012	0.202 ± 0.050
	P8	0.111	0.024	66.7 ± 2.0	0.013	0.078 ± 0.046
	P9	0.021	0.026	62.8 ± 1.8	0.014	0.016 ± 0.051
	Blind			71.4 ± 2.2		
	P1	0.0817	0.0019	73.3 ± 1.1	0.0017	0.0479 ± 0.0028
	P2	0.0076	0.0049	70.8 ± 1.5	0.0018	0.0046 ± 0.0060
	P3	-0.0111	0.0014	61.7 ± 1.2	0.0020	<0.0020
56	P4	0.1121	0.0025	74.2 ± 1.2	0.0017	0.0650 ± 0.0038
FO	P5	0.0166	0.0022	75.1 ± 1.7	0.0017	0.0095 ± 0.0027
	P6	-0.0004	0.0034	76.1 ± 1.6	0.0016	<0.0016
	P7	0.0727	0.0013	73.5 ± 1.7	0.0017	0.0425 ± 0.0026
	P8	0.0197	0.0009	77.5 ± 3.2	0.0016	0.0109 ± 0.0015
	P9	0.0029	0.0041	76.1 ± 3.1	0.0016	<0.0016
	Blind			59.0 ± 6.9		
F7	P1	0.319	0.023	80.4 ± 8.6	0.011	0.214 ± 0.064 ¹⁾
	P2	0.000	0.025	82.2 ± 9.9	0.011	<0.011
	P3	0.045	0.028	64.1 ± 1.6	0.013	0.033 ± 0.053
	P4	2.364	0.031	72.9 ± 1.9	0.012	1.527 ± 0.119
	P5	0.574	0.025	61.2 ± 1.8	0.014	0.442 ± 0.061
	P6	0.013	0.023	73.4 ± 3.0	0.012	<0.012
	P7	5.995	0.048	83.4 ± 2.7	0.010	3.386 ± 0.278
	P8	0.904	0.026	71.5 ± 1.7	0.012	0.596 ± 0.060
	P9	0.045	0.023	71.2 ± 1.8	0.012	0.030 ± 0.042

1) Bei Vorversuchen wurden von F7 P1 16.4 mL Probe entnommen. Die Angabe der Aktivität der Probenlösung wurde hierauf korrigiert.

9.9 GESAMT SR-GEHALTE AUS VORHERIGER ARBEIT

In einem vorherigen Forschungspraktikum wurde der gesamte Sr-Gehalt mit ICP-MS bestimmt.¹³

	Fraktion 1	Fraktion2	Fraktion3	Fraktion 4	Fraktion 5	Fraktion 6	Fraktion 7
P1	3779 ppb				200 ppb		4170 ppb
P2	2491 ppb				146 ppb	157 ppb	2659 ppb
P3							
P4	4543 ppb	277 ppb			119 ppb		2261 ppb
P5	4985 ppb	643 ppb	178 ppb		158 ppb	145 ppb	3565 ppb
P6	2045 ppb	135 ppb					2466 ppb
P7	3966 ppb	288 ppb	191 ppb		160 ppb		2912 ppb
P8	3224 ppb			128 ppb	209 ppb		2780 ppb
P9	1315 ppb						2428 ppb

Tabelle 27: Gehalte von stabilem Sr in den Probenlösungen aus vorhergegangenen Versuchen.

Selbstständigkeitserklärung

Hiermit erkläre ich, dass die von mir vorgelegte Masterarbeit zum Thema "Untersuchungen zur Extrahierbarkeit von Radionukliden aus Bodenproben an einem Beispiel aus Tschernobyl" selbstständig verfasst wurde und die verwendeten Quellen und Hilfsmittel im Text gekennzeichnet wurden.

Hannover, 16.02.2018

(Mark Viebrock)