

ENTRIA-Arbeitsbericht-16

"Das ENCON-Behälterkonzept – Generische Behältermodelle zur Einlagerung radioaktiver Reststoffe für den interdisziplinären Optionenvergleich"

Herausgegeben von

Dr.-Ing. Thomas Hassel Dipl.-Ing. Ansgar Köhler Öznur Saliah Kurt

Institut für Werkstoffkunde Leibniz Universität Hannover

Kontakt

Leibniz Universität Hannover – Institut für Werkstoffkunde Dr.-Ing. Thomas Hassel An der Universität 2 30823 Garbsen Tel.: +49 511 762-9813 Fax: +49 511 762-9899 hassel@iw.uni-hannover.de

ENTRIA ist ein in der Forschung zur Entsorgung radioaktiver Reststoffe in Deutschland neuartiges Verbundprojekt von Wissenschaftlerinnen und Wissenschaftlern aus unterschiedlichen Disziplinen, die bisher nur sporadisch kooperierten. Um seine neuen Arbeitsweisen und die Vielfalt integrierter disziplinärer Perspektiven transparent zu machen, werden in den Arbeitsberichten wichtige Ergebnisse vorgestellt. Dies dient einerseits der projektinternen Information. Andererseits werden diese Ergebnisse auch der interessierten Öffentlichkeit zur Verfügung gestellt. Letzteres geschieht, um Einblicke in die ENTRIA Forschungspraxis zu gewähren und Ausgangsmaterial für spätere Veröffentlichungen offenzulegen. ENTRIA lebt vom pluralen Austausch Die Beiträge geben die Meinung der Autorin oder des Autors wieder.

ENTRIA wird vom BMBF unter den Kennzeichen **15S9082 A bis E** gefördert (Zeitraum 2013 bis 2018).

Zitierweise

Hassel, Thomas; Köhler, Ansgar; Kurt, Öznur Saliah (2019): Das ENCON-Behälterkonzept – Generische Behältermodelle zur Einlagerung radioaktiver Reststoffe für den interdisziplinären Optionenvergleich. Hannover. ENTRIA-Arbeitsbericht-16

ISSN (Print): 2367-3532, ISSN (Online): 2367-3540

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Inhaltsverzeichnis

INHALTSVERZEICHNIS	111
ABBILDUNGSVERZEICHNIS	/11
TABELLENVERZEICHNISV	111
VORWORT	1
EINLEITUNG	3
ENTRIA – ENTSORGUNGSOPTIONEN FÜR RADIOAKTIVE RESTSTOFFE:	
INTERDISZIPLINÄRE ANALYSEN UND ENTWICKLUNG VON BEWERTUNGSGRUNDLAGEN	6
Welche Optionen werden untersucht	8
Einlagerung in tiefe geologische Formationen ohne Vorkehrungen zur	
Rückholung	.9
Einlagerung in tiefe geologische Formationen mit Vorkehrungen zur	
Rückholung	10
Langfristige Oberflächenlagerung als Vorbereitung der tiefengeologischen	i i
Lagerung	11
WARUM GENERISCHE BEHÄLTERKONZEPTE?	12
Welche Rolle spielen die Behälterkonzepte im Rahmen der innerhalb	
der drei Optionen untersuchten Lagerkonzepte?	12
Warum können einige Anforderungen an die Behälter derzeit nicht	
eindeutig identifiziert werden?	16
Welcher Output aus den Behälterkonzepten wird für die	
Einlagerungskonzepte benötigt?	16
Warum können nicht alle für den Optionenvergleich erforderlichen	
Informationen aus detaillierten Standortkonzepten übernommen werden	?
	18
Generische Behälterkonzepte als Lösungsansatz	20
Welche Anforderungen müssen die generischen Behälter erfüllen?	21
DAS GENERISCHE ENCON-BEHÄLTERKONZEPT 2	23
WIE WURDEN DIE GENERISCHEN ENCON-KONZEPTE ERARBEITET?	23
Äußere Randbedingungen der Behälterentwicklung	27
Definition und Herleitung von Kenngrößen und Anforderungen für da	s
Behälterkonzept2	28

Entwicklung der generischen Behälterkonzepte aus den Kenngrößen und	
ANFORDERUNGEN	. 30
Beschreibung des einzulagernden Inventars	.31
Randbedingungen des Behälterkonzepts aus Geologie und Geotechr	nik
	.46
Ableitung des radiologischen Gefährdungspotentials der Behälter	. 51
Konstruktive Gestaltung der Behälter	. 52
Behälterschacht / Tragbehälter der Tiefenlagerbehälter	. 52
Äußere Komponenten des Tiefenlagerbehälters	. 60
Einfluss des Lagerumfeldes auf die Behältergestaltung	. 63
Gestaltungsmerkmale der ENCON-Behälter	. 68
Prinzipieller Aufbau der Außenbehälter	. 69
Mögliche Werkstoffe für den Außenbehälter	. 73
Keramische Werkstoffe	. 74
Mineralische Werkstoffe	. 75
Metallische Werkstoffe	. 76
Eisenwerkstoffe	. 77
Stähle	. 78
Niedrig legierte Stähle	. 78
Rostfreie Stähle	. 81
Gusseisen	. 83
Weitere metallische Werkstoffe	. 89
Kupfer	. 90
Titan	. 92
Materialen der ENCON-Außenbehälter	. 94
Kristallines Wirtsgestein	. 94
Ton und Tonstein	. 97
Salzgestein	100
Aufbau des ENCON-TLB Transport- und Lagerbehälters	103
Behälterschacht / Tragbehälter des ENCON-TLB	103
Außenbehälter des ENCON-TLB	105
Konstruktive Details der ENCON Behälter	106
Behälterverschluss	107
Lastanschlagpunkte	117
ZUSAMMENFASSUNG UND AUSBLICK1	L 38
QUELLENVERZEICHNIS	41

ANHANG A: DOSSIERS ZUM GENERISCHEN ENCON-BEHÄLTERKONZEPT
VORWORT ZU DEN GENERISCHEN ENCON – BEHÄLTERDOSSIERS DER ARBEITSPAKETE 6.5 UND 6.6147
ENCON-T152
ENCON-T / HAW158
ENCON-K
ENCON-K / HAW174
ENCON-S
ENCON-S / HAW189
ENCON-TLB199
LITERATUR ZUM ENCON-BEHÄLTERKONZEPT209
ANHANG B: BEHÄLTERDOSSIERS214
VORWORT ZU DEN BEHÄLTERDOSSIERS DER ARBEITSPAKETE 6.5 UND 6.6
BEHÄLTERDOSSIER POLLUX 10221
BEHÄLTERDOSSIER POLLUX 9234
BEHÄLTERDOSSIER POLLUX 3247
BEHÄLTERDOSSIER CASTOR [®] THTR/AVR260
BEHÄLTERDOSSIER CASTOR [®] V/19269
BEHÄLTERDOSSIER CASTOR [®] V/52280
BEHÄLTERDOSSIER CASTOR [®] 440/84290
BEHÄLTERDOSSIER CASTOR [®] HAW 28300
REHÄLTERDOSSIER BSK 3 310
BEHÄLTERDOSSIER BSK 3-R

BEHÄLTERDOSSIER	CU1-BEHÄLTER34	41
BEHÄLTERDOSSIER	CU2-BEHÄLTER3	54
BEHÄLTERDOSSIER	KBS-3V	66
BEHÄLTERDOSSIER	BE-EL-BEHÄLTER3	75
QUELLENVERZEICHN	NIS	84

Abbildungsverzeichnis

ABBILDUNG 1:	ENTWICKLUNG DER THERMISCHEN LEISTUNG	
UNTERSCH	IIEDLICHER ABFALLSTOFFE [15, S. 25]	42
ABBILDUNG 2:	GESTALTUNGSVARIANTEN DES ENCON TRAGBEHÄLTERS	53
ABBILDUNG 3:	ENCON VARIANTE ZUR AUFNAHME VON KOKILLEN MIT ABF	ÄLLEN
AUS DER V	VIEDERAUFARBEITUNG	54
ABBILDUNG 4:	SCHEMATISCHER AUFBAU EINES MONOLITHISCHEN BEHÄLT	ERS
AM BEISPI	EL DES CASTOR [®] [31]	70
ABBILDUNG 5:	DARSTELLUNG VON AUßEN- UND INNENBEHÄLTER DES KBS	-3V
KONZEPTE	S [38]	71
ABBILDUNG 6:	GEFÜGESTRUKTUR VON GUSSEISEN MIT LAMELLEN- UND	
KUGELGRA	APHIT	83
ABBILDUNG 7:	GUSSEISEN MIT KUGELGRAPHIT GJS	85
ABBILDUNG 8:	UNTERSCHIEDLICHE VARIANTEN DES STOFFSCHLÜSSIGEN	
DECKELVE	RSCHLUSSES UND DER TRENNEBENEN	110
ABBILDUNG 9:	GESCHRAUBTER DECKELVERSCHLUSS MIT AUFGELEGTEM U	ND
EINGELEGT	TEM DECKEL	115
ABBILDUNG 10:	FUNKTION EINES KRAFTSCHLÜSSIGEN GREIFERSYSTEMS .	120
ABBILDUNG 11:	FORMSCHLÜSSIGE LASTAUFNAHMEEINRICHTUNG (TWIS	Γ-LOCK)
[75]		122
ABBILDUNG 12:	TRAGZAPFEN EINES CASTOR [®] -BEHÄLTERS [76]	123
ABBILDUNG 13:	HINTERSCHNITTENE DURCHGANGSBOHRUNG MIT	
SCHEMATI	SCHEM GREIFER	124
ABBILDUNG 14:	DARSTELLUNG EINER HAW-KOKILLE (TRAGZAPFEN) UND	DES
ZUGEHÖRI	GEN OVERPACKS (TRAGMULDE) [77]	125
ABBILDUNG 15:	SCHEMATISCHE DARSTELLUNG DES GENERISCHEN ENCO	N-K
FÜR BRENI	NELEMENTE	127
ABBILDUNG 16:	DECKELBEREICH DES GENERISCHEN ENCON-K BEHÄLTERS	5130
ABBILDUNG 18:	UMSCHLIEßUNG DER LASTANSCHLAGPUNKTE DES BEHÄL	TERS
MIT EINEM	1 TRAGGESTELL	132
ABBILDUNG 19:	DECKELBEREICH DES ENCON-S	134
ABBILDUNG 19:	SCHEMATISCHE DARSTELLUNG DES ENCON-TLB	136

Tabellenverzeichnis

TABELLE 1:	MENGENGERÜST WÄRMEENTWICKELNDER ABFÄLLE ZUR	
TIEFENLAG	GERUNG [1]	35
TABELLE 2:	VERGLEICH DER EINLAGERUNGSVARIANTEN ZUR ABLEITUNG DEF	{
BENÖTIGT	EN BEHÄLTERANZAHL DER FR-BRENNELEMENTE	38
TABELLE 3:	ANZAHL UND ALTER DER EINZULAGERNDEN RESTSTOFFE NACH	
[18]		45
TABELLE 4:	EIGENSCHAFTEN DER BETRACHTETEN WIRTSGESTEINE	67
TABELLE 5:	WERKSTOFFKLASSEN DER ENCON LAGERBEHÄLTER 1	07

Vorwort

Die Forschungsplattform ENTRIA befasst sich seit Anfang 2013 mit Optionen zum Umgang mit den hochradioaktiven, wärmeentwickelnden Reststoffen aus der friedlichen Nutzung der Kernenergie. Untersucht werden die Optionen Endlagerung in tiefen geologischen Formationen ohne Vorkehrungen zur Rückholbarkeit (wartungsfreie Tiefenlagerung), Einlagerung in tiefe geologische Formationen mit Vorkehrungen zur Überwachung und Rückholbarkeit (Tiefenlagerung mit Rückholbarkeit) und langfristige Oberflächenlagerung. Die Struktur der Forschungsplattform umfasst drei Vertikal- und vier Transversalprojekte.

Im Rahmen des Vertikalprojektes "Einlagerung in tiefe geologische Formationen mit Vorkehrungen zur Überwachung und Rückholbarkeit" werden vom Institut für Werkstoffkunde der Leibniz Universität Hannover Rückhol- und Monitoringkonzepte unter Berücksichtigung der Wechselwirkungen der technischen Komponenten mit den potenziellen Wirtsgesteinen Salz, Ton & Tonstein und kristallinem Hartgestein betrachtet.

Es zeigte sich, dass die Lagerbehälter, insbesondere für den Zeitrahmen einer potentiellen Rückholbarkeit, eine wichtige Barriere darstellen und einen erheblichen Einfluss darauf besitzen, welche Handhabungsverfahren und –abläufe im Rahmen der Einlagerung sowie einer potentiellen Rückholung der Behälter zum Einsatz kommen können.

Um die unterschiedlichen, wirtsgesteinsspezifischen Anforderungen an die Behälter im Rahmen des Optionenvergleiches berücksichtigen zu können, ohne die Anzahl der zu betrachtenden Varianten in nicht mehr zu handhabende Bereiche zu erhöhen, wurden die unterschiedlichen Behältervarianten anhand generischer ENCON-Behältermodelle (s.u.) spezifiziert. Im Rahmen der Erstellung der generischen Konzepte werden die Behälter dabei so weit spezifiziert, wie es für den Optionsvergleich erforderlich ist.

Um die generischen Konzepte auf der Grundlage einer möglichst breiten Datenbasis erstellen zu können, basieren die generischen Behältermodelle technologisch auf internationalen Behälterkonzepten für die unterschiedlichen Wirtsgesteine. In diesem Bericht werden die Annahmen und Prämissen, die den Behälterkonzepten zugrunde liegen, vorgestellt.

Die Bezeichnung ENCON setzt sich aus der Bezeichnung des interdisziplinären Verbundprojektes <u>EN</u>TRIA und dem Wort <u>Con</u>tainer zusammen. Die generischen ENCON-Konzepte werden zur Unterscheidung mit einem Kürzel für das jeweilige Wirtsgestein (z. B. ENCON-K für kristallines Hartgestein) versehen.

Einleitung

Das Zeitalter der friedlichen Nutzung der Kernenergie begann in Deutschland mit der Inbetriebnahme des ersten Forschungsreaktors in Garching bei München im Jahr 1957. Bereits im Januar 1960 trat das Gesetz über die friedliche Verwendung der Kernenergie und den Schutz gegen ihre Gefahren, das sogenannte Atomgesetz, in Kraft und schaffte die Grundlage für einen kommerziellen Einsatz der Kernenergie. Hierauf aufbauend konnte im Jahr 1962 das Kernkraftwerk Kahl als erster Reaktor zur kommerziellen Stromerzeugung in Betrieb genommen werden. In den letzten knapp 60 Jahren sind im Rahmen der Stromerzeugung und des Betriebs von Forschungsreaktoren große Mengen wärmeentwickelnder, hochradioaktiver Abfälle entstanden. Insgesamt sind etwa 15.000 Tonnen Schwermetall angefallen. Dies entspricht, konditioniert in entsprechende "Lagerbehälter", einem Gesamtvolumen von etwa 28.100 m³. [1]

Trotz der bereits in den 1960er Jahren begonnenen Bemühungen, ein Endlager für diese Abfälle zu finden, gibt es bis zum heutigen Zeitpunkt weltweit noch kein in Betrieb befindliches Endlager für wärmeentwickelnde Reststoffe aus der Nutzung der Kernenergie. Ursächlich hierfür ist, neben den großen technischen Herausforderungen, die Tatsache, dass insbesondere in Deutschland ein sehr großer Widerstand der Bevölkerung in den in Frage kommenden Standortregionen die Realisierung bisher unmöglich gemacht hat. Es hat sich gezeigt, dass die Erkundung eines Endlagerstandortes sowie der Bau eines Endlagers nicht gegen den Widerstand der Bevölkerung durchgesetzt werden kann. [2], [3]

Im August 2011 ist das 13. Gesetz zur Änderung des Atomgesetzes in Kraft getreten [4]. Hiermit wurde der endgültige Ausstieg Deutschlands aus der kommerziellen Nutzung der Kernenergie bis zum Ende der Jahres 2022 beschlossen. Im Anschluss wurde im Juli 2013 das Standortauswahlgesetz "Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle" verabschiedet, mit dem die Suche nach einem geeigneten Standort für ein Endlager in Deutschland faktisch neu gestartet wurde [5]. Dieses Gesetz gibt Vorgaben für den zeitlichen Ablauf der Standortsuche, beginnend mit der Ermittlung möglicher Standortregionen sowie der anschließenden Standorterkundung, bis hin zur Standortauswahl anhand eines Vergleiches der potentiellen Lagerorte. Die Auswahlkriterien, anhand derer die abschließende Standortauswahl erfolgen soll, wurden in dem Gesetz noch nicht festgelegt. Um bei der Festlegung der Auswahlkriterien das fachliche Votum möglichst vieler unterschiedlicher Interessenvertreter berücksichtigen, zu wurde eine Kommission zur Findung von Auswahlkriterien ins Leben berufen, deren Abschlussbericht im Juli 2016 vorgelegt wurde [6].

Da die vorhandenen Ressourcen, nicht zuletzt die zur Verfügung stehende Zeit, begrenzt sind, muss bereits in einer frühen Phase der Standortauswahl anhand nachvollziehbarer Kriterien eine Vorauswahl einzelner Standorte für die weiterführende Erkundung erfolgen. Zur Bewertung der Eignung eines Standortes ist allerdings die Gesamtheit der geologischen, technischen und geotechnischen Aspekte des an dieser Stelle umzusetzenden Lagerbauwerkes zu betrachten. Eine Vorauswahl kann somit nur erfolgen, wenn für die in Frage kommenden Endlagerstandorte bereits vor der untertägigen geologischen Erkundung geeignete Lagerkonzepte vorliegen. Die Kriterien zur Bewertung der Standorte unterliegen allerdings ebenfalls einem Wandel. So kann sich die Wertung konkurrierender Aspekte in Folge gesellschaftlicher Faktoren verschieben. Während beispielsweise lange Zeit ein schneller vollständiger Verschluss des Lagers angestrebt

wurde, wird heute eine langfristige Zugänglichkeit des Bergwerkes zur Überwachung der Abfälle favorisiert, woraus sich erhebliche Änderungen in der Ausgestaltung der Endlagerkonzepte ergeben.

Jede Entscheidung im Auswahlprozess besitzt Auswirkungen für viele Jahrzehnte bis Jahrtausende. Aus diesem Grund müssen die zugrundeliegenden Kriterien auch nach einer langen Zeit noch nachvollziehbar zu begründen sein, um die Akzeptanz der betroffenen Bevölkerung zu gewinnen. Dies ist die Stelle an der das Projekt "ENTRIA" ansetzt.

ENTRIA – Entsorgungsoptionen für radioaktive Reststoffe: Interdisziplinäre Analysen und Entwicklung von Bewertungsgrundlagen

Die seit Jahrzehnten anhaltende gesellschaftliche Debatte und auch die Resonanz auf aktuelle politische Entwicklungen (Standortauswahlgesetz) haben deutlich gezeigt, dass die Problematik der "Endlagersuche" nicht allein auf der Grundlage naturwissenschaftlich-technischer Betrachtungen gelöst werden kann. Die Forschungsplattform ENTRIA betrachtet Optionen zur Entsorgung hochradioaktiver, wärmeentwickelnder Reststoffe und verfolgt hierbei den Ansatz, auch die soziotechnischen Wechselwirkungen zwischen technischen und gesellschaftswissenschaftlichen Aspekten bei der Untersuchung der Entsorgungsoptionen in gleichem Maße zu berücksichtigen.

Im Rahmen der Untersuchungen werden die unterschiedlichen Aufgaben und Möglichkeiten berücksichtigt, die sich aus den verschiedenen Optionen ergeben: Während ein verschlossenes wartungsfreies Tiefenlager (mit oder ohne Vorkehrungen zur Rückholbarkeit) schließlich den Endpunkt einer Entsorgungsstrategie darstellt, ist die Oberflächenlagerung eine befristete und somit nicht endgültige Maßnahme. Sie stellt einen, aus heutiger Sicht möglicherweise längerfristig notwendigen, Zwischenschritt auf dem Weg zu einem endgültigen Entsorgungspfad dar.

Im Verbundprojekt ENTRIA sind zwölf Institute deutscher Universitäten und Großforschungseinrichtungen sowie ein Schweizer Partner eingebunden. ENTRIA analysiert die Entsorgungsproblematik aus gleichberechtigter Sicht von Natur-, Ingenieur-, Geistes-, Rechts- und Sozialwissenschaften. Ein wissenschaftlicher Beirat mit Experten aus diesen Fachgebieten und Vertretern von Behörden und Bürgerinitiativen begleitet und berät ENTRIA fachlich. ENTRIA ist dabei unabhängig von der Politik, den Betreibern sowie weiteren Interessengruppen. Es zählt nicht zu den Aufgaben der Plattform, Aussagen über die Eignung konkreter Standorte zu treffen. Das Ziel von ENTRIA ist es vielmehr, wissenschaftliche Grundlagen zum bewertenden Vergleich zwischen den unterschiedlichen Entsorgungsoptionen zu schaffen.

Die große Stärke von ENTIRIA ist dabei, dass durch das bewusst offene Arbeitskonzept Wissenslücken identifiziert werden. Hierbei wird auf vorangegangenen, meist entweder technisch oder gesellschaftswissenschaftlich ausgerichteten Untersuchungen, aufgebaut. Im Rahmen der Plattform werden die Ergebnisse der durchgeführten disziplinären Forschungen disziplin-übergreifend zusammengefasst. Die Ergebnisse werden öffentlich kommuniziert und können daher als Informationsgrundlage für Entscheidungsträger, Wissenschaft und interessierte Öffentlichkeit genutzt werden.

Der breite interdisziplinäre Ansatz von ENTRIA stellt die Disziplinen nicht nur nebeneinander, sondern verknüpft sie auf vielfältige Weise. Zentral hierfür sind die sogenannten Transversalprojekte, die die drei betrachteten Entsorgungsoptionen unter verschiedensten Gesichtspunkten vergleichend bewerten. Die bewusst große Anzahl beteiligter junger Wissenschaftler (Doktoranden / PostDocs) profitiert vom Know-How-Transfer erfahrener Experten sowohl in der eigenen Disziplin (Kompetenzerhalt) als auch fachübergreifend (Interdisziplinarität). Auch gemeinsame Lehrveranstaltungen an den beteiligten Universitäten sowie zusätzliche Sommerschulen dienen der Vermittlung von Interdisziplinarität. Die Plattform leistet demnach einen Beitrag zu einer interdisziplinären Ausbildung des wissenschaftlichen Nachwuchses und somit zur Kompetenzbildung und zum Kompetenzerhalt in diesem wichtigen Arbeitsgebiet. Die Plattform leistet damit einen

neuartigen Beitrag zur Lösung des Nachwuchsproblems im Bereich der Entsorgung radioaktiver Reststoffe.

Eine weitere wichtige Säule von ENTRIA sind Kommunikation und Öffentlichkeitsarbeit. Es werden aktuelle Stimmungsbilder aus Politik und Gesellschaft ermittelt, die in einer Reihe von Arbeitspaketen ausgewertet und berücksichtigt werden. ENTRIA bietet eine unabhängige Informationsmöglichkeit zum Thema nukleare Entsorgung für alle Interessierten. Dabei soll nicht nur Information bereitgestellt werden, sondern es besteht die Möglichkeit, aktiv mit Fragen an ENTRIA heranzutreten. Zusätzlich werden Workshops und öffentliche Veranstaltungen zum Thema angeboten, wo mit den beteiligten Wissenschaftlern diskutiert werden kann.

Welche Optionen werden untersucht

In den letzten Jahrzehnten wurden verschiedene Varianten vorgestellt, wie mit hochradioaktiven Abfällen aus der zivilen Nutzung der Kernenergie umgegangen werden könnte. Einige dieser Varianten, wie die Verbringung der Abfälle ins Weltall oder auch das Verklappen der Abfälle in den Weltmeeren, können sehr schnell als wenig geeignete Optionen identifiziert werden. Andere Varianten, zu denen zum Beispiel die Transmutation oder eine tiefengeologische Bohrlochlagerung gehören, bieten zwar ein hohes Potential, sind aber noch nicht so weitreichend erforscht, dass sie nach heutigem Stand der Technik sicher realisiert werden können [6].

Die Forschungsplattform ENTRIA betrachtet ausschließlich Optionen, die nach derzeitigem Stand von Wissenschaft und Forschung realisiert werden können. Somit ergeben sich die drei nachfolgend vorgestellten Optionen zum Umgang mit den hoch radioaktiven Abfällen. Die ersten beiden Optionen verfolgen den Ansatz, die Abfälle zeitnah in einem geologischen Tiefenlager einzulagern, um sie von der Atmosphäre

zu isolieren. Sie unterscheiden sich darin, dass bei der ersten Variante eine Rückholung der Abfälle nicht vorgesehen ist, während bei der zweiten Variante auch die Überwachung des Lagers (Monitoring) und die Möglichkeit einer geplanten Rückholung über einen Zeitraum von mehreren Jahrzehnten bis Jahrhunderten integrale Bestandteile des Konzeptes darstellen. Die dritte untersuchte Option ist eine langfristige oberflächennahe Lagerung der Abfälle. Ziel dieser Variante ist es, Zeit für die Untersuchung weiterer Optionen zum Umgang mit den Abfällen zu gewinnen, um so einen möglichst optimalen langfristigen Umgang mit den Abfällen zu gewährleisten. Nachfolgend werden die konzeptuellen Vorzüge und Nachteile der drei Optionen kurz beschrieben. Auf die für die generischen Behälterkonzepte relevanten Details der einzelnen Optionen, wie beispielsweise die zugrundeliegenden Lagerkonzepte, wird im Kapitel "Gestaltungsmerkmale der ENCON-Behälter^w, eingegangen.

Einlagerung in tiefe geologische Formationen <u>ohne</u> <u>Vorkehrungen</u> zur Rückholung

Bei dieser Option handelt es sich um eine Variante der klassischen Endlagerung. Bezeichnend für diese Option ist der frühzeitige, wartungsfreie Einschluss der Abfälle. Vorkehrungen die eine Rückholung der Abfälle erleichtern, werden nur dann berücksichtigt, wenn keine negativen Auswirkungen auf die geologischen sowie geotechnischen Barrieren zu erwarten sind. Eine direkte Überwachung des Lagers ist bei dieser Option, nur während der Betriebsphase vorgesehen. Die einzel-Einlagerungsbereiche werden direkt nach der nen Einlagerung der Behälter vollständig verschlossen. Ein fortgeführtes Monitoring nach diesem Zeitpunkt würde die geotechnischen Barrieren, durch die hierfür erforderliche Durchörterung sowie die längerfristige Offenhaltung der Schächte und etwaiger Monitoringstrecken, schwächen. Um das Lager schnellstmöglich in einen passiv sicheren Zustand

zu überführen, ist ein direktes Monitoring der Einlagerungsbereiche sowie eine geplante Rückholung der Abfälle bei dieser Option nicht vorgesehen. Das Endlagersystem und die Behälter sind nach derzeitiger Rechtslage allerdings so zu gestalten, dass prinzipiell eine Rückholung der Abfälle im Rahmen einer Bergung und Wiederauffahrung des Bergwerkes möglich ist.

Einlagerung in tiefe geologische Formationen <u>mit Vor-</u> <u>kehrungen</u> zur Rückholung

Auch bei dieser Option stellt der langfristig sichere Einschluss der Abfälle im Tiefenlager den angestrebten Zustand dar. Allerdings wird der aktiven Eingriffsmöglichkeit bei dieser Variein höherer Stellenwert beigemessen. Ziel ante der Planungen bei dieser Option ist es, dass für einen begrenzten Zeitraum von einigen Jahrzehnten bis Jahrhunderten die eingelagerten Reststoffe aus dem Lager sicher zurückgeholt werden können. Auch die Rückholung stellt hier demnach ein dar. geplantes Betriebsszenario Hieraus resultieren Einschränkungen bei der geotechnischen Barriere zugunsten eines aktiven Monitorings und einer Möglichkeit des aktiven Eingriffs. Auf der Habenseite dieser Option steht der Erkenntnisgewinn über die Entwicklung des Tiefenlagers und die Möglichkeit, einmal getroffene Entscheidungen für die Einlagerung über einen bestimmten Zeitraum zurücknehmen zu können. Falls in mehreren Jahrzehnten eine alternative Entsorgungsoption, wie beispielsweise Transmutation, zur Verfügung steht, ist es somit möglich, die Reststoffe zurückzuholen und einem neuen Entsorgungspfad zuzuführen.

Langfristige Oberflächenlagerung als Vorbereitung der tiefengeologischen Lagerung

Die dritte in ENTRIA untersuchte Option, die langfristige Oberflächenlagerung, wichtet die direkte Zugriffsmöglichkeit auf die radioaktiven Reststoffe wesentlich höher, als die beiden Tiefenlageroptionen. Im Vergleich zu diesen bietet die Oberflächenlagerung nur ein geringes Maß an passiver Sicherheit. Dafür bietet sie aber weitreichende Möglichkeiten, das eingelagerte Inventar beispielsweise anders zu konditionieren oder einem neuen Entsorgungsweg zuzuführen. Der zweite Punkt, der für die weiterführende Betrachtung dieser Option spricht, ist, dass derzeit noch kein geologisches Tiefenlager für hoch radioaktive Abfälle existiert. Eine Zwischenlagerung ist somit in jedem Fall über einige Jahrzehnte erforderlich, bis ein Standort für ein Tiefenlager gefunden und ausreichend erforscht ist. Mittlerweile hat sich die Bezeichnung "Langzeitzwischenlagerung" als Begrifflichkeit für diese Option in der Gesellschaft etabliert. Durch einen ausgedehnten, längeren Zwischenlagerungszeitraum kann zusätzliche Zeit für die Standorterkundung gewonnen werden. Allerdings stellt die Option der langfristigen Oberflächenlagerung immer ein Bindeglied zu einer anderen Entsorgungsoption und keine dauerhafte Lösung der Entsorgungsfrage dar.

Warum generische Behälterkonzepte?

Im folgenden Kapitel werden die Gründe dargelegt, anhand derer im Rahmen der Forschungsplattform ENTRIA die Notwendigkeit generischer Behälterkonzepte für den Optionenidentifiziert Im vergleich wurde. Rahmen des Optionenvergleiches ist es erforderlich, Bewertungsgrundlagen für die Analyse der Vorzüge und Nachteile der drei oben genannten Optionen zu schaffen. Hierbei können keine konkreten Lagerstandorte miteinander verglichen werden, sondern der Optionenvergleich erfolgt auf der Grundlage von standortunabhängigen Lagerkonzepten. Innerhalb der drei Optionen sind somit Lagerkonzepte für verschiedene Randbedingungen, wie beispielsweise unterschiedliche Wirtsgesteine bei den Tiefenlageroptionen, zu entwickeln. Für die Tiefenlagerung sind die Formationen Kristallin, Ton und Tonstein sowie Steinsalz als prinzipiell geeignete Wirtsgesteine identifiziert, so dass für den Optionenvergleich geeignete generische Tiefenlagermodelle zum Vergleich dieser Wirtsgesteine erforderlich werden.

Welche Rolle spielen die Behälterkonzepte im Rahmen der innerhalb der drei Optionen untersuchten Lagerkonzepte?

Die Funktionen, welche von angepassten Behältern in den verschiedenen Lagerkonzepten übernommen werden sollen, sind vielfältig. Um diese Funktionen darstellen zu können, müssen die unterschiedlichen zeitlichen Phasen der Lagerkonzepte betrachtet werden.

Bis zum Zeitpunkt der Einlagerung bestehen zwischen allen drei Optionen nur geringe Unterschiede. Die radioaktiven Abfälle werden in einer Konditionierungsanlage in einen Behälter geladen. Dieser wird weitergehend konditioniert und im Anschluss zu einem langfristig lagerfähigen Gebinde dicht verschlossen. Nach einer kurzfristigen Lagerung im Ausgangslager der Konditionierungsanlage wird der Behälter für den Transport vorbereitet und anschließend zu seinem langfristigen Lagerplatz transportiert. Hierfür kann es gegebenenfalls erforderlich sein, Transportsicherungen oder eine Transportabschirmung an den Behältern anzubringen. Dies ist zum Beispiel davon abhängig, ob ein Transport über einen öffentlichen Verkehrsraum erfolgen muss. Sollten Transportabschirmungen erforderlich sein, so sind diese am Bestimmungsort vor der längerfristigen Einlagerung wieder zu entfernen.

Ab dem Zeitpunkt der Einlagerung unterscheiden sich die drei Lageroptionen erheblich. Bei der Oberflächenlagerung wird der Behälter für mehrere Jahrzehnte bis Jahrhunderte in einem entsprechend ausgerüsteten Lagergebäude aufbewahrt. Während dieser Zwischenlagerungszeit muss die Funktionsfähigkeit der Behälter in geeigneter Weise nachgewiesen und regelmäßig überprüft werden. Hierzu können zum einen kontinuierliche Monitoringverfahren, wie beispielsweise eine Drucküberwachung der Behälter, zum Einsatz kommen. Zum anderen können an den Behältern in bestimmten Zeitabständen Sicherheitsüberprüfungen durchgeführt werden, da eine Zugänglichkeit jederzeit gegeben ist.

Bei den Tiefenlageroptionen werden die Behälter in die Einlagerungsbereiche des Tiefenlagers verbracht. Diese werden im Anschluss an den Einlagerungsvorgang entsprechend dem Lagerkonzept verfüllt und verschlossen [7]. Bei der wartungsfreien Tiefenlagerung stellt dieser Zustand den Endpunkt der Einlagerung dar. Im Gegensatz hierzu ist bei der Tiefenlagerung mit Rückholbarkeit noch für einen begrenzten, vom Wirtsgestein abhängigen Zeitrahmen von mehreren Jahrzehnten bis hin zu einigen Jahrhunderten, die Option vorgesehen, dass die eingelagerten Behälter geplant aus dem Lager zurückgeholt werden können. Somit müssen die Behälter über diesen Zeitrahmen dicht verschlossen und mechanisch integer bleiben. Zusätzlich ist es erforderlich, Konzepte für ihre Handhabung im Rahmen der Rückholung zu entwickeln. Die Möglichkeit einer Wartung oder einer direkten Inspektion der Behälter, wie sie bei der Oberflächenlagerung gegeben ist, existiert bei dieser Option jedoch nicht. Entsprechend der rechtlichen Anforderungen, welche sich beispielsweise aus dem Standortauswahlgesetz aus dem Jahre 2013, sowie dem Abschlussbericht der Kommission "Lagerung hoch radioaktiver Abfallstoffe" ergeben, müssen die Behälter aber auch bei der Option der direkten Endlagerung für einen Zeitrahmen von 500 Jahren bergbar sein, so dass sich hieraus für beide Einlagerungsoptionen ähnliche Anforderungen an das Behälterkonzept bezüglich Dichtheit und mechanischer Integrität ergeben [5], [6], [8].

Bei allen drei Optionen ist über den Betrieb des Lagers sowie die gesamte anschließende Lagerdauer sicher zu stellen, dass kein Austritt von radioaktiven Stoffen aus dem Lagersystem erfolgt. Die von den radioaktiven Abfällen ausgehende ionisierende Strahlung ist in der Art abzuschirmen, dass keine Gefährdung für die Zivilbevölkerung entsteht. Auch der betriebliche Strahlenschutz ist in allen Phasen der Lagerung zu gewährleisten, so dass auch für das im Behälterumfeld tätige Personal die größtmögliche Sicherheit sichergestellt werden kann. Das Abfallgebinde, bestehend aus dem Inventar und dem Behälter, stellt hierbei während aller Handhabungsvorgänge die zentrale Barriere dar. Zur Abschirmung der ionisierenden Strahlung existieren mehrere Konzepte. Mit dickwandigen Behältern kann eine ausreichende Abschirmwirkung erzielt werden. Alternativ kann der erforderliche Schutz gegen die ionisierende Strahlung während der Handhabung der Behälter auch durch Overpacks oder Transportabschirmungen erzielt werden. In diesem Fall ist eine

Handhabung von Behältern ohne die Zusatzabschirmung ausschließlich fernhantiert möglich.

Grundvoraussetzung für die Funktionsfähigkeit der Behältersysteme und somit für den Umgang mit den Behältern im Umfeld des Lagers ist die Kontaminationsfreiheit der Behälter und ihres Umfeldes und somit die Vermeidung einer Freisetzung von Radionukliden. Die Integrität der Lagerbehälter muss für den Zeitraum einer geplanten Rückholung unter allen zu erwartenden Bedingungen gewährleistet sein! Ist diese nicht mehr gegeben, ist eine geplante Rückholung der Behälter nicht mehr und auch eine Bergung, wenn überhaupt, nur mit einem erheblichen Mehraufwand möglich.

Eine weitere zentrale Anforderung an die Behälter, insbesondere vor dem Hintergrund der langen Zeiträume, über die bei den Optionen Oberflächenlagerung sowie Tiefenlagerung mit Rückholbarkeit ein Umgang mit den radioaktiven Reststoffen erforderlich ist, stellt die sichere mechanische Handhabbarkeit der Abfallgebinde dar. Diese kann nur dann gewährleistet werden, wenn die Abfallgebinde über dauerhaft haltbare Anschlagpunkte verfügen.

Der sichere Einschluss der Radionuklide, die mechanische Handhabbarkeit der Behälter sowie die Gewährleistung des betrieblichen Strahlenschutzes sind die Mindestanforderungen für einen Umgang mit den Behältern, deren Einhaltung bei allen Optionen gewährleistet sein muss. Durch die Einwirkungen, welche sich aus dem Lagerumfeld auf die Lagerbehälter ergeben, kann der Zeitrahmen, über den die Einhaltung dieser Anforderungen sicher gewährleistet wird, nur dann abgeschätzt werden, wenn das Lagerumfeld bekannt ist. Allerdings wirkt nicht nur die Lagerumgebung auf den Behälter ein, sondern auch der Behälter verursacht Wechselwirkung mit dem Lagersystem, beispielsweise indem er Wärme abgibt. Hierdurch ergeben sich Aspekte in der Auslegung der Behälter, die einen direkten Einfluss auf das umgebende Lager besitzen und für das geotechnische Verschlusssystem von großer Relevanz sind.

Warum können einige Anforderungen an die Behälter derzeit nicht eindeutig identifiziert werden?

Neben den oben genannten Mindestanforderungen, die sich größtenteils aus der Forderung nach der Einhaltung übergeordneter Schutzziele sowie des betrieblichen Strahlenschutzes ergeben, existieren weitere, detailliertere Anforderungen an die Behälter. Diese ergeben sich aus dem geplanten Lagerumfeld, der dort vorgesehenen Infrastruktur sowie den äußeren Randbedingungen wie Art und Menge der einzulagernden Abfälle. Zu diesen Anforderungen gehört beispielsweise die wirtsgesteinsspezifisch zulässige Wärmeentwicklung der Behälter durch die Zerfallswärme des Inventars, die einen direkten Einfluss auf die Lagerkapazität und somit die erforderliche Behälteranzahl hat. Auch weitere konstruktive Aspekte der Behälterauslegung wie beispielsweise sein maximales Gewicht, die Materialauswahl oder auch die Gestaltung der Anschlagpunkte gehören zu diesen Kriterien.

Welcher Output aus den Behälterkonzepten wird für die Einlagerungskonzepte benötigt?

In den geologischen Tiefenlagerkonzepten stellt der Behälter heutzutage, insbesondere in den frühen Stadien der Planung, weitestgehend eine Black-Box dar. Dennoch sind bestimmte Informationen über den Behälter für die Planung des Einlagerungskonzeptes unabdingbar. Die erforderlichen Streckenauffahrungen für die Lagerbereiche sind in ihren Dimensionen an die einzulagernden Behälter und die zugehörigen Transportvorrichtungen anzupassen, um einen reibungsfreien Einlagerungsbetrieb zu gewährleisten. Des Weiteren stellt die Wärmeleistung der einzelnen Behälter eine der wichtigsten Auslegungsgrößen bei der thermischen Auslegung des Tiefenlagers dar und besitzt einen erheblichen Einfluss auf die erforderliche Anzahl und den Abstand der Einlagerungsstrecken und somit auch auf die Gesamtgröße des Lagerbergwerkes. Somit stellen die geometrischen Abmessungen sowie die Masse und die Wärmeentwicklung der Behälter wichtige Eingangsgrößen für die Planung eines Tiefenlagers dar.

Ein weiterer Punkt, bei dem die Lagerplanung und das Behälterdesign voneinander abhängig sind, ist das Einlagerungs-Lagerbehälter konzept. Selbstabschirmende besitzen bezüglich des Betriebs des Tiefenlagers Vorteile. Sie erfordern keine zusätzlichen Abschirmbehälter, wodurch viele betriebliche Abläufe erleichtert werden. Auch im Falle einer Rückholung resultieren aus dem reduzierten Strahlungsniveau Vorteile. Erkauft wird dieser Vorteil durch einen höheren Materialaufwand. Es ergeben sich ein höheres Gewicht und größere Abmessungen der Lagerbehälter. Das Handling der Behälter wird hierdurch allerdings nur in geringem Umfang negativ beeinflusst, da die Masse eines selbstabschirmenden Behälters etwa auf dem gleichen Niveau liegt, wie die eines nicht abgeschirmten Behälters mit der erforderlichen Transportabschirmung. Bei Konzepten zur Streckenlagerung, bei denen die Behälter auf der Sohle der Einlagerungsstrecke beziehungsweise einem vorbereiteten Sockel abgelegt und die Einlagerungsstrecken direkt im Anschluss verfüllt werden, spielt das erhöhte Behältergewicht eine untergeordnete Rolle. Bei Konzepten zur Bohrlochlagerung der Behälter sind im Gegensatz hierzu komplexere Handhabungsvorgänge, wie das Drehen und Absenken des Behälters in das Bohrloch, erforderlich und dies ist vermutlich bei der Option der Rückholbarkeit nicht umsetzbar. Beim Absenken der Behälter führt ein hohes Gebindegewicht zu großen Herausforderungen. Bei diesen Lagerkonzepten weisen somit Behälterkonzepte, die aus einem nicht abgeschirmten Einlagerungsbehälter und einer Transportabschirmung bestehen, aus der Sicht der Behälterhandhabung Vorteile auf.

An dieser Stelle kann es demnach zu einem Zielkonflikt kommen. Beide Varianten besitzen Vor- und Nachteile, die je nach Ausprägung der Abwägungskriterien sowie der Randbedingungen der Einlagerung mehr oder minder zum Tragen kommen. Somit ist an dieser Stelle die Entscheidung anhand der gegebenen Randbedingungen für eine der beiden Optionen zu treffen.

Warum können nicht alle für den Optionenvergleich erforderlichen Informationen aus detaillierten Standortkonzepten übernommen werden?

International existiert eine Vielzahl von Konzepten zur tiefengeologischen Einlagerung radioaktiver Reststoffe in unterschiedlichen Wirtsgesteinen. Diese basieren in der Regel auf der Geologie einer bestimmten Standortregion. Hieraus ergibt sich bezüglich der wirtsgesteinsspezifischen Eigenschaften der Behälter, wie beispielsweise der Materialauswahl, eine gute Datenbasis. Die Übertragbarkeit dieser Daten auf andere Lagersysteme im selben Wirtsgestein ist in der Regel gegeben.

Die Randbedingungen, unter denen diese internationalen Konzepte entwickelt wurden, unterscheiden sich erheblich. Neben rechtlichen Randbedingungen, wie zum Beispiel unterschiedlichen gesetzlichen Anforderungen bezüglich der Rückholbarkeit der eingelagerten Reststoffe, existieren in den verschiedenen Ländern unterschiedliche Wirtsgesteinsformationen, welche sich für die geologische Tiefenlagerung eignen. Die größten Abweichungen in den Randbedingungen resultieren allerdings aus den unterschiedlichen Arten und Mengen der radioaktiven Reststoffe, die bei der Auslegung und Konzeption der Lagerstätten zu berücksichtigen sind. In Frankreich oder den Niederlanden haben beispielsweise annähernd alle hochradioaktiven Abfälle den Prozess der Wiederaufarbeitung durchlaufen und liegen somit als verglaste Wideraufarbeitungsabfälle vor. In Deutschland besteht hingegen ein großer Teil der einzulagernden Reststoffe aus abgebrannten Brennelementen unterschiedlicher Bauarten [1], [9], [10]. Auch die Mengen der angefallenen Reststoffe variieren erheblich in Abhängigkeit von der Anzahl und Betriebsdauer der in den einzelnen Ländern betriebenen Kernkraftwerke.

Aus dem unterschiedlichen Inventar ergeben sich stark voneinander abweichende Eigenschaften der Lagerbehälter bezüglich ihrer Abmessungen, ihrer spezifischen Wärmeentwicklung sowie der von ihnen ausgehenden ionisierenden Strahlung. Diese drei Eigenschaften gehören zu den Kernpunkten der Lagerplanung und -auslegung. Darum und vor dem Hintergrund der in Deutschland durchzuführenden ergebnisoffenen Standortsuche, ist es nicht möglich, alle Informationen für die generische Tiefenlagerplanung direkt aus anderen Tiefenlagerkonzepten zu entnehmen.

Generische Behälterkonzepte als Lösungsansatz

Die detaillierte Auslegung und Ausgestaltung der Behälterkonzepte kann nur iterativ, dem Fortschritt der Standortfindung entsprechend, erfolgen. Dennoch sind bereits für den Vergleich von Optionen sowie für die anschließende Standortsuche Informationen über mögliche Behälter und ihr Inventar erforderlich. Für die Durchführung des Optionenvergleichs und für die Standortsuche ist es gleichermaßen erforderlich, die Anzahl der zu betrachtenden Optionen zu reduzieren, um sich nicht in der Vielzahl möglicher Varianten zu verlieren.

Aus diesem Grund wurde am Institut für Werkstoffkunde der Leibniz Universität Hannover im Rahmen von ENTRIA eine umfangreiche Literaturrecherche zu den unterschiedlichen internationalen Behälterkonzepten durchgeführt und unterschiedliche Aspekte dieser Konzepte in den im Anhang angefügten Behälterdossiers für das ENTRIA Verbundprojekt zusammengestellt. Besonderes Augenmerk lag hierbei auf den Behälterwerkstoffen, ihren Materialdicken und den zugrundeliegenden Fertigungsprozessen. Auch die Abschirmwirkung der Behälter und die aus den unterschiedlichen Handhabungskonzepten resultierenden Unterschiede bei der Gestaltung der behälterseitigen Lastanschlagpunkte wurden betrachtet.

Die Analyse der internationalen Konzepte ergab, dass sich die zugrundeliegenden Anforderungen aller Konzepte aus den nachfolgend genannten Sicherheitszielen, welche sich aus den "Principles of Radioactive Waste Management" und den "Fundamental Safety Principles" der IAEA ergeben, ableiten lassen. [11]

- Dauerhafter Schutz von Mensch und Umwelt vor der ionisierenden Strahlung und sonstigen schädlichen Wirkungen dieser Abfälle
- Vermeidung unzumutbarer Lasten und Verpflichtungen für zukünftige Generationen

Durch die unterschiedlichen Randbedingungen der Lagerkonzepte ergeben sich dennoch große Unterschiede in der detaillierten Gestaltung der Behälter. Es existieren sowohl Konzepte, bei denen der Behälter den dauerhaften Einschluss des Inventars gewährleisten muss (kristallin, SKB) [12], [13], als auch Konzepte, in denen diese Funktion weitestgehend von der geologischen oder geotechnischen Barriere (Salz, DBE) übernommen wird [14], [15]. Es zeigt sich aber auch, dass es viele Parallelen zwischen den verschiedenen Konzepten gibt. So kommen beispielsweise in ähnlichen Wirtsgesteinen in der Regel auch vergleichbare Werkstoffkonzepte zum Einsatz. Somit ergibt sich die Möglichkeit, die behälterspezifischen Fragen, welche sich aus dem Optionenvergleich ergeben, anhand von wirtsgesteinsspezifischen, generischen Behälterkonzepten zu beantworten, die auf der Grundlage der in Deutschland angefallenen hoch radioaktiven Abfälle basieren [1].

Welche Anforderungen müssen die generischen Behälter erfüllen?

In den internationalen Lagerkonzepten werden unterschiedliche Kriterien an die Behälter formuliert. Diese basieren zu einem großen Teil auf den Schutzzielen und Sicherheitsprinzipien, die aus den Regelwerken der IAEA hervorgehen und demnach den internationalen Konsens repräsentieren. Somit ergeben sich in vielen Bereichen vergleichbare Anforderungen, denen durch unterschiedliche technische Konzepte Rechnung getragen wird. Als Kernanforderung kann bei allen Konzepten das Ziel identifiziert werden, Risiken für Mensch und Umwelt in Folge von Nuklidfreisetzungen zu minimieren. Aus dieser Kernanforderung lassen sich, unter Berücksichtigung der nationalen Unterschiede, nahezu alle anderen Anforderungen sowie Kriterien für den Behälter ableiten.

Die abgeleiteten Auslegungsanforderungen thematisieren beispielsweise den sicheren Einschluss der radioaktiven Reststoffe, den Strahlenschutz oder auch die Wechselwirkungen zwischen den Behältern und anderen Komponenten des Lagersystems und führen zu den Auslegungskriterien der Konzepte. Diese Auslegungskriterien können allerdings nicht vollumfänglich auf die Auslegung von Lager- und Behälterkonzepten für den Optionenvergleich übertragen werden, da sie auch von den Wechselwirkungen zwischen den einzelnen Komponenten des Lagersystems beeinflusst werden. Diese Kriterien werden demzufolge stark von lokalen Gegebenheiten beeinflusst.

Zur Schaffung von generischen, standortunspezifischen Behälterkonzepten ist es erforderlich, die den Auslegungskriterien der unterschiedlichen Behälterkonzepte zugrundeliegenden Anforderungen zu identifizieren. Finden sich Kriterien in leicht unterschiedlicher Ausprägung in mehreren internationalen Konzepten wieder, so kann die zugrundeliegende Anforderung durch die Integration dieser Kriterien identifiziert werden.

Das generische ENCON-Behälterkonzept

Im nachfolgenden Text wird der Prozess der Erarbeitung der generischen ENTRIA-Behälterkonzepte (<u>EN</u>TRIA <u>Con</u>tainer) beschrieben und auf die Herleitung der zugrundeliegenden Anforderungen eingegangen.

Wie wurden die generischen ENCON-Konzepte erarbeitet?

Die ENCON-Behälterkonzepte wurden mit dem Ziel entwickelt, eine Arbeitsgrundlage für die an ENTRIA beteiligten Arbeitspakete zu schaffen. Im weiteren Projektverlauf erfolgte eine Rückkopplung von Ergebnissen einzelner Arbeitspakete in die Behälterkonzepte. Hierdurch wurde es ermöglicht, einzelne Aspekte weiter auszuarbeiten oder auch getroffene Annahmen zu korrigieren.

Zur Erstellung der generischen ENCON-Behälterkonzepte mussten die Anforderungen an die Behälter identifiziert werden. Zusätzlich war es erforderlich zu bestimmen, welche Kenngrößen der Behälter für die Bearbeitung der unterschiedlichen Arbeitspakete erforderlich sind, um einen ange-Detaillierungsgrad des Behälterkonzeptes passten zυ erzielen. Hierbei sind technische, geotechnische sowie geologische Aspekte zu berücksichtigen. Zusätzlich muss weiteren Punkten, wie dem betrieblichen Strahlenschutz, Rechnung getragen werden. Das Ziel der Schaffung einer Arbeitsgrundlage erforderte die interdisziplinäre Diskussion und Auseinandersetzung mit dem Behälterkonzept, welche in einem intensiven Austausch zwischen den Bearbeitern der technischen ENTRIA Arbeitspakete erfolgte. Im Rahmen von Workshops wurden Anforderungen, Kenngrößen und Konzeptideen aus den unterschiedlichen Fachgebieten vorgestellt und diskutiert. Die Ergebnisse wurden im Anschluss vom Institut für

Werkstoffkunde zusammengetragen, weiter detailliert und ausgearbeitet.

Die Auslegung der Behälter tritt, wie zuvor beschrieben, an vielen Stellen mit dem Lagerkonzept in Wechselwirkung. Die Baugröße der Behälter hat beispielsweise einen Einfluss auf die Gestaltung und das Profil der Einlagerungsstrecken. Im Umkehrschluss besitzt auch das Einlagerungskonzept einen direkten Einfluss auf die Anforderungen, welche der Behälter erfüllen muss. Grundlegend ist zwischen den der ENCON-Konzeptentwicklung zugrundeliegenden Randbedingungen und Anforderungen, bei denen es sich um Einflussgrößen (möglicher Input) der Behälterentwicklung handelt, sowie den zu definierenden Kenngrößen der Behälter (erforderlicher Output) zu unterscheiden.

Die Anforderungen, die als Grundlage der Konzeptionierung des ENCON-Behälterkonzeptes gedient haben, werden nachfolgend kurz vorgestellt. Diese grundlegenden Anforderungen müssen von allen generischen Behälterkonzepten erfüllt werden. Daher ist es nicht sinnvoll, diese gegeneinander zu wichten. Aus Gründen der strukturierten Darstellung werden die Anforderungen nachfolgend vier Oberbegriffen zugeordnet:

- Strukturelle Anforderungen an den Behälter
- Schutz vor ionisierender Strahlung und Überkritikalität
- Verträglichkeit mit dem Lagersystem
- Sonstige Anforderungen aus dem Betriebsablauf

Der Oberbegriff **"Strukturelle Anforderungen an den Behälter"** fasst alle Aspekte zusammen, welche die Stabilität und Funktionsfähigkeit der Behälter beschreiben. Hierunter fallen auch Anforderungen und Kriterien, wie beispielsweise die Forderung nach der Handhabbarkeit der Behälter, die in

Abhängigkeit vom Lagerkonzept und betrachtetem Wirtsgestein mit der verstrichenen Lagerzeit an Bedeutung verlieren können. Die Wirksamkeit der umgebenden geotechnischen sowie geologischen Barrieren stellt sich erst mit der Zeit in vollem Umfang ein. Gleichzeitig nehmen der technische Aufwand einer Rückholung und das Risiko einer potentiellen Freisetzung von Radionukliden im Rahmen der hierfür erforderlichen Arbeiten mit der Zeit zu, so dass die Realisierbarkeit einer Rückholung der Behälter mit der Zeit unwahrscheinlicher wird [16]. Da diese Barrieren langfristig zumindest einen Teil der Schutzfunktion der Behälter übernehmen, unterliegen auch die strukturellen Anforderungen an die Lagerbehälter einem zeitlichen Wandel. Für den Zeitraum der geplanten Rückholbarkeit muss ein Austritt von Radionukliden aus dem Behälter verhindert werden. Diese Anforderung verliert zu einem späteren Zeitpunkt, nach dem Ablauf der Phase Bergbarkeit, an Bedeutung. Die mechanische Struktur der Behälter muss allerdings dauerhaft gewährleistet sein, da diese als eine Grundbedingung für den Nachweis der dauerhaft unterkritischen Anordnung der Abfälle erforderlich ist.

Dem Oberbegriff "Schutz vor ionisierender Strahlung und Überkritikalität" sind Kriterien und Anforderungen zugeordnet, die sich aus dem radiologischen Gefahrenpotential der einzulagernden Reststoffe ergeben. Der Schutz vor ionisierender Strahlung muss während der Betriebsphase sowie im Falle einer Rückholung ausschließlich von den Abfallgebinden, das heißt dem Lagerbehälter und eventuell einer zusätzlichen Transportabschirmung, gewährleistet werden. Nach der Überführung des Tiefenlagers in ein Endlager leisten die Geologie des Lagers sowie die geotechnischen Barrieren den wesentlichen Beitrag zur Abschirmung und Rückhaltung der Radionuklide. Die Einhaltung einer unterkritischen Anordnung muss, auch unter Endlagerbedingungen, durch den Behälter dauerhaft gewährleistet werden. Den ersten beiden Obergriffen lassen sich hauptsächlich Kriterien zuordnen, die einen direkten Einfluss auf die Gestaltungsdetails der Behälter besitzen, in der Regel aber nur in einem geringen Umfang von der umgebenden Lagergeologie beeinflusst werden. Im Gegensatz hierzu fallen unter den Oberbegriff "Verträglichkeit mit dem Lagersystem" Kriterien und Anforderungen, die von der Wechselwirkung der Behälter mit seinem Umfeld beeinflusst werden oder diese Wechselwirkungen selbst beeinflussen. Zusätzlich umfasst dieser Punkt Anforderungen, die einen direkten Einfluss auf die Behälter- sowie Lagerauslegung haben und somit elementare Auslegungsgrößen für die Planungen darstellen. Als Beispiel sei an dieser Stelle die Forderung nach der Einhaltung wirtsgesteinsspezifischer Temperaturobergrenzen genannt, die einen erheblichen Einfluss auf die Behälterkapazität besitzt, aber auch in großem Maße von der Gestaltung des umgebenden Lagers abhängig sind. Auch Aspekte der Materialauswahl, welche bei der Tiefenlagerung im großen Maße vom umgebenden Wirtsgestein abhängig sind, beeinflussen die Verträglichkeit der Behälter mit dem Lagersystem.

Weitere Anforderungen ergeben sich daraus, dass beim Betrieb des Lagers ein sicherer und strukturierter Betriebsablauf gewährleistet werden muss. Diese lassen sich nicht den drei vorangegangenen Oberbegriffen zuordnen und werden daher unter dem Oberbegriff **"Sonstige Anforderungen aus dem Betriebsablauf"** zusammengefasst. Hierzu gehören Kriterien wie die Identifizierbarkeit und Dokumentation der Behälter und des Inventars. Unter diesem Oberbegriff werden aber auch die Schnittstellen des Behälters mit den weiteren technischen Komponenten des Lagersystems, wie beispielsweise den Transport- und Handhabungssystemen, definiert. Zusätzliche Kriterien für diesen Oberbegriff ergeben sich indirekt aus den beiden zuvor genannten Punkten. So folgt beispielsweise aus der behälterseitigen Umsetzung von Maßnahmen zum Schutz vor ionisierender Strahlung, sei es durch selbstabschirmende Behälter oder durch den Einsatz von Transportabschirmungen in Verbindung mit nicht selbstabschirmenden Behältern, ein direkter Einfluss auf die Arbeitsabläufe und die Handhabungstechnik.

Äußere Randbedingungen der Behälterentwicklung

Die Entwicklung der generischen Behältersysteme muss sich an den Randbedingungen des ENTRIA-Optionenvergleiches orientieren. Zum Förderbeginn und über die gesamte Förderperiode von ENTRIA existierten keine aktuellen, allgemeingültigen Behälterkonzepte, die für den Optionenvergleich Anwendung finden konnten. Aus der Arbeit im Rahmen der Forschungsplatform ENTRIA in Deutschland ergibt sich, dass für die Forschung zur Optionenanalyse generische Behälterkonzepte für das in der Bundesrepublik bereits angefallene, beziehungsweise potentiell noch anfallende Mengengerüst für hoch radioaktive Reststoffe zu entwickeln sind. Das Augenmerk der Behälterkonzeptentwicklung liegt dabei auf den Abfällen aus den Leistungsreaktoren, bei denen es sich um Brennelemente unterschiedlicher Bauart sowie um verglaste Wiederaufarbeitungsabfälle handelt. Die weiteren Abfälle, welche beispielsweise aus Forschungsreaktoren stammen, stellen einen vergleichsweise kleinen Anteil des Gesamtvolumens hochradioaktiver Abfälle dar. Zusätzlich besitzen diese, verglichen mit den kommerziellen Abfällen, eine geringere Aktivität. Auf konzeptueller Ebene kann somit die ausschließliche Orientierung an den wärmeentwickelnden Reststoffen aus der kommerziellen Nutzung der Kernenergie als abdeckend angesehen werden.

Bezüglich des geologischen Umfeldes ist in Deutschland eine Verortung des Tiefenlagers in kristallinem Gestein, in Ton bzw. Tonstein sowie in Salinar denkbar. Aus diesem Grund sind für den Optionenvergleich Behälterkonzepte für diese Wirtsgesteinsarten zu entwickeln. Auch die Option der langfristigen Oberflächenlagerung soll als Bindeglied zu einer später umzusetzenden Entsorgungsoption, durch die Ableitung eines hierfür geeigneten generischen Transport- und Lagerbehälters Beachtung finden.

Bezüglich der gesetzlichen Vorgaben orientiert sich das generische Behälterkonzept an den bestehenden deutschen Randbedingungen. Diese bilden in der Regel den bei der Gesetzeslegung gültigen Stand der Technik ab und erfordern eine regelmäßige Befassung, um neue Entwicklungen berücksichtigen zu können. Falls sich bei der Erarbeitung der Konzepte technische Sachzwänge ergeben, die mit der derzeitigen gesetzlichen Situation kollidieren, ist es aus Gründen des wissenschaftlichen Anspruches daher möglich, von den rechtlichen Vorgaben stellenweise abzuweichen.

Definition und Herleitung von Kenngrößen und Anforderungen für das Behälterkonzept

Jedes im Rahmen der Entwicklung der Behälterkonzepte zu betrachtende Kriterium kann entweder eine Kenngröße oder eine Anforderung des Behälterkonzeptes darstellen. Die Zuordnung der Kriterien zu den beiden Gruppen muss kontextabhängig erfolgen. Die Unterschiede zwischen Kenngrößen und Anforderungen werden an den folgenden Beispielen dargestellt.

Anforderungen beschreiben Einflussgrößen und somit den Input für das Behälterkonzept. Sie ergeben sich aus anderen Bereichen der Lagerplanung, wie beispielsweise der Geologie. Die Kenngrößen der Behälter stellen, im Gegensatz hierzu, den zur weiteren Spezifizierung anderer Bereiche der Lagerplanung erforderlichen Output der Behälterkonzepte dar.
Ausgehend von der Reihenfolge der Ausdetaillierung der einzelnen Teilkonzepte kann derselbe Aspekt also entweder durch eine Anforderung an den Behälter definiert werden oder eine Kenngröße des Behälters darstellen.

Die Wärmeentwicklung der Behälter ist ein solcher Aspekt. Bei der Konzeptionierung von Lager und Behälter kann aus einem gegebenen geologischen (Tiefenlager-)Modell eine maximal zulässige Wärmeleistung für die Behälter abgeleitet werden, in diesem Fall wäre die Geologie führend und die Wärmeleistung stellt eine Einflussgröße der Behälterentwicklung dar. Alternativ kann, innerhalb gewisser Grenzen, die maximale Wärmeleistung der Behälter definiert werden und im Anschluss die Planung des Lagers entsprechend angepasst werden. In diesem Fall ist die Wärmeleistung eine Kenngröße der Behälterentwicklung. Im weiteren Verlauf kann bei beiden Varianten iterativ eine Optimierung der Konzepte erfolgen.

Im Rahmen der Erarbeitung der Behälterkonzepte wurde der Aspekt, welche Parameter als Führungsgrößen Anwendung finden sollen, ausführlich diskutiert. Die Betrachtung zeigte, dass in den letzten Jahrzehnten international die Geologie bereits mittels vieler Modelle sehr weitreichend und detailliert beschrieben worden ist. Die Endlagerbehälter sind im Vergleich hierzu in den meisten internationalen Konzepten nur grob gestaltet. Dies ist insofern verständlich, da die Gestaltung der Behälter zwar viele Aspekte des direkten Behälterumfeldes und seiner Handhabung definiert. Allerdings besitzen nur wenige Kenngrößen des Behälters, insbesondere die Wärmeleistung, einen direkten Einfluss auf die geologische Planung eines Tiefenlagers.

Der Einfluss weiterer Kenngrößen der Behälter auf die geologische Auslegung ist limitiert, da sie nur innerhalb einer von weiteren Einflussfaktoren beschränkten Bandbreite variiert werden können. Aus diesen Gründen wurde die Entscheidung getroffen, dass bei der Entwicklung der ENCON-Behälter die geologischen Randbedingungen als Führungsgröße genutzt werden.

Entwicklung der generischen Behälterkonzepte aus den Kenngrößen und Anforderungen

Nachfolgend wird auf Anforderungen eingegangen, welche sich aus der Wechselwirkung der Behälter mit dem geologischen Umfeld ergeben. Diese gelten demnach nur für die EN-CON-Tiefenlagerbehälter. Der generische ENCON-TLB (Transport- und Lagerbehälter) nimmt eine Sonderstellung ein. Dieser ist zur Aufnahme eines Inventars vorgesehen, welches vergleichbar mit den bereits existierenden Transport- und Zwischenlagerbehältersystemen ist. Da der EN-CON-TLB voraussichtlich vergleichbaren rechtlichen und betrieblichen Anforderungen gerecht werden muss, orientiert er sich weitestgehend an der in Deutschland für die Trockenlagerung bestrahlter Brennelemente in Zwischenlagern entwickelten CASTOR® Behälterfamilie der GNS (Gesellschaft für Nuklearservice). Die Anforderungen an einen Behälter zur Zwischenlagerung über mehr als 100 Jahre unterscheiden sich nur in Details, insbesondere in Bezug auf die Dauerhaftigkeit und Wartbarkeit einzelner Behälterkomponenten, von denen einer Zwischenlagerung über 40 Jahre, für die bereits Behälter verfügbar sind. Somit werden beim ENCON-TLB Modifikationen diskutiert, welche insbesondere die Wartbarkeit der Behälter thematisieren.

In der interdisziplinären Diskussion zu den Tiefenlagerbehältern wurden mehrere Kriterien identifiziert, die als Anforderungen oder als Kenngrößen für Behälter zur geologischen Tiefenlagerung zu berücksichtigen sind. Nachfolgend wird beschrieben, wie das generische Behälterkonzept, aufbauend auf diesen Kriterien, entwickelt wurde. Aus der Handhabung der Behälter, der Verträglichkeit der Behälter mit ihrem geologischen Umfeld sowie der erforderlichen Haltbarkeit der Behälter über die relevanten Zeiträume konnten Anforderungen an die Behälter abgeleitet werden. Bei den beiden letztgenannten Punkten handelt es sich um überwiegend materialwissenschaftliche Aspekte. Im Gegensatz hierzu umfasst der Aspekt der Handhabung beim Behälter, neben der konkreten Gestaltung der Lastanschlagpunkte, auch Aspekte des betrieblichen Strahlenschutzes während der Einlagerungsphase bis hin zu einer potentiellen Rekonditionierung des Inventars nach einer Rückholung.

Aus geologischer Sicht nimmt die Wärmeleistung der Behälter für die thermische Auslegung des Tiefenlagersystems die führende Rolle ein. Für die Planung der Handhabungs- und Einlagerungsprozesse, insbesondere auch unter Aspekten des Strahlenschutzes, ist das Inventar der Behälter zu bestimmen und die resultierenden radiologischen Eigenschaften abzuleiten. Des Weiteren müssen zur Konzipierung des Tiefenlagers und der Handhabungstechnik die geometrischen Abmaße sowie das Gewicht der Behälter definiert werden. Wärmeentwicklung und Radiologie werden in einem großen Umfang vom Inventar der Behälter beeinflusst. Auch die Dimensionen der Behälter stehen, bei einer vergleichbaren Auslegung der Abschirmung der Behälter, in einem direkten Zusammenhang mit der Aktivität des Behälterinhaltes.

Beschreibung des einzulagernden Inventars

Das in dem deutschen Tiefen- oder Zwischenlager einzulagernde, wärmeentwickelnde Inventar ist, bedingt durch den deutschen Atomausstieg, in seinem Umfang bekannt und kann beispielsweise dem Abschlussbericht der Endlagerkommission entnommen werden [6]. Zur Entwicklung der Kriterien des Optionenvergleiches muss dieses Inventar in geeigneter Weise auf die potentiellen Lagerbehälter verteilt werden, um abschätzen zu können, wie viele Lagerbehälter benötigt werden. Anhand dieser Angabe kann die ungefähre Größe eines geplanten Tiefenlagers in den unterschiedlichen Wirtsgesteinen abgeleitet werden.

Das Inventar der einzelnen Behälter, welches im Zusammenhang der Entwicklung der generischen Behälterkonzepte weitestgehend durch seine Wärmeentwicklung und seine radiologischen Eigenschaften beschrieben werden kann, stellt bei der Konzeptentwicklung das Kriterium dar, welches als Eingangsgröße für die weitere Auslegung der Behälter bestimmt werden muss. Dies kann anhand der Modellierung der Wärmeentwicklung in generischen wirtsgesteinsspezifischen Modell-Tiefenlagern erfolgen [17]. Allerdings müssen hierfür einige Randbedingungen des Tiefenlagers vorab definiert werden. Die Wärmeverteilung im Lager ist stark vom Tiefenlagerkonzept, also beispielsweise davon, ob die Einlagerung in Streckenlagerung oder in Bohrlöchern erfolgt, abhängig. Auch die geometrischen Abmaße der Behälter, ihr Abstand voneinander in der Einlagerungsstrecke sowie der Abstand der Einlagerungsstrecken zueinander sind zu definieren. Falls sich, beispielsweise im Rahmen der späteren detaillierten thermischen Auslegung des Tiefenlagers, Abweichungen von den in diesem ersten Iterationsschritt getroffenen Annahmen ergeben, kann es erforderlich werden, auch die Behälterkonzepte beziehungsweise das Inventar der Behälter anzupassen. Aus diesem Grund sind bei der Abschätzung des Inventars konservative Annahmen zu treffen. Die Freiheitsgrade bei der thermischen Auslegung des Tiefenlagers sind jedoch bei einem gegebenen Lagerkonzept begrenzt und die Auswirkungen der wahrscheinlichsten Abweichungen eher gering. Daher sollte auf zusätzliche Sicherheitszuschläge verzichtet werden, da diese leicht zu einer erheblichen Überschätzung des Flächenbedarfes des Tiefenlagers führen können.

Als Einstiegspunkt in die Behälterauslegung wurde für die einzelnen Behältertypen die maximal zulässige Wärmeleistung für die Wirtsgesteine Salz, Ton/Tonstein sowie kristallines Hartgestein (Kristallin) abgeschätzt. Als Grundlage dieser Abschätzung dient das geologische Tiefenlagerkonzept des ENTRIA-Vertikalprojektes 6, das die Einlagerung der Behälter in Streckenlagerung vorsieht und die Behälterabstände wirtsgesteinsspezifisch bestimmt [7]. Die Annahmen zu den Au-Benmaßen der Lagerbehälter basieren hierbei auf der Auswertung internationaler Tiefenlagerbehälterkonzepte bezüglich der voraussichtlich erforderlichen Materialstärken sowie den Abmessungen der einzulagernden Abfallstoffe.

Im nächsten Schritt der Auslegung der generischen Behälterkonzepte ist die Aktivität des Inventars abzuschätzen. Hierdurch wird es möglich, die vom Inventar ausgehende Gefährdung in Folge ionisierender Strahlung abzuleiten. Die Abschätzung der Aktivität wird dadurch möglich, dass zwischen der Wärmeleistung und der Aktivität radioaktiver Reststoffe ein direkter Zusammenhang besteht. Beides wird von der Ausgangszusammensetzung der radioaktiven Stoffe, den Einsatzbedingungen der Brennstoffe sowie der bereits verstrichenen Zwischenlagerdauer beeinflusst. Für diese drei Kriterien sind demnach Annahmen zu treffen, um das Inventar der generischen Behälter bestimmen zu können. Unter Berücksichtigung der Abschirmeigenschaften der wirtsgesteinsspezifisch unterschiedlichen Behältermaterialien kann im nächsten Schritt die Materialstärke des Behältersystems bestimmt werden, welche eine ausreichende Abschirmwirkung bietet. Ziel dieser Auslegung ist es, einen sicheren Umgang mit den Behältern im Rahmen von Handhabungsvorgängen bei der Einlagerung und der potentiellen Rückholung zu ermöglichen.

Bereits erste überschlägige Betrachtungen des möglichen Inventars zeigen, dass die drei Kriterien Ausgangsanreicherung, Abbrand und Zwischenlagerdauer einen erheblichen Einfluss auf das mögliche Behälterinventar und in der Folge auf die erforderliche Anzahl an Lagerbehältern und die benötigte Fläche in einem Tiefenlager haben. Bei der Schaffung der generischen Behälterkonzepte als Grundlage des Optionenvergleiches wurde das Ziel verfolgt, möglichst keine Option durch zu hohe Sicherheitszuschläge zu benachteiligen. Somit müssen an dieser Stelle zwar weitestgehend konservative, aber nicht immer vollumfänglich abdeckende Ansätze für diese drei Kriterien zur Anwendung gebracht werden. Es ist erforderlich, einen möglichst realistischen Ansatz zu wählen, welcher den Großteil des deutschen Abfallmengengerüstes beschreibt. In einem ersten Schritt ist somit die Entscheidung zu treffen, welche radioaktiven Abfälle als Inventar für die Behälter betrachtet werden müssen.

In den nachfolgenden Tabellen sind, als Anhaltspunkt für die im Rahmen von ENTRIA zu berücksichtigenden Abfälle, die Mengen der unterschiedlichen in Deutschland einzulagernden radioaktiven Reststoffe zusammengefasst [1], [15].

Tabelle 1:	Mengengerüst Wärmeentwickelnder
	Abfälle zur Tiefenlagerung [1]

Brennelemente aus Leistungsreaktoren								
Art		Anzahl BE	Masse (tS _M)					
Durisland	UO ₂	12.450	6.415					
Druckwasserreaktor	MOX	1.530	765					
Ciadowooorrooktor	UO ₂	14.350	2.465					
Siedewasserreaktor	MOX	1.250	220					
WWER-Druckwasserre- aktor	UO ₂	5.050	580					
Gesamt		34.630	10.445					
Wiederaufbereitungsabfälle								
Art		Anzahl						
	AREVA NC (F)	3.025						
CSD-V	Sellafield Ltd. (UK)	570						
HAW NOKINEH	VEK (D)	140						
CSD-B	AREVA NC (F)	308						
CSD-C	AREVA NC (F)	4.104	-					
Gesamt	Kokillen	8.147						
Brennst	offe aus Forschungs	reaktoren						
Art		Anzahl						
AVR	BE-Kugeln	288.161						
THTR	BE-Kugeln	617.606	-					
KNK II	Brennstäbe	2.484						
Otto-Hahn	Brennstäbe	52						
FRM II	MTR-Brennelemente	120-150						
BER II	MTR-Brennelemente	120						

Den mengenmäßig größten Teil der Abfälle stellen, wie bereits erwähnt, die abgebrannten Brennelemente aus der kommerziellen Nutzung in Leistungsreaktoren dar. Somit muss sich das Referenzinventar der Behälter an diesen Abfällen orientieren. Doch auch diese Brennelemente stellen keine homogene Gruppe dar, sondern unterscheiden sich, in Abhängigkeit vom Typ des Kernkraftwerkes in dem sie zum Einsatz kamen, innerhalb gewisser Grenzen in Bauform und Abmessungen. Auch die Aktivität und Wärmeleistung der Brennelemente variiert und ist von den Faktoren Brennelementzusammensetzung, Abbrand und Lagerdauer abhängig. Bei der Zusammensetzung der Brennelemente ist zwi-Uran-Dioxid Brennelementen schen sowie Mischoxid-Brennelementen zu unterscheiden. Letztere stellen einen etwa zehnprozentigen Anteil an der Gesamtmenge der abgebrannten Brennelemente dar. Die Mischoxid-Brennelemente besitzen, bei identischem Abbrand, eine erheblich höhere Wärmeleistung und Aktivität als vergleichbare Urandioxid-Brennelemente.

Ein weiterer großer Teil der einzulagernden Reststoffe besteht aus Abfällen aus der Wiederaufarbeitung, die sich hauptsächlich aus verglasten Spaltproduktlösungen sowie kompaktierten Brennelementstrukturteilen zusammensetzen. Diese Abfälle sind verglast und bereits in Edelstahlkokillen eingeschlossen und stellen bezüglich des Abfallvolumens aber auch bezüglich der Gesamtaktivität die zweite große Abfallgruppe dar. Durch die Konditionierung in Edelstahlkokillen liegen diese Abfälle in einer sehr homogenen Form bezüglich ihrer Abmessungen vor. Sie unterscheiden sich in Bezug auf die Zusammensetzung und Aktivität der in den Kokillen eingeschlossenen Reststoffe allerdings erheblich. Die erste Gruppe der Wiederaufarbeitungsabfälle stellen die sogenannten HAW-Kokillen (CSD-V) mit verglasten hochradioaktiven

Spaltprodukten dar, die eine sehr hohe Aktivität und Wärmeleistung besitzen. Bei der zweiten Gruppe handelt es sich zum einen um verglaste mittelradioaktive Dekont- und Spülwässer (CSD-B) und zum anderen um kompaktierte, mittelradioaktive Brennelementhülsen, Strukturteile und sonstige Technologieabfälle (CSD-C). Diese Abfälle besitzen eine niedrigere Aktivität und auch nur eine vergleichsweise geringe Wärmeentwicklung. Für die thermische Auslegung des Tiefenlagers sind somit von den Wiederaufbereitungsabfällen insbesondere die hochradioaktiven, verglasten Spaltprodukte (CSD-V) relevant. Diese beinhalten, im Vergleich zu den Brennelementen, einen großen Teil Radionuklide mit kurzen bis mittleren Halbwertzeiten, da der Großteil der langlebigen Radionuklide bei der Wiederaufarbeitung abgetrennt worden ist. Somit klingen die Aktivität und Wärmeentwicklung dieser Abfälle, verglichen mit den Brennelementen, relativ schnell ab.

Die dritte, allerdings hauptsächlich vom Volumen her relevante, Gruppe wärmeentwickelnder Abfälle besteht aus den Brennstoffen der deutschen Forschungsreaktoren. Diese sind, wie bereits aus der vorherigen Tabelle entnommen werden kann, in ihrer Zusammenfassung und Gestalt sehr heterogen. Es handelt sich bei diesen Brennstoffen beispielsweise um die mit Urandioxid angereicherten Graphitkugeln aus den deutschen Kugelhaufenreaktoren oder um die Brennstäbe nuklear angetriebenen deutschen Handelsschiffs des Otto-Hahn. Bezüglich der Auslegung des Tiefenlagers besitzt diese Gruppe von Brennstoffen allerdings nur eine geringe Relevanz. Durch den Einsatz in Forschungsreaktoren besitzen diese Brennstoffe einen geringen Abbrand. Zusätzlich erfolgte die Nutzung dieser Brennstoffe überwiegend in den 60er bis 90er Jahren des letzten Jahrhunderts, so dass diese bereits bis heute zwischengelagert wurden und ihre Aktivität und Wärmeentwicklung bereits stark abgeklungen ist. Aufgrund der geringen Wärmeentwicklung resultieren aus diesen

Abfällen nur geringe Anforderungen an die thermische Auslegung des Tiefenlagers. Auf Grund des vergleichsweise großen Volumens dieser Reststoffe sind sie trotz ihrer Heterogenität zumindest bezüglich ihres Platzbedarfes auch im Rahmen generischer Lagerplanungen zu berücksichtigen. Eine Abschätzung des Volumen- und somit Behälterbedarfs dieser Reststoffe wurde bereits im Rahmen des Arbeitspakets 6 der vorläufigen Sicherheitsanalyse für die alternative Einlagerung der Reststoffe in Bohrlöchern in sogenannten Brennstabkokillen (BSK) vorgenommen. In der nachfolgenden Tabelle sind die in diesem Bericht veröffentlichten Angaben zu den erforderlichen Tiefenlagergebinden für die Einlagerungsversion B1 (Streckenlagerung) sowie C1 (Bohrlochlagerung) gegenübergestellt. [15]

Ableitung des Behälterbedarfs der Forschungsreaktor Brennelemente						
Abfallart	Version B1 Streckenlagerung	Version C1 Bohrlochlagerung				
	Behälter	Anzahl	Behälter	Anzahl		
Brennelemente	Pollux 10	2.120	BSK-R	7.067		
Kokillen	Pollux 9 (CSD-V)	415	BSK-R	1.245		
	Pollux 9 (CSD-B)	35	BSK-R	105		
	Pollux 9 (CSD-C)	456	BSK-R	1.368		
	Pollux 9 (gesamt)	906	BSK-R	2.718		
FR-Elemente	CASTOR [®] (KNK, AVR)	511	BSK-R	ber. 1.391		
Gesamt:		4.443		11.176		

Tabelle 2: Vergleich der Einlagerungsvarianten zurAbleitung der benötigten Behälteranzahlder FR-Brennelemente

Die Auswertung der Daten dieses Berichtes ergibt, dass bei diesem Konzept in einer BSK entweder die Brennstäbe von drei zerlegten Druckwasserreaktor-Brennelementen oder alternativ, bei leicht modifizierten Behältermaßen, drei CSD-Kokillen eingelagert werden können. Für die Forschungsreaktor-Brennelemente werden insgesamt etwa 1.400 BSK vorgesehen. Hieraus lässt sich ableiten, dass das Volumen der Forschungsreaktor-Brennelemente in etwa dem von 4.200 CSD-Kokillen oder 4.200 DWR-Brennelementen entspricht. Dieses Abfallvolumen wurde demnach auch im Rahmen der Ausarbeitung der generischen Behälterdossiers für diese Abfallgruppe angesetzt.

Die interdisziplinäre Diskussion im ENTRIA-Verbund ergab, dass für die Entwicklung der Kriterien zum Optionenvergleich die Betrachtung der Abfälle aus der kommerziellen Nutzung der Kernenergie bezüglich der Kriterien Radiologie und Wärmeentwicklung als abdeckend angesehen werden kann. Die sonstigen, Wärme entwickelnden Abfälle sind nur bezüglich ihres Volumens und somit Flächenbedarfes zu berücksichtigen. Sie besitzen tendenziell einen positiven Einfluss auf die Wärmebelastung des Tiefenlagers. Um die Aktivität und Wärmeentwicklung der weiter zu betrachtenden radioaktiven Abfälle aus der kommerziellen Nutzung möglichst exakt zu beschreiben, sind möglichst realitätsnahe Annahmen zum Abbrand und zur Zwischenlagerdauer der betrachteten Abfälle zu treffen. Beim Abbrand der Brennelemente ist die Tendenz zu erkennen, dass dieser seit den 80er Jahren kontinuierlich von etwa 40 GWd / tSM gesteigert wurde. Seit den späten 90er Jahren des letzten Jahrhunderts wurden Abbrände zwischen 50 GWd / tSM für die Siedewasserreaktoren bis etwa 55 GWd / tSM für die Druckwasserreaktoren erreicht.

Bei der thermischen Auslegung des Tiefenlagers dürfen bestimmte Grenztemperaturen nicht überschritten werden. Es ist sinnvoll, zwischen der langfristigen Wärmeeinleitung in das gesamte Tiefenlager und der Temperaturentwicklung im Nahfeld der Behälter zu unterscheiden. Die Fähigkeit des geologischen Systems des Tiefenlagers, Wärme von den Behältern aufzunehmen und abzuführen ist hauptsächlich von der Wärmekapazität sowie der Wärmeleitfähigkeit des Wirtsgesteins und der Materialien der geotechnischen Barriere abhängig. Bei der großflächigen Erwärmung des Tiefenlagerbereiches handelt es sich um einen vergleichsweise langsamen Prozess. Die Ausbreitung des Temperaturfeldes erfolgt weitestgehend durch Wärmeleitung, welche durch sich ausbildende Temperaturgradienten getrieben wird. Alle Wirtsgesteine besitzen eine, in Relation zu der von den Behältern eingebrachten Leistung, hohe Wärmespeicherfähigkeit. Somit bilden sich diese Temperaturgradienten nur sehr langsam aus und es kommt in den ersten Jahren nach der Einlagerung, während der die Wärmeleistung des Behälterinventares noch sehr hoch ist, noch zu keiner nennenswerten Wechselwirkung zwischen den Temperaturfeldern zweier benachbarter Behälter. Hieraus ergeben sich für die thermische Auslegung zwei Effekte.

Der erste Effekt ist, dass die in einiger Entfernung von den Lagerbehältern langfristig erzielten Maximaltemperaturen durch die Energiemenge, welche pro Volumenelement des Lagers eingebracht wird, bestimmt werden. Somit stellen bei der wirtsgesteinsspezifischen Lagerauslegung, die Wärmeleistung der einzelnen Behälter sowie der Abstand der Behälter und der Einlagerungsstrecken die Stellgrößen für diesen Teil der thermischen Auslegung des Tiefenlagers dar. Für die sich aus geologischen Gründen (z. B. Begrenzung der Hebung des Gebirges in Folge von Erwärmung) oder aus Gründen des Arbeitsschutzes (z. B. zulässige Temperaturen in den Monitoringstrecken) ergebenden Temperaturgrenzen existieren somit mehrere Stellgrößen.

Der zweite Effekt ist von besonderer Relevanz für die thermische Auslegung der Behälter. Die Temperaturentwicklung im Nahfeld, also in der den Behälter direkt umgebenden geotechnischen Barriere, resultiert in den ersten Jahren nach der Einlagerung aus der Überlagerung der Wärmespeicherung und Wärmeableitung durch das Wirtsgestein mit der abklingenden Wärmefreisetzung der Behälter. Im Grenzbereich zwischen Behälter und geotechnischer Barriere steigt die Temperatur direkt nach der Einlagerung stark an, bis sich ein Gleichgewicht zwischen der zugeführten Zerfallswärme, der im Behälterumfeld gespeicherten Wärme und den in das umgebende Gestein abfließenden Wärmeströmen und somit ein quasi stationärer Zustand einstellt. Durch die abnehmende Aktivität der kurzlebigen Radionuklide des Inventars kommt es in der Regel nach einigen Jahrzehnten zu einem leichten Temperaturabfall an der Behälteroberfläche. Im Anschluss klingt die Temperatur nur noch sehr langsam ab, da die Wärmeleistung der Behälter mit zunehmender Zeit weitestgehend von der Aktivität der langlebigeren Radionuklide bestimmt wird und somit nur noch sehr langsam abklingt [15], [18]. In der nachfolgenden Abbildung ist die zeitliche Entwicklung der Wärmeleistung für verschiedene radioaktive Abfälle exemplarisch dargestellt.

Abbildung 1: Entwicklung der thermischen Leistung unterschiedlicher Abfallstoffe [15, S. 25]

Entscheidend für die thermische Auslegung der Behälter ist der höchste Wert, den die Temperaturkurve im Versatzmaterial erreicht. Dieser wird weitestgehend von der Wärmeleistung der Behälter bei ihrer Einlagerung sowie der Wärmekapazität von Versatzmaterial und der umgebenden geologischen Barriere bestimmt [17]. Der Behälterabstand spielt hierbei, zumindest solange dieser nur im Rahmen geologisch sowie einlagerungstechnisch sinnvoller Parameter variiert wird, nur eine untergeordnete Rolle.

Die Temperaturentwicklung am Übergang zwischen Behälter und geotechnischer Barriere kann also durch Parameter der Lagerplanung, wie beispielsweise Streckenabstände, nur zu einem kleinen Teil beeinflusst werden. Im Umkehrschluss erfordert eine mögliche Streuung der Wärmeleistung der Behälter nach oben bei der Auslegung der Tiefenlagermodelle sehr große Sicherheitszuschläge. Aus diesem Grund wurde für den Abbrand der Brennelemente ein konservativer Ansatz gewählt und der in den letzten Jahren in der kommerziellen Nutzung übliche Abbrand von 55 GWd/tSM als Randbedingung bestimmt. In der Folge kommt es zu einer leichten Überschätzung der Aktivität und Wärmeleistung des Behälterinventares und die Einhaltung der zulässigen Temperaturen im Versatzmaterial kann ohne weitere Sicherheitszuschläge gewährleistet werden.

Es existieren jedoch auch stark von dieser Annahme abweichende Brennstoffe. Das untere Ende der massenbezogenen Wärmeentwicklung stellen die inzwischen stark abgeklungenen Brennelementen aus den Forschungsreaktoren dar. Das obere Ende der Wärmeentwicklung stellt die Gruppe der Mischoxid-Brennelemente mit hohem Abbrand dar. Diese beiden Gruppen können in frühen, generischen Planungsphasen nicht vollumfänglich berücksichtigt werden. Durch die vorgesehene Modularität des Behälterkonzeptes ist es jedoch möglich, diese beiden Gruppen im Rahmen einer späteren detaillierten Lagerplanung, beispielsweise durch ein Verteilen der unterschiedlichen Inventararten auf die Behälter, zu berücksichtigen.

Der zweite Faktor, der neben dem Abbrand der Brennstoffe einen erheblichen Einfluss auf die Wärmeleistung der Gebinde hat, ist die Zwischenlagerdauer der radioaktiven Reststoffe. Zur Abschätzung der Zwischenlagerdauer ist es erforderlich, Aussagen zum Ende des Einsatzzeitraums sowie zum späteren Einlagerungszeitraum der radioaktiven Stoffe zu treffen. Der Zeitraum der Nutzung on Kernbrennstoffen zur Stromerzeugung ist dabei durch den deutschen Atomausstieg bis spätestens auf das Jahr 2022 begrenzt [4]. Hierdurch ist der späteste Einsatzzeitpunkt von für die Endlagerung relevanter Mengen Brennstoffs definiert. Bezüglich der bereits im vorigen Jahrhundert angefallenen Brennstoffe ist zu beachten, dass bis zum Ende der 1990er Jahre fast alle in Westdeutschland eingesetzten Urandioxid-Brennelemente den Prozess der Wiederaufarbeitung durchlaufen haben. Nach einer Änderung des deutschen Atomgesetzes sind Transporte abgebrannter Brennelemente aus deutschen Kernkraftwerken zu Wiederaufarbeitungsanlagen seit dem 1. Juli 2005 nicht mehr zulässig. Seit diesem Zeitpunkt ist als Entsorgungsweg für abgebrannte Brennelemente in Deutschland ausschließlich die direkte Endlagerung ohne Wiederaufarbeitung möglich. Hieraus resultiert, nach [18], dass die meisten kommerziell genutzten Brennelemente aus dem Zeitraum nach dem Jahr 2000 stammen. Nur weniger als zehn Prozent der Gesamtmenge der Brennelemente haben ein höheres Alter, wobei die 5.050 WWER-Brennelemente aus den ostdeutschen Reaktoren sowjetischer Bauart die größte Gruppe dieser bereits länger zwischengelagerten Brennelemente bildet. Der Einsatzzeitraum des Großteils der einzulagernden Brennstoffe umfasst somit einen Zeitrahmen von etwa 25 - 30 Jahren und kann vergleichsweise genau beschrieben werden. Er ist zur Veranschaulichung für die kommerziell genutzten Brennstoffe in der nachfolgenden Tabelle zusammengefasst dargestellt.

	Befüllung bzw.	2020	2015	2010	2005	2000	1995	1990	1985
Abfallart	Nutzungs- ende zwischen	2022	2019	2014	2009	2004	1999	1994	1989
Kokillen	CSD-V	-	-	-	-	500	360	1.310	1.565
	CSD-B	-	-	-	-	19	14	50	58
	CSD-C	-	-	-	-	550	395	1.445	1.714
Druckwasserreaktor Brennelemente	UO2	1.220	1.580	2.150	3.200	2.550	1.600	150	-
	мох	60	110	160	700	450	50	-	-
Siedewasserreaktor Brennelemente	UO2	780	1.730	2.190	5.450	3.550	450	200	-
	мох	110	-	340	350	450	-	-	-
WWER- Brennelemente	UO2	-	-	-	-	-	-	5.050	-

Tabelle 3: Anzahl und Alter der einzulagernden Rest-
stoffe nach [18]

Das Ende der Nutzung und somit der Beginn der Abklinglagerung ist somit für den Großteil der einzulagernden Reststoffe hinreichend genau bekannt. Die größere Unwägbarkeit bezüglich der Zwischenlagerdauer der radioaktiven Abfälle stellen der Zeitpunkt des Einlagerungsbetriebes sowie seine Dauer dar. Im Rahmen des Nationalen Entsorgungsprogramms wurde als frühester Einlagerungsbeginn das Jahr 2050 genannt [19]. Dieser Zeitplan wurde allerdings von der im Jahr 2013 einberufenen "Kommission Lagerung hoch radioaktiver Abfallstoffe" bereits angezweifelt. Sie stellt in ihrem Abschlussbericht [6, S. 244ff] dar, dass auch wenn ein möglichst frühzeitiger Einlagerungsbeginn anzustreben ist, der Starttermin 2050 nicht zu halten sein wird. Im Rahmen der interdisziplinären Diskussion innerhalb von ENTRIA wurde daher für das generische Behälterkonzept die Annahme getroffen, dass ein Beginn der Einlagerung im Jahr 2075 als realitätsnahes Szenario angesehen werden kann. Für die Dauer des Einlagerungsbetriebes wird in den meisten Quellen (VSG,

NaPro, Kommission) ein Zeitraum von etwa 30 Jahren angegeben. Dieser Zeitrahmen erscheint auch den Autoren auf Grund der Anzahl der einzulagernden Abfallgebinde als realistisch und findet somit auch im Rahmen des ENCON-Behälterkonzeptes Anwendung. Es ergibt sich unter der Prämisse, dass die ältesten Abfälle zuerst eingelagert werden eine mittlere Zwischenlagerdauer von etwa 75 Jahren für den Zeitpunkt der Einlagerung. Zusätzlich wird kurz auf den Einfluss der Zwischenlagerdauer von nur 50 Jahren eingegangen, welche sich aus dem Einlagerungsbeginn im Jahr 2050 ergeben würde.

Die dem ENCON-Behälterkonzept zugrundeliegenden Annahmen bezüglich des Inventars können wie folgt zusammengefasst werden:

- Die ENCON-Behälter werden als Lagerbehälter für Brennstoffe aus den deutschen Leichtwasserreaktoren entwickelt
- Als Referenzinventar für die Auslegung dienen Urandioxid-Brennelemente aus den westdeutschen Leichtwasserreaktoren
- Für die Brennelemente wird von einem mittleren Abbrand von 55 GWd/tSM und einer Zwischenlagerdauer von 75 Jahren ausgegangen

Randbedingungen des Behälterkonzepts aus Geologie und Geotechnik

Die Tiefenlagerbehälter stehen nach ihrer Einlagerung in einer direkten Wechselwirkung mit der umgebenden Geologie und Geotechnik. Die thermische Belastbarkeit des Wirtsgesteins und insbesondere die der geotechnischen Barriere limitieren die Wärmeleistung des Inventars. Ausgehend von generischen wirtsgesteinsspezifischen Lagermodellen wurde

die Temperaturentwicklung im Tiefenlager simuliert. Die Wärmeleistung der Behälter ist bei den Wirtsgesteinen Ton, Tonstein und kristallinem Gestein durch die Temperaturentwicklung in der geotechnischen Barriere limitiert [17]. Für die Grenztemperatur des, in diesen Wirtsgesteinen als Verfüllmaterial zum Einsatz kommenden, Bentonit existieren in der Literatur unterschiedliche Angaben [20], [21], [22]. Im Rahmen der Auslegung des generischen Behälterkonzeptes wurde als obere Grenze für Bentonit eine Temperatur von 100 °C an der Grenzschicht der geotechnischen Barriere zum Behälter definiert. Die maximale Wärmeleistung für die Tiefenlagerbehälter resultiert aus der unterschiedlichen Wärmeleitfähigkeit und -kapazität der Wirtsgesteine. Somit ergibt sich, nach den Berechnungen der ENTRIA-Kollegen aus dem Fachgebiet der Geowissenschaften, für Tiefenlagerbehälter im Ton/Tonstein eine zulässige Wärmeleistung von etwa 1.000 W und für ein Tiefenlager im Kristallin von etwa 1.800 W. Steinsalz besitzt im Gegensatz zu den anderen Wirtsgesteinen eine höhere Wärmeleitfähigkeit und Temperaturfestigkeit. Während bei den anderen Wirtsgesteinen die Temperaturverträglichkeit des Verfüllmaterials ausschlaggebend für die Limitierung der Wärmeleistung des Behälterinventars ist, kann Steinsalz höhere Temperaturen von über 200 °C ohne nachweisbare Schädigung ertragen [15]. Diese Eigenschaft des Salzes führt in Kombination mit seiner guten Wärmeleitfähigkeit bei Tiefenlagerkonzepten ohne die Option der Rückholung zu sehr hohen möglichen Behälterbeladungen. Im Rahmen der Berücksichtigung einer Rückholung bei der Lagerplanung resultieren hieraus zwei Herausforderungen. Zum einen müssen die Einlagerungsbereiche vor der Rückholung soweit herunter gekühlt werden, dass der Aufenthalt von Menschen auf der Einlagerungssohle ermöglicht wird. Zum anderen erhöht sich die Kriechneigung von Salz mit zunehmender Temperatur. Dieser Aspekt ist zwar vorteilhaft für den schnellen Einschluss der eingelagerten Reststoffe, führt wiederum zu großen Herausforderungen bei der Wiederauffahrung der Einlagerungsstrecken. Somit ist es vor dem Hintergrund der Forderung nach einer Rückholbarkeit der Behälter auch im Wirtsgestein Salz erforderlich, die mittelfristig am Behälter erzielte Temperatur auf etwa 100 °C zu limitieren. Durch die höhere Wärmeleitfähigkeit des Salzes ergibt sich für dieses Wirtsgestein eine maximale Wärmeleistung von 3.000 W für die Behälter.

Die maximale Wärmeleistung der Tiefenlagerbehälter beträgt demnach:

3.000 W für den ENCON-S zur Tiefenlagerung im Salzgestein

1.800 W für den ENCON-K zur Tiefenlagerung im kristallinen Gestein

1.000 W für den ENCON-T zur Tiefenlagerung im Ton und Tongestein

Anhand dieser Wärmeleistung kann, unter Berücksichtigung der Eigenschaften der Abfälle, das Inventar der ENCON-Tiefenlagerbehälter abgeleitet werden. Somit ergeben sich für die Behälter folgende Inventare:

Brennstäbe von bis zu 10 DWR-BE (UO2) für den ENCON-S

Brennstäbe von bis zu 5 DWR-BE (UO2) für den ENCON-K

Brennstäbe von bis zu 3 DWR-BE (UO2) für den ENCON-T

Die Menge an Brennelementen pro Behälter erscheint, verglichen mit anderen Betrachtungen zur Wärmefreisetzung, groß. Die DBE Tec schlägt in ihrem Gutachten zum Flächenbedarf eines Endlagers beispielsweise für die Tiefenlagerung im Salz eine Beladung der Behälter mit den Brennstäben von fünf DWR-Brennelementen vor [18]. Diese Veröffentlichung legt der Lagerauslegung allerdings andere Randbedingungen zu Grunde. Die größte Abweichung besteht dabei in der Zwischenlagerdauer der Brennelemente, welche bei dieser Studie nur 50 Jahre beträgt. Hierdurch besitzen die einzelnen Brennelemente eine wesentlich höhere Wärmeleistung. Die Wärmeleistung pro Behälter entspricht somit annähernd den im Rahmen der ENCON-Entwicklung errechneten Werten. Hieraus wird auch ersichtlich, dass insbesondere die realistische Abschätzung des Einlagerungsbeginns einen erheblichen Einfluss auf die Lagerplanung und Behälterentwicklung besitzt. Wenn mit der Einlagerung bereits im Jahr 2050 begonnen wird, führt die Verkürzung der durchschnittlichen Zwischenlagerdauer (z.B. im Falle der CSD-V) auf 50 Jahre zu einer im Mittel knapp doppelt so hohen Aktivität und Wärmeentwicklung des einzulagernden Inventars. Somit halbiert sich in diesem alternativen Szenarium die Behälterbeladung. Hieraus ergibt sich, dass sich die Anzahl der erforderlichen Tiefenlagerbehälter für alle Wirtsgesteine annähernd verdoppeln würde. Durch die vergleichbare Wärmeleistung bei Einlagerungsbeginn können die Behälterabstände im Tiefenlager nicht in gleichem Maße reduziert werden. Bei einem Einlagerungsbeginn im Jahr 2050 sind somit nicht nur fast doppelt so viele Behälter erforderlich, sondern es ergibt sich auch ein annähernd doppelt so großer Flächenbedarf für das Tiefenlager.

Beim ENCON-TLB Zwischenlagerbehälter wird die Wärmeleistung nicht durch die Geologie limitiert, sondern wird durch die Wärmeabgabe der Behälter an die Umgebung in Folge von Strahlung und Konvektion begrenzt. Durch die Art und Anzahl z.B. der Kühlrippen des Behälterkörpers kann die zulässige im Behälter erzeugte Wärmeleistung über einen weiten Bereich von etwa 20 kW bis maximal etwa 50 kW variiert werden. Hieraus ergeben sich, bei der gegebenen Zwischenlagerdauer von 75 Jahren, Beladungen von über 100 DWR-BE (UO2). Realistisch betrachtet ist beim ENCON-TLB allerdings davon auszugehen, dass die Behälter gegebenenfalls wesentlich früher beladen werden. Als realistische Annahme ist von einer Zwischenlagerzeit des Inventares zwischen 10 und 40 Jahren auszugehen, wodurch sich auf Grund der höheren Wärmefreisetzung des Inventars niedrigere Beladungen ergeben. Letztendlich führt allerdings ein anderes Kriterium zu der Limitierung des Inventars des ENCON-TLB. In Deutschland sind an allen Standorten kerntechnischer Anlagen bereits Handhabungssysteme, wie beispielsweise Krananlagen, für das CASTOR® Behältersystem vorhanden. Auch die bereits vorhandene Transport-Infrastruktur, wie beispielsweise Verladeanlagen, wurde für die CASTOR[®]-Behälter entwickelt. Diese Systeme sind demnach auf das maximale Behältergewicht des CASTOR®-Behälters abgestimmt, so dass diese Einrichtungen mit erheblichem Aufwand ertüchtigt werden müssten, falls das Gewicht des ENCON-TLB über dem des CASTOR[®] Behälters liegen würde. Aus diesem Grund wurde die Beladung des ENCON-TLB auf die Werte der aktuell verfügbaren CASTOR[®]-Behälter limitiert. Für den ENCON-TLB ergibt sich demnach eine maximale Beladung mit 19 Brennelementen eines Druckwasser-Reaktors oder 52 Brennelementen aus Siedewasser-Reaktoren.

Hierdurch ist sichergestellt, dass der ENCON-TLB so gestaltet werden kann, dass sein Gewicht in jedem Fall unter dem der heutigen CASTOR[®]-Behälter liegt und eine sichere Handhabung der Behälter mit der an den Standorten verfügbaren Technik möglich ist. Des Weiteren ergibt sich hierdurch die Möglichkeit, bei den ENCON-TLB Behältern, die zur Aufnahme von bereits langfristig (<40 Jahre) zwischengelagertem Inventar vorgesehen sind, auf Kühlrippen am Behälterkörper zu verzichten. Der resultierende, glattflächige Behälterkörper stellt in Bezug auf die Kontrollierbarkeit und Wartung des Behälters das Optimum dar. Die Aspekte der Wartung im Rahmen einer verlängerten Zwischenlagerung wurden unter anderem im Rahmen des ENTRIA-Buchprojektes zur Langzeitzwischenlagerung betrachtet [23].

Ableitung des radiologischen Gefährdungspotentials der Behälter

Ausgehend von Inventar kann das radiologische Gefährdungspotential der Behälter und somit auch Art und Menge des bei den Behältern erforderlichen Abschirmmaterials abgeleitet werden. Durch die Vielzahl der unterschiedlichen einzulagernden Brennstoffe können selbst bei vergleichbarer Wärmeleistung des Inventars verschiedene Aktivitäten und Strahlungsspektren resultieren. Um diese Bandbreite sicher abdecken zu können, ist es im ersten Schritt erforderlich, eine obere Grenze für die Gesamtaktivität der Behälter festzulegen, anhand derer die erforderlichen Materialstärken der selbstabschirmenden Behälter abgeschätzt werden können. Ausgehend von einem ersten, vereinfachten Behälterlayout muss dann in einem weiteren Iterationsschritt für verschiedene repräsentative Inventare die Eignung der Behälter zur Abschirmung unterschiedlicher Gamma- und Neutronenspektren mittels Simulation überprüft und gegebenenfalls durch Veränderungen des Behälterdesigns eine Optimierung der Abschirmung erfolgen. Die Zielwerte für die resultierende Oberflächendosis orientieren sich grundsätzlich an den in Deutschland derzeit im Einsatz befindlichen Transport- und Lagerbehältern der CASTOR[®] Baureihe. Für diese liegt, gemäß den Einlagerungsbedingungen, der Grenzwert für die Umgebungsäguivalentdosisleistung an der Behälteroberfläche bei 250 μ Sv/h [24]. Da davon auszugehen ist, dass die jährliche Aufenthaltsdauer der Mitarbeiter im Strahlungsfeld der Behälter beim Einlagerungsbetrieb höher liegen wird als beim heutigen Betrieb der Zwischenlager, wird für die generischen ENCON-Tiefenlagerbehälter eine maximale Umgebungsäquivalentdosisleistung angestrebt, die mindestens eine Größenordnung unterhalb des Wertes der heutigen Transport- und Lagerbehälter liegt [25].

Konstruktive Gestaltung der Behälter

Bei den generischen Lagerbehälterkonzepten wird, analog zu den meisten internationalen Tiefenlagerbehälterkonzepten, der Ansatz verfolgt, dass der Behälter aus mehreren ineinander geschachtelten Strukturen besteht, die in ihrem Zusammenspiel zur Erzielung verschiedener Funktionen des Behälters beitragen. Der Behälter besteht, folgend den Ansätzen des "defence in depth", aus mehreren ineinandergreifenden Barrieren, die jeweils in Kombination oder für sich alleinstehend einen Beitrag zur Erzielung der bei der Auslegung vorgesehenen Eigenschaften des Behälters leisten, auch wenn keine vollständige Redundanz angestrebt wird. Der konstruktive Aufbau der Behälter erfolgt hierbei von innen nach außen. Um den Behälterschacht herum werden die einzelnen Schichten und Funktionselemente des Behälters angeordnet. Die einzelnen Komponenten des Behälters, ihre Gestaltungsmerkmale und ihr Beitrag zur Funktion des Gesamtsystems werden nachfolgend beschrieben.

Behälterschacht / Tragbehälter der Tiefenlagerbehälter

Das zuvor bestimmte Inventar stellt die Haupteingangsgröße der konstruktiven Gestaltung des gesamten generischen Behälters dar. Ausgehend vom Inventar können die erforderlichen Abmessungen sowie das Volumen des inneren Tragkorbs, der zur Aufnahme der radioaktiven Brennstoffe bestimmt ist, abgeleitet werden. Beim Entwurf der Strukturen zur Aufnahme der Reststoffe ergeben sich, insbesondere bei den ENCON-Behältern, die zur Aufnahme von abgebrannten Brennelementen bestimmt sind, mehrere Möglichkeiten wie diese radioaktiven Reststoffe im Behälterinneren angeordnet werden können. Zum einen ist es wie in der nachfolgenden Abbildung links dargestellt, möglich, die kompletten Brennelemente einzulagern. Diese Variante kommt derzeit auch bei den deutschen Zwischenlagerbehältern zum Einsatz. Zum anderen können die Brennelemente in einzelne Brennstäbe zerlegt werden, um Volumen zu sparen und somit leichtere Behälter zu ermöglichen.

Behälter zur Aufnahme kompletter BE

Behälter zur Aufnahme vereinzelter BS

Abbildung 2: Gestaltungsvarianten des ENCON-Tragbehälters

Für die auf der rechten Seite der Abbildung dargestellte Vereinzelung der Brennstäbe sprechen mehrere Gründe. Diese Variante ermöglicht einen aus materialwissenschaftlicher und konstruktiver Sicht vorteilhaften, zylindrischen Behälteraufbau mit einer homogenen Wandstärke. Des Weiteren entspricht der Aufbau des Behälters bei dieser Variante, bis auf die abweichenden Abmaße, den in der nachfolgenden Abbildung dargestellten ENCON-Varianten zur Einlagerung von Abfällen aus der Wiederaufarbeitung. Zusätzlich ist der Platzbedarf für das Inventar bei der Variante zur Aufnahme vereinzelter Brennstäbe am geringsten.

Abbildung 3: ENCON-Variante zur Aufnahme von Kokillen mit Abfällen aus der Wiederaufarbeitung

Weitere Aspekte, die für die Vereinzelung der Brennstäbe vor ihrer Einbringung in den Tragkorb des Behälters sprechen ergeben sich aus Betrachtungen zur Abschirmung und Kritikalitätssicherheit. Simulationen von unterschiedlichen Anordnungen, die vom Institut für Radioökologie und Strahlenschutz der Leibniz Universität Hannover durchgeführt wurden, zeigen, dass eine möglichst dichte Anordnung der einzelnen Brennstäbe nicht nur aus Gründen der Bauraumreduzierung anzustreben ist [25]. Die hohe Dichte der Brennstoffe führt ebenfalls zu einer Selbstabschirmung der ionisierenden Strahlung durch das Inventar. Zusätzlich erzielen Behälterbeladungen, die eine hohe Packungsdichte aufweisen und somit nur kleine Hohlräume besitzen, in die ein Neutronenmoderator wie beispielsweise Wasser eindringen kann, große Vorteile bezüglich der Gewährleistung der Unterkritikalität des Inventars. Aus diesen Gründen wurde die, in der Abbildung 2 rechts dargestellte, Variante der Behälterbeladung für das generische Behälterkonzept gewählt. Ausgegangen wird dabei von unbeschädigten Brennelementen. Auf die Herausforderungen¹, die sich bei der Vereinzelung der Brennelemente überhaupt und aus verformten, verzogenen oder mechanisch beschädigten Brennstäben ergeben können, wird im Rahmen der Betrachtungen nicht vertiefend eingegangen. Hierfür sind allerdings bereits heute technologische Lösungen verfügbar [26].

Bei der konstruktiven Gestaltung des Tragbehälters beziehungsweise des Tragkorbes und seiner inneren Tragstrukturen werden die folgenden Kriterien zugrunde gelegt. Der Tragkorb hat die Aufgabe, die radioaktiven Reststoffe in einer geometrisch bestimmten Anordnung zu fixieren, um die dauerhaft kritikalitätssichere Anordnung des spaltfähigen Materials zu gewährleisten. Zusätzlich muss der Tragkorb das in ihm eingelagerte Inventar sicher umschließen, um es vor mechanischen Beschädigungen zu schützen. Im Rahmen der po-Rückholung, beziehungsweise tentiellen Bergung der eingelagerten Reststoffe über einen Zeitrahmen von etwa 500 Jahren, muss es möglich sein, die radioaktiven Reststoffe aus dem Behälter zu entnehmen, um sie gegebenenfalls in anderen Behältern neu konditionieren zu können. Diese Arbeiten werden in einem Kontrollbereich, einer sogenannten "Heißen Zelle", durchgeführt. Dennoch ist eine Freisetzung von Radionukliden bei diesen Arbeiten soweit möglich zu vermeiden.

Die mechanische Integrität der Hüllrohre der Brennstäbe kann bei der Einlagerung noch als weitestgehend gegeben betrachtet werden, wobei das Risiko einer Versprödung durch Materialveränderungen im Hüllrohr diskutiert wird. Nach mehreren Jahrzehnten bis Jahrhunderten der Lagerung ist allerdings von einer fortschreitenden Schädigung an den

¹ Die Handhabung beim Beladen wird aufwendiger durch die Trennung der Brennstoffe aus den Brennelementen mit den Konsequenzen aus dem Strahlenschutz und z.B. dem Fernhantierungsaufwand.

Brennstäben auszugehen, welche zu einem Verlust der Integrität der Hüllrohre führen kann. Aus diesem Grund wird beim ENCON-Behälterkonzept die Funktion des Integritätserhalts bei einer Entnahme der Brennstoffe aus dem umschließenden ENCON-Tiefenlagerbehälter von der Tragstruktur gewährleistet. Ein hermetischer Einschluss der Radionuklide im Inneren der Tragstruktur wird angestrebt, um die weiteren Arbeitsschritte der Konditionierung der Lagerbehälter zu erleichtern. Allerdings werden keine Forderungen an die dauerhafte Gasdichtheit der Innenstrukturen gestellt. Somit kommen zum Verschluss der Innenstruktur sowohl stoffschlüssige Schweißverbindungen als auch Schraubverbindungen mit Dichtung in Frage. Auf die Vorzüge und Nachteile dieser beiden Verschlussvarianten wird im Kapitel Behälterverschluss noch vertiefend eingegangen. Als weitere Forderung ergibt sich aus der anschließenden Konditionierung die Forderung, dass die Oberfläche des Tragkorbes nach Beladung und Verschluss einfach zu dekontaminieren sein muss, um die weiteren Konditionierungsschritte zu ermöglichen.

Für den Verschluss von Behältern existieren mit dem stoffschlüssigen, schweißtechnischen sowie dem kraftschlüssigen Verschluss mittels einer Verschraubung zwei grundlegend unterschiedliche Varianten. Beide können zum Verschluss des Tragkorbes zum Einsatz kommen und besitzen spezifische Vorzüge und Nachteile. Der Verschluss mit einer Schraubverbindung ist reversibel und somit wartungsfreundlich. Eine Schädigung des eingeschlossenen Inventars und des Materials des Tragkorbes durch eine thermische Einwirkung, die beim Verschluss mit thermischen Fügeverfahren möglich ist, kann bei einem geschraubten Verschluss ausgeschlossen werden. Allerdings weist der Deckelbereich bei dieser Variante systembedingt immer Kanten und Hinterschneidungen, beispielsweise im Bereich der Verschraubungen und des Deckelsitzes, auf. Hierdurch wird die Dekontamination der

Oberfläche erschwert. Zusätzlich ist der Nachweis der Gasdichtheit der Schraubverbindung für Zeiträume, die über einige Jahrzehnte hinausgehen, nur schwer zu erbringen. Weiterhin ergibt sich durch die verwendeten Werkstoffsysteme für Deckel und Schrauben, die normalerweise nicht genau artgleich sind, in Kontakt mit wässrigen Lösungen ein Gefährdungspotential durch Korrosion. Im Gegensatz hierzu ist beim stoffschlüssigen, artgleichen Verschluss mittels einer materialgleichen Schweißnaht die dauerhafte Gasdichtheit einfacher nachzuweisen. Diese Verschlussart ist als dauerhafter anzusehen und auch die Kontaminationsfreiheit lässt sich bei einem monolithisch verschweißten Behälter einfacher erzielen. Eine spätere Entnahme der Brennstäbe ist allerdings ohne die Zerstörung der Tragstruktur nicht möglich. Im Rahmen der Entwicklung des Schweißprozesses für den Behälter ist der Nachweis zu erbringen, dass keine Schäden an den Brennelementen im Inneren der Tragstruktur durch das Verschweißen auftreten. Zusätzlich muss ein Konzept entwickelt werden, das die Öffnung der Tragstruktur ermöglicht, ohne das Inventar zu schädigen. Der große Vorteil der Gestaltung der Tragstruktur als dichter Innenbehälter besteht darin, dass die Tragstruktur bei einer durch ein Versagen des Au-Benbehälters begründeten Rückholung in einen neuen Außenbehälter verbracht werden kann.

Für die ENCON-Behälter zur Tiefenlagerung wurde der Verschluss der Tragstruktur mittels eines Schweißdeckels gewählt. Die hierfür erforderlichen Techniken wurden bereits für den Verschluss von HAW-Kokillen entwickelt und werden bereits serienmäßig angewandt, so dass eine qualitätsgesicherte Durchführbarkeit des Deckelverschlusses gewährleistet werden kann. Zusätzlich ist bei der Planung des schweißechnischen Verschlusses zu beachten, dass bei der richtigen Auswahl der Werkstoffe für Behälterkorpus und Deckel keine schweißtechnischen Probleme zu erwarten sind und ein entsprechendes Know-how, zum Beispiel aus dem Druckbehälter- oder Kraftwerksbau, nutzbar gemacht werden kann. Durch den erforderlichen Abstand der Schweißnaht vom eigentlichen Behälterschacht der Tragstruktur unterscheidet sich diese Variante bezüglich des erforderlichen Bauraumes nicht wesentlich von einer geschraubten Variante. Diese Festlegung ist für die weiteren Arbeitsschritte der Auslegung des generischen Behälterkonzepts somit nicht schädlich, da sich hieraus auf konzeptueller Ebene keine Auswirkungen auf die äußeren umgebenden Bestandteile des Behälters ergeben. Vielmehr kann in späteren Schritten der Auslegung die für die einzelnen Brennstoffe passendste Variante gewählt werden.

Allerdings resultiert auch aus der Materialwahl des Tragkorbes ein Einfluss auf das Verschlussverfahren. Die Hauptanforderung an das Material des Tragkorbes ist die langfristige Stabilität über einen Zeitrahmen von mindestens 500 Jahren unter den gegebenen Umgebungsbedingungen. Auslegungsgemäß ist der Tragkorb innerhalb dieser Zeit dicht im Lagerbehälter eingeschlossen. Der verfügbare Sauerstoff wird gebunden und es stellen sich innerhalb einer kurzen Zeitspanne inerte Umgebungsbedingungen ein. Neben dem potentiellen Korrosionsangriff stellt die Strahlenexposition der Werkstoffe das größte Schädigungspotential für den Tragkorb dar. Die zu erwartende Schädigung des Materials durch die ionisierende Strahlung ist bei allen metallischen Werkstoffen gering [27, S. 529ff.]. Somit kommen aus Sicht der Lagerung prinzipiell alle korrosionsfesten metallischen Werkstoffe als Material für den Tragkorb in Betracht. Allerdings ergeben sich aus den Vorgängen zur Einlagerung, Konditionierung sowie der potentiellen Rückholung weitere Anforderungen an den Tragkorb.

Die Beladung der Tragkörbe erfolgt in der "Heißen Zelle" einer Konditionierungsanlage unter definierten Randbedingungen. Dennoch kommt es bei nicht korrosionsbeständigen Werkstoffen zu einer, zumindest oberflächlichen, Oxidschichtbildung. Die hierbei entstehende raue Oberfläche kann die Dekontamination erschweren. Im Rahmen einer Rückholung bzw. Bergung ist davon auszugehen, dass das in der Tragstruktur eingeschlossene Inventar wieder aus dem umgebenden, abschirmenden Behälter entnommen und erneut zwischengelagert werden muss, bevor es weitere Konditionierungsschritte durchlaufen kann. Da die Tragstruktur selbst keine nennenswerte Abschirmwirkung besitzt, ist davon auszugehen, dass diese Lagerung aus Gründen des Strahlenschutzes in einem Nasslager oder einer Trockenabschirmeinrichtung erfolgen wird. Somit sollten die Materialien des Trackorbes einen auten Korrosionswiderstand besitzen. Aus Gründen der einfachen Dekontamination sowie der erforderlichen Korrosionsbeständigkeit scheiden unlegierte und niedrig legierte Baustähle als Material für den Tragkorb aus. Als geeignet erscheinen aus materialwissenschaftlicher Sicht zum einen korrosionsbeständige Stähle, zum anderen die in Folge der Passivschichtbildung weitestgehend chemisch inerten Zirkonium-Legierungen. Beide Materialien vereinen eine hohe Festigkeit mit einer ausreichenden Strahlungsbeständigkeit und sind grundsätzlich schweißbar. Bei Zirkonium und seinen Legierungen muss das thermische Fügen, auf Grund der Sauerstoffaffinität dieses Materials, unter Schutzgas erfolgen. Dies stellt nur einen geringfügigen Nachteil dar, da der Verschluss des Tragkorbes in jedem Fall in einer definierten Umgebung erfolgen muss, um eine möglichst inerte Atmosphäre in den Behältern zu gewährleisten. Auch bei Tragstrukturen aus korrosionsbeständigen Stählen ist davon auszugehen, dass der Verschluss des Schweißdeckels unter Schutzgas erfolgt. Bei den ENCON-Behältern für die Einlagerung verglaster Abfälle übernimmt die aus nicht rostendem

Stahl gefertigte HAW-Kokille die Funktion des inneren Tragbehälters. Somit wurde die Festlegung getroffen, dass auch der Tragkorb bei den ENCON-Behältern zur direkten Endlagerung bestrahlter (abgebrannter oder verbrauchter) Brennstäbe aus dem gleichen, korrosionsbeständigen Stahl (1.4833) gefertigt wird [1]. Hierdurch ergibt sich eine reduzierte Variantenvielfalt.

Im Inneren des Tragkorbes können verschiedene, an die geometrischen Bedingungen der einzulagernden Brennstoffe angepasste, Stützstrukturen eingebracht werden. Für diese Stützstrukturen kommt, soweit möglich, derselbe Werkstoff wie für die Außenhülle des Tragkorbes zum Einsatz. Hierdurch wird die Bildung von Lokalelementen, die eine Korrosion begünstigen, vermieden. In Abhängigkeit von Aktivität und Wärmeentwicklung des Inventares können allerdings auch weitere Werkstoffe für Funktionsstrukturen zur Wärmeableitung (z. B. Kupferlegierungen) oder Neutronenmoderation (Borverbindungen) zum Einsatz kommen. Sollten solche Einbauten erforderlich sein, ist auf eine korrosionsvermeidende Gestaltung dieser Komponenten zu achten.

Äußere Komponenten des Tiefenlagerbehälters

Die innere Tragstruktur zur Aufnahme des Inventars wird vom eigentlichen Lagerbehälter umschlossen. Dieser übernimmt eine weitere technische Barrierefunktion des Lagergebindes. Er sorgt für den langfristig sicheren Einschluss der Radionuklide, schützt das Inventar vor äußeren Einwirkungen und muss eine ausreichende Abschirmwirkung gewährleisten, um einen sicheren Umgang mit den Behältern zu ermöglichen. Der Lagerbehälter muss einen ausreichenden Widerstand gegen die bei der Lagerung, dem Transport, der Einlagerung und der potentiellen Rückholung auftretenden Lasten und Kräfte besitzen. Außerdem muss er langfristig die aus dem Gebirge aufgeprägten Lasten aufnehmen, damit die unterkritische Anordnung der Brennstoffe in der Tragstruktur in seinem Inneren dauerhaft gewährleistet bleibt.

Um diesen Anforderungen gerecht zu werden, kann der Lagerbehälter als mehrschalige Kombination eines Innen- und eines Außenbehälters konzeptioniert werden, wobei beide Behälterschalen unterschiedliche Teilfunktionen übernehmen. Alternativ ist auch der Aufbau des Außenbehälters als monolithischer, also einteiliger, Behälter denkbar. Bei der Auslegung der technischen Barriere gelten grundsätzlich in allen Wirtsgesteinen vergleichbare Anforderungen, allerdings in einer unterschiedlich starken Ausprägung. Die unterschiedlichen Randbedingungen, die in Tiefenlagern in den Wirtsgesteinen Salz, Ton/Tonstein sowie Kristallin anzutreffen sind, führen zu Unterschieden in der technischen Umsetzung dieser Anforderungen in der konkreten Konstruktion der Behälter. Um den Nachweis führen zu können, dass die Behälter die definierten Anforderungen langfristig erfüllen, muss der Behälter in allen relevanten Details robust gestaltet werden. Die Wechselwirkungen zwischen den einzelnen Bestandteilen der Behälter, als auch die Wechselwirkung zwischen dem Behälter und der umgebenden geotechnischen Barriere sowie der Geologie müssen identifiziert und hieraus resultierende negative Effekte soweit möglich minimiert werden. Es ergibt sich zwangsläufig die Forderung, dass der Behälter zu der Geologie des Wirtsgesteins passen muss. Hierbei können bereits existierende Behälterkonzepte, die international für die verschiedenen Wirtsgesteine entwickelt worden sind, als Grundlage der Planungen dienen. Diese Konzepte liefern viele Informationen über das Verhalten unterschiedlicher Werkstoffe unter Tiefenlagerbedingungen.

Die Außenstruktur der Behälter ist so auszulegen, dass sie für mehrere Jahrzehnte sicher zurückgeholt und für einen Zeitraum von mindestens 500 Jahren sicher geborgen werden können. Die Handhabbarkeit der Behälter muss über den Zeitraum der Rückholbarkeit vollumfänglich und für die geplante Bergbarkeit in leicht eingeschränkter Form gewährleistet sein. Grundvoraussetzung für die sichere Handhabung ist, dass die strukturelle Integrität der Behälter trotz der Belastungen bei der Einlagerung und Verfüllung erhalten bleibt. Auch die aus der Geologie aufgeprägten Lasten, beispielsweise durch den auflaufenden Gebirgsdruck oder den Quelldruck des Versatzmaterials dürfen zu keiner Schädigung der Integrität der Behälter führen. Zusätzlich muss die Dichtheit der Behälter für diesen Zeitrahmen gewährleistet sein. Ein weiteres Kriterium für die Handhabbarkeit der Behälter ist die Funktionsfähigkeit der Lastanschlagspunkte. Für eine geplante Rückholbarkeit, welche beispielsweise mit einem modifizierten Einlagerungsgerät erfolgen kann, müssen die Lastanschlagspunkte der Behälter über viele Jahrzehnte nach der Einlagerung funktionsfähig bleiben. Zusätzlich sollten die Lastanschlagpunkte so gestaltet werden, dass sie durch Instandsetzungsmaßnahmen, die im Rahmen der Rückholung durchgeführt werden können, wieder in einen uneingeschränkt funktionsfähigen Zustand versetzt werden können. Für die Bergung gilt die Forderung nach der Funktionsfähigkeit der Lastanschlagspunkte nicht, hier sind auch alternative Handhabungskonzepte, wie beispielsweise die Aufnahme der Behälter mittels Formschluss oder Hebegurten denkbar. Diesen Betrachtungen wird vorausgesetzt, dass die für die Manipulation der Behälter im Rückhol- beziehungsweise Bergungsprozess notwendige Technik zum gegebenen Zeitpunkt vorhanden ist und den Anforderungen, zum Beispiel bezüglich ihrer Raummaße, welche sich aus der Gestaltung des gegebenenfalls neu aufzufahrenden Bergwerks ergeben, genügt.

Einfluss des Lagerumfeldes auf die Behältergestaltung

Wie bereits erwähnt, besitzt das Lagerumfeld einen großen Einfluss auf die Entwicklung der Behälter und auf die Ausprägung der Anforderungen an die Behälter. Nachfolgend wird auf die behälterspezifischen Unterschiede zwischen den Wirtsgesteinen Salz, Ton- und Tonstein sowie kristallinem Gestein eingegangen. Die geologischen Eigenschaften der unterschiedlichen Wirtsgesteine sowie entsprechende Lagerkonzepte sind bereits in [7] beschrieben worden. An dieser Stelle werden aus diesem Grund nur die Aspekte aufgegriffen, die einen direkten Einfluss auf die Auslegung der Behälter haben.

Für Tiefenlager im Salzgestein gilt, dass dieses Wirtsgestein durch sein plastisches Fließen die Behälter im Laufe der Zeit dicht umschließen kann. Nach einigen hundert Jahren erreicht die Permeabilität der verfüllten Bereiche einen Wert, der annähernd dem Niveau einer unbeschädigten Salzgestein Lagerstätte entspricht. Ein Tiefenlager im Salz kann nur in einer trockenen Salzlagerstätte errichtet werden. Somit kann bei Tiefenlagern in diesem Gesteinstyp für die wahrscheinlichen Entwicklungsszenarien angesetzt werden, dass keine Fluidströme vorhanden sind, die Korrosionsvorgänge an den Behältern über einen längeren Zeitraum aufrechterhalten können. Sobald die Sauerstoffmenge, welche im Rahmen der Einlagerung in Form von Gasen oder gebunden an die Restfeuchte des Versatzmaterials, in die Lagerbereiche eingebracht wurde, aufgezehrt ist, kommt der Korrosionsfortschritt an den Behältern zum Erliegen. Die Anforderungen an die Korrosionsfestigkeit der Behältermaterialien spielt demnach beim Steinsalz eine untergeordnete Rolle. Der Zweite für die Auslegung des Lagerbehälters relevante Aspekt bei Steinsalz ist seine hohe Wärmeleitfähigkeit die eine, verglichen mit den anderen Wirtsgesteinen, sehr hohe Behälterbeladung bezüglich Wärmeleistung und damit einhergehend Aktivität, ermöglicht. Somit müssen die Behälter für die Lagerung im Steinsalz neben der hohen mechanischen Festigkeit, welche für alle Wirtsgesteine erforderlich ist, eine sehr hohe Abschirmwirkung besitzen.

Kristallines Gestein weist, wie in [28], eine sehr hohe Standfestigkeit auf. Ein plastisches Fließen, welches aufgefahrene Hohlräume und Auflockerungszonen selbsttätig verschließt, tritt bei diesem Wirtsgestein nicht auf. Hierdurch können, auch wenn alle aufgefahrenen Hohlräume mittels artfremden, quellfähigen Materials wie beispielsweise Bentonit verfüllt werden, Wasserwegsamkeiten in Form von Auflockerungszonen und unentdeckten Klüften bestehen bleiben. Das Versatzmaterial, als Bestandteil der geotechnischen Barriere, verlangsamt den Wassertransport an die Behälter erheblich. Es muss allerdings zumindest ein diffusiver Flüssigkeitstransport, auch durch die geotechnische Barriere hindurch, angenommen werden. Hieraus ergeben sich zwei für die Behälter relevante Konsequenzen. Zum einen bedeutet dies, dass die sichere Rückhaltung der Radionuklide nicht zu jedem Zeitpunkt ausschließlich durch die geologische und geotechnische Barriere gewährleistet ist. Somit müssen die Behälter als technische Barriere über die gesamte Zeitdauer der Lagerung von mehreren 100.000 Jahren einen Beitrag zur Rückhaltung der Radionuklide leisten. Zum anderen muss bei der Auslegung der Behälter davon ausgegangen werden, dass während der Lagerdauer ein Flüssigkeitstransport an die Behälteroberfläche stattfindet. Als Extremfall ist davon auszugehen, dass sich in der Nähe einzelner Lagerbehälter ein Trennflächensystem ausbildet, das einen Zufluss von Tiefenwässern an die geotechnische und technische Barriere ermöglicht. Somit können für Behältersysteme zur Lagerung im kristallinen Hartgestein ausschließlich Materialien zum Einsatz kommen, welche eine hohe Korrosionsbeständigkeit, auch beim Zutritt
von Tiefenwässern, besitzen. Somit scheiden Stahl- und Eisenwerkstoffe für den Außenbehälter aus. Auch die Eignung nicht rostender Stähle ist auf Grund ihrer Neigung zur lokalen Korrosion, wie beispielsweise Spannungsrisskorrosion, kritisch zu überprüfen. Bezüglich der erforderlichen Abschirmeigenschaften der Behälter liegt das kristalline Gestein zwischen Salz und Ton/Tonstein. Die in diesem Wirtsgestein mögliche Wärmeleistung pro Behälter liegt etwa bei der Hälfte der möglichen Wärmeleistung in Salzstein. Somit ergeben sich hier etwas geringere Anforderungen an die Abschirmwirkung der Behälter.

Im Ton und Tonstein ist das mögliche Behälterinventar geringer, als bei den anderen beiden Wirtsgesteinen. Somit ergeben sich bei Behältern für dieses Wirtsgestein die geringsten Anforderungen an die Abschirmwirkung. Bezüglich der für die Wahl der Behältermaterialien relevanten Eigenschaften liegen Tiefenlager im Ton und Tonstein zwischen den Eigenschaften von Salz und Kristallin. Wasserleiter, welche einen kontinuierlichen Fluidstrom ermöglichen, sind, insbesondere im plastischen Ton, nicht zu erwarten. Bei der Behälterauslegung kann davon ausgegangen werden, dass Wassertransport nur in Folge von Diffusionsvorgängen stattfindet. Somit leisten auch in diesem Wirtsgestein die geologische als auch die geotechnische Barriere einen erheblichen Beitrag zur langfristigen Rückhaltung der Radionuklide aus dem Inventar der Behälter. Die Prozesse, die zur Erreichung des statischen Zustandes im Tiefenlager führen, wie beispielsweise das Quellen der Bentonitverfüllung, laufen allerdings, nach technischen Maßstäben betrachtet, sehr langsam ab. Die geologische und geotechnische Barriere entfalten im Ton/Tonstein erst nach vielen Jahrhunderten ihre volle Wirksamkeit. Somit müssen die Behälter so gestaltet werden, dass sie über diesen Zeitrahmen die Radionuklide zurückhalten. Die Erreichung dieses Zieles wird durch die Eigenschaft des

Wirtsgesteines, den Wassertransport erheblich einzuschränken, begünstigt. Bereits wenige Jahre nach der Verfüllung kann im Rahmen der Behälterauslegung angesetzt werden, dass nur noch ein diffusionsgetriebener Wassertransport an die Behälteroberfläche erfolgt. Hierdurch etablieren sich, nachdem die im Rahmen der Verfüllung eingebrachte Sauerstoffmenge in Folge von Korrosionsprozessen gebunden wurde, reduzierende Bedingungen im Tiefenlager. Unter reduzierenden Bedingungen korrodieren auch niedrig legierte Stähle sehr langsam. Ohne eine Zufuhr von Wasser oder Sauerstoff kommt der Korrosionsprozess bei Temperaturen unter 200 °C annähernd zum Erliegen, sodass die langfristigen Korrosionsraten auch nicht rostfreier Stähle sehr gering sein können. So nennt ein Bericht der Nagra [29], der die Ergebnisse verschiedener Versuchsreihen zur Korrosionsgeschwindigkeit niedrig legierter Stähle zusammenfasst, Korrosionsraten im Bereich von 0,02 - 68 µm/a, wobei sich die Tendenz abzeichnet, dass die Korrosionsgeschwindigkeit mit zunehmender Zeit abnimmt.

Aus den unterschiedlichen Wirtsgesteinen der Tiefenlager ergeben sich unterschiedliche chemische Milieus und damit abweichende Anforderungen an die Gestaltung des Behälters als technische Barriere. Aus den detaillierten Betrachtungen zur Materialauswahl ergaben sich aber auch Aspekte, bei denen sich aus dem zugrundeliegenden Wirtsgestein keine großen Abweichungen bei der Gestaltung der Behälter ergeben. Ein Beispiel hierfür sind die auf die Behälter im Tiefenlager infolge des Gebirgsdruckes einwirkenden Kräfte. Die Ursachen der einwirkenden Kräfte unterscheiden sich zwischen den einzelnen Wirtsgesteinen. Während sich im Salz der Gebirgsdruck quasi von allen Seiten annähernd gleichmäßig aufbaut, kann es im Tonstein und Kristallin in Folge einer lokal unterschiedlichen Feuchtigkeitsdistribution zu einem unterschiedlich starken Quellen der Bentonit-Verfüllung kommen, aus dem unterschiedliche Lastfälle auf den Behälter resultieren. Auf Grund der vergleichbaren Teufe der Tiefenlager in den unterschiedlichen Wirtsgesteinen ergeben sich für die Behälter in allen Wirtsgesteinen Belastungen, welche in derselben Größenordnung liegen [30]. Entscheidender für die Behälterauslegung sind allerdings die erforderliche Abschirmwirkung der Behälter sowie die geforderte Beständigkeit gegen Korrosion. Hieraus ergeben sich bei den Behältern hohe Wandstärken. Die aus diesen Wandstärken resultierende mechanische Festigkeit der Behälter, ist für die auftretenden Belastungen ausreichend.

In der nachfolgenden Tabelle sind die für die Behälterauslegung relevanten Eigenschaften, die sich aus dem Verbund von Wirtsgestein und Verfüllung ergeben qualitativ zusammengefasst.

	Salzgestein	Ton / Tonstein	kristallines Hartgestein
Temperatur- leitfähigkeit	hoch	gering	mittel
Temperatur- belastbarkeit	hoch	gering	gering
Durchlässigkeit	praktisch un- durch-lässig	gering	gering bis tlw. hoch Kluftwasser-lei- ter
Sorptions- fähigkeit	sehr gering	sehr hoch	mittel bis hoch
kontinuierlicher Wassertransport zum Behälter	bei intakter Barriere ausge- schlossen	sehr gering, aus-schließ- lich diffusiv	gering, limitiert durch geotechnische Barriere
mögliche Wärme- leistung der Be- hälter	hoch etwa 3.000 W	mittel etwa 1.800 W	niedrig etwa 1.000 W
erhöhte Anforde- rungen an Integri- tät der Behälter	Rückholungs- zeitraum (etwa 500 a)	Rückholungs- zeitraum (etwa 500 a)	gesamte Lager- dauer (>100.000 a)

Tabelle 4: Eigenschaften der betrachteten Wirtsgesteine

Gestaltungsmerkmale der ENCON-Behälter

Nachfolgend wird auf die wirtsgesteinsspezifischen sowie wirtsgesteinsunabhängigen Gestaltungsmerkmale der äußeren Komponenten der verschiedenen ENCON-Behälter vertiefend eingegangen.

Bei allen Wirtsgesteinen wird in Rahmen der Konzeptionierung der generischen ENCON-Behälterkonzepte von der Einlagerung der Behälter mit den radioaktiven Reststoffen in Streckenlagerung und eine sich direkt an die Einlagerung anschließende Verfüllung der Lagerbereiche ausgegangen. Das zugrundeliegende, generische Tiefenlagerkonzept wurde vom Institut für Grundbau und Bodenmechanik der Universität Braunschweig im ENTRIA Arbeitsbericht 3 weiterführend beschrieben [7]. Des Weiteren muss die Rückholbarkeit während der Einlagerungsphase sowie die Bergung der Behälter über einen Zeitrahmen von bis zu 500 Jahren, beispielsweise mittels einer Wiederauffahrung des Einlagerungsbergwerkes oder mittels einer Neuauffahrung eines Rückholbergwerkes, möglich sein [8]. Somit müssen die Behälter über diesen Zeitraum handhabbar sein. Zusätzlich sollten die Behälter über eine ausreichende Abschirmwirkung verfügen, um Arbeiten an den Behältern im Rahmen der Rückholung zu ermöglichen. Der Grund hierfür wird ersichtlich, wenn die zur Rückholung beziehungsweise Bergung erforderlichen Vorgänge und Arbeitsschritte betrachtet werden. Für die Rückholung (unter optimalen Bedingungen) kann ein guter Wissensstand über den genauen Aufbau und den Zustand des Behälterumfeldes angenommen werden. Hierdurch ist es möglich, die erforderlichen Arbeitsabläufe strukturiert zu planen und in der Folge weitestgehend fernhantiert durchzuführen. Im Gegensatz hierzu muss für die Bergung davon ausgegangen werden, dass kein fundiertes Wissen über das Lagerumfeld und dessen zeitliche Veränderung mehr besteht.

Unter dieser Randbedingung ist eine Bergung nur dann sicher umzusetzen, wenn auf Unwägbarkeiten und Probleme im Rahmen der Behälterbergung direkt reagiert werden kann. Dies ist in der Regel nur mittels manueller Eingriffe in Behälternähe möglich und begründet hiermit die Forderung nach einer ausreichenden Abschirmwirkung der Behälter. Auch eine Vielzahl weiterer Gestaltungsdetails, wie der Behälterverschluss und die Lastanschlagpunkte der Behälter, werden von der Forderung der Rückholbarkeit beziehungsweise Bergbarkeit stark beeinflusst.

Prinzipieller Aufbau der Außenbehälter

Wie bereits unter dem Punkt Tragkorb beschrieben, ist das Inventar der Tiefenlagerbehälter bereits in einem Innenbehälter eingeschlossen. Dieser dicht verschlossene Innenbehälter erlaubt allerdings ausschließlich die Handhabung des Inventars in einer kontrollierten Umgebung, beispielsweise im Rahmen der Konditionierung des Inventars in die Lagerbehälter. Große mechanische Lasten kann dieser Innenbehälter nicht aufnehmen, sein Widerstand gegen einen korrosiven Angriff wäre in einer Lagerumgebung auf wenige Jahrzehnte bis maximal einige Jahrhunderte begrenzt, da er lediglich einen Bestandteil der technischen Barriere darstellt. Auch eine ausreichende Abschirmung der ionisierenden Strahlung bietet dieser Innenbehälter nicht. Somit müssen alle diese Funktionen vom Außenbehälter übernommen werden.

Hierzu können verschiedene Konzepte zum Einsatz kommen. Möglich ist ein monolithischer Aufbau aus einem einzelnen, sehr dickwandigen Behälter, der die drei Hauptfunktionen Abschirmung, Gewährleistung der strukturellen Integrität sowie ausreichender Schutz vor äußeren Einflüssen (insbesondere Korrosion) in sich vereint. Alternativ können diese Funktionen auch auf mehrere, koaxial angeordnete Behälter aufgeteilt werden. Die nachfolgende Abbildung zeigt, als Beispiel für einen Behälter mit monolithischem Aufbau, den als Transport- und Lagerbehälter von der GNS entwickelten Behälter der CASTOR[®] Baureihe.

Abbildung 4: Schematischer Aufbau eines monolithischen Behälters am Beispiel des CASTOR[®] [31]

Diese Behälter werden im Konzept der vorläufigen Sicherheitsanalyse Gorleben auch als Tiefenlagerbehälter für die Einlagerung der radioaktiven Abfälle aus Forschungsreaktoren im Salzstein vorgeschlagen [15], [32]. Zur Fertigung dieser monolithischen, dickwandigen Behälter wird Gusseisen mit Kugelgraphit (z. B. EN-GJS 400-18) verwendet. Dieser Werkstoff eignet sich, auf Grund seiner guten Gießbarkeit und der guten Zerspanbarkeit, sehr gut für großvolumige, dickwandige Bauteile. Zusätzlich verbindet Gusseisen mit Kugelgrafit (GJS) eine hohe Festigkeit mit einer ausreichenden Duktilität. Auf Grund des hohen Kohlenstoffanteils besitzt dieses Material außerdem ein, für einen metallischen Werkstoff, sehr gutes Abschirmverhalten für Gamma- und Neutronenstrahlung. Das Korrosionsverhalten dieses Werkstoffes kann zudem als gutmütig bezeichnet werden. Gusseisen (GJS) ist nicht korrosionsfest, neigt aber nicht zu einer lokalen, sondern nur zu einer flächigen Korrosion [33]–[35]. Somit bieten monolithische Behälter aus GJS bei ausreichender Wandstärke eine für die Tiefenlagerung im Salzstein ausreichende Korrosionsfestigkeit.

Ein Beispiel für mehrschichtige, koaxial aufgebaute Behälter sind die für das schwedische Tiefenlager im Kristallin entwickelten KBS-3V Behälter, welche auf der nachfolgenden Abbildung dargestellt sind. Hier ist ein lasttragender Innenbehälter aus Gusseisen in einem äußeren Korrosionsschutzbehälter aus Kupfer eingeschlossen. [12], [36], [37]

Abbildung 5: Darstellung von Außen- und Innenbehälter des KBS-3V Konzeptes [38]

Der Entwicklung des KBS-3V Behälters liegt allerdings ein Lagerkonzept zugrunde, das in vielen Punkten von dem generischen ENTRIA Lagerkonzept abweicht und zum Beispiel nur geringere Anforderungen an den Strahlenschutz stellt. Andererseits stellt die Verortung des KBS-3V Konzeptes im kristallinen Wirtsgestein sehr hohe Anforderungen an die Langzeitfestigkeit der Behälter. Der KBS-3V besitzt einen Innenbehälter aus Gusseisen mit Kugelgraphit (EN-GJS), der die mechanischen Lasten und den Quelldruck des Bentonits aufnehmen kann und einen Teil der ionisierenden Strahlung abschirmt. Dieser innere Behälter verfügt allerdings nicht über die für die Einlagerung im kristallinen Wirtsgestein erforderliche dauerhafte Korrosionsfestigkeit. Um diese Korrosionsfestigkeit zu erzielen, wird der innere Behälter vollständig von einem dicht verschweißten Behälter aus sauerstoff- und schwefelfreiem Kupfer umschlossen. Für diesen Werkstoff konnte unter anderem anhand natürlicher Analoga nachgewiesen werden, dass er unter den Bedingungen, die im Tiefenlager zu erwarten sind, eine ausreichende Widerstandsfähigkeit und Korrosionsbeständigkeit besitzt.

Allerdings ist der Nachweis der Korrosionsfestigkeit dieses Werkstoffes eng mit der gegebenen Geologie des schwedischen Standortes verknüpft, so dass die Übertragbarkeit auf andere Standorte nicht ohne zusätzliche Untersuchungen gewährleistet werden kann. Dieses Konzept wird derzeit in der Literatur kontrovers diskutiert, was zeigt, dass die Nachweiskonzepte für die Langzeitsicherheitsnachweise eine enorme Bedeutung auch für die deutsche Endlagersuche haben werden. Der Kupfer-Außenbehälter besitzt, für sich allein betrachtet, nicht die erforderliche Festigkeit um die zu erwartenden Kräfte aufzunehmen. Erst durch den Verbund des korrosionsfesten Kupfer-Außenbehälters mit dem stabilen Innenbehälter aus Gusseisen entsteht ein Hybridbehälter, der eine ausreichende Widerstandskraft gegen die im Tiefenlager zu erwartenden Belastungen besitzt. [38]–[41]

Für das generische Behälterkonzept ist somit für die verschiedenen Wirtsgesteine jeweils die Entscheidung zu treffen, ob ein monolithischer oder ein hybrider Aufbau des Außenbehälters anzustreben ist. Diese Entscheidung hängt zum einen von den für die einzelnen Wirtsgesteine anzulegenden Kriterien ab, zum anderen wird sie von der jeweiligen Materialwahl beeinflusst. Aus diesem Grund werden nachfolgend die in unterschiedlichen internationalen Behälterkonzepten für den Außenbehälter vorgesehenen Behälterwerkstoffe sowie deren Eigenschaften vorgestellt. Auch einzelne alternative Werkstoffe, welche eine potentielle Eignung für den Außenbehälter besitzen, werden kurz beschrieben.

Mögliche Werkstoffe für den Außenbehälter

Für den Außenbehälter kommen prinzipiell unterschiedliche Materialien in Frage. Die Bandbreite der als Strukturwerkstoffe denkbaren Behältermaterialien reicht von Stählen über weitere Metalle und Metalllegierungen, wie beispielsweise Kupfer und Titan, bis hin zu mineralischen und keramischen Werkstoffen.

Ausgehend von den Hauptanforderungen an den Außenbehälter:

- Stabilität,
- Dauerhaftigkeit,
- Abschirmung,

werden international metallische Werkstoffe für den Außenbehälter favorisiert. Die Bandbreite der vorgeschlagenen Werkstoffe reicht dabei von niedrig legierten Stählen über hochlegierte, rostfreie Stähle und hochbelastbare Stahllegierungen bis hin zu speziellen Werkstoffen wie Titanlegierungen und Kupfer. Die Vorzüge metallischer Werkstoffe liegen in ihrer guten Prozessierbarkeit und Verarbeitbarkeit. Die Fertigung auch sehr großer Komponenten aus den meisten metallischen Werkstoffen ist nach aktuellem Stand der Technik möglich. Die Verarbeitbarkeit der Werkstoffe ist auch der Grund, zumindest unter den gegebenen Randbedingungen wie den Abmessungen des Inventars, welcher die Verwendung der meisten nicht metallischen Werkstoffe als Strukturmaterial für den Außenbehälter der Tiefenlagerbehälter im Rahmen der generischen Behälterkonzepte ausschließt. Dennoch soll auf einige dieser Werkstoffe kurz eingegangen werden.

Keramische Werkstoffe

Von den keramischen Werkstoffen bieten insbesondere die sogenannten Sinterkeramiken erhebliche Vorteile bezüglich ihrer chemischen Stabilität und Dauerhaftigkeit. Diese eignen sich auf Grund ihrer Porosität und Sprödheit derzeit allerdings noch nicht für die Fertigung von Großkomponenten. Die serienmäßige Fertigung von Bauteilen aus keramischen Sinterwerkstoffen in der Größe eines Lagerbehälters für abgebrannte Brennstäbe ist nach dem heutigen Stand der Technik nicht möglich, da bereits die im Fertigungsprozess auftretenden Eigenspannungen zu einem Bauteilversagen führen würden. Auch das thermische Fügen eines Behälters aus mehreren Bestandteilen ist nicht möglich. Keramische Werkstoffe können somit bei den Lagerbehältern nur für kleinere Behälterbauteile oder für lokale Beschichtungen zum Einsatz kommen. Ebenfalls den Keramiken zugerechnet wird der Werkstoff Steinzeug, aus dem beispielsweise Wasserleitungen mit einem Durchmesser von etwa einem Meter gefertigt werden können. Bei Steinzeug handelt es sich um eine sogenannte Baukeramik, welche dem sogenannten Irdengut zuzuordnen ist. Diese Werkstoffe werden bei vergleichsweise niedrigen Temperaturen gebrannt und besitzen hierdurch eine vergleichsweise hohe Porosität sowie geringere Festigkeitswerte als Sinterkeramiken. Die Dichtheit von Bauteilen aus diesen Werkstoffen wird in der Regel erst durch eine oberflächliche Glasierung erzielt. Auf Grund der Porosität und

der vergleichsweise schlechten mechanischen Kennwerte erscheint somit ein Einsatz von Steinzeug als Behälterwerkstoff zum heutigen Zeitpunkt ebenfalls als wenig sinnvoll. [42]– [44]

Mineralische Werkstoffe

Eine weitere Materialgruppe, die prinzipiell als Strukturwerkstoffe für Lagerbehälter Anwendung finden könnte, sind die mineralischen Werkstoffe und hier insbesondere Beton. Bei diesem Werkstoff handelt es sich um ein Gemisch aus dem Bindemittel Zement, einer Gesteinskörnung und dem in der Betonmatrix eingelagerten Zuschlagswasser. Beton besitzt eine sehr hohe Druckfestigkeit. Aufgrund des eingelagerten Kristallwassers und der vergleichsweise hohen Dichte besitzen Betone ebenfalls eine gute Abschirmwirkung. Zusätzlich hat Beton den Vorteil, dass aus diesem Werkstoff auch große, komplexe Strukturen urformend gefertigt werden können und dieser Werkstoff, verglichen mit metallischen Werkstoffen, sehr preiswert ist. Aus diesem Grund findet Beton auch als Struktur- und Abschirmmaterial beim CONSTOR®-Lagerbehälter der GNS Anwendung [45], [46]. Problematisch ist, dass Beton mehrheitlich Kräfte in Druckrichtung aufnehmen kann. Zugspannungen, die bereits beim Aushärten großer Betonbauteile auftreten können, führen zu Rissen in der Betonmatrix. In allen Tiefenlagervarianten ist davon auszugehen, dass Schubspannungen auf die Behälter einwirken die lokal zu hohen Zugspannungen im Behältermaterial führen können. Auch der Sturz eines Behälters während der Einlagerung oder Rückholung ist nicht auszuschließen. Diese Lastfälle führen zu Zugspannungen an den Behältern. Aus diesem Grund eignet sich Beton nicht als Strukturmaterial für die EN-CON-Behälter, sondern kann allenfalls als Abschirm- und Verfüllmaterial zum Einsatz kommen. Als Abschirmmaterial

konkurriert Beton mit den beiden etablierten Materialien Polyethylen und Graphit sowie dem bisher nicht im Behälterbau eingesetzten Titanhydrid.

Metallische Werkstoffe

Ausgehend von den spezifischen Anforderungen des ENCON-Tiefenlagerkonzepts an die Behälter verbleibt die Gruppe der metallischen Werkstoffe als Material für die Struktur des EN-CON-Außenbehälters. Die große Herausforderung resultiert bei der Verwendung metallischer Werkstoffe aus der Korrosionsneigung dieser Materialien. In Abhängigkeit von Material und Umgebungsbedingungen korrodieren metallische Werkstoffe unterschiedlich, so können flächige, lokale oder auch interkristalline Korrosionsprozesse auftreten. Die dabei in der Praxis auftretenden Korrosionsraten sind sehr unterschiedlich. Während bei der elektrochemischen Korrosion von Stahlwerkstoffen in der Anwesenheit von Elektrolyten und einem weiteren, edleren Metall oder auch bei der lokalen Korrosion Korrosionsraten von mehreren Millimetern pro Jahr möglich sind, können für denselben Werkstoff unter optimalen, anaeroben Bedingungen und flächiger Oxidation Korrosionsraten von weit unter einem Mikrometer pro Jahr resultieren [29]. Zusätzlich ist zu beachten, dass die Korrosion metallischer Werkstoffe kein kontinuierlicher Prozess ist.

Die DIN EN ISO 8044 definiert Korrosion wie folgt [47]: "Physikochemische Wechselwirkung zwischen einem Metall und seiner Umgebung, die zu einer Veränderung der Eigenschaften des Metalls führt und die zu erheblichen Beeinträchtigungen der Funktion des Metalls, der Umgebung oder des technischen Systems, von dem diese einen Teil bilden, führen kann."

Durch Korrosionsvorgänge auf der Materialoberfläche entstehen Schichten aus oxidiertem Material sowie weitere Korrosibeeinflussen onsprodukte. Diese die Wechselwirkung zwischen Werkstoff und Umgebung erheblich und können den Korrosionsprozess verzögern oder beschleunigen. Entsteht eine fest am Substrat anhaftende Trennschicht aus Metalloxid, kann sie den Medientransport zwischen der Umgebung und dem Grundmaterial erheblich reduzieren, die Korrosionsrate vermindert sich in diesem Fall mit zunehmender Trennschichtdicke erheblich. Im Extremfall ist die ausgebildete Oxidschicht so dicht, dass jeglicher Medientransport zur Werkstückoberfläche unterbunden wird. In diesem Fall kommt die Korrosion zum Erliegen. Die Art der auftretenden Korrosion und die entstehende Oxidschicht werden sowohl von dem ausgewählten Material als auch von den Umgebungsbedingungen beeinflusst. Somit müssen bei der Auswahl von metallischen Behältermaterialien auch immer das geologische Umfeld und das vorherrschende chemische Milieu beachtet werden.

Bei der Entwicklung der generischen ENCON-Behälterkonzepte werden Werkstoffe favorisiert die bereits in internationalen Konzepten für die Verwendung als Behältermaterial für Tiefenlagerbehälter untersucht worden sind. Für diese Werkstoffe liegen ausreichende Daten zu ihrem Verhalten unter Tiefenlagerbedingungen vor. Nachfolgend werden die metallischen Werkstoffe die als Materialien für den Außenbehälter von Tiefenlagerbehältern in Frage kommen beschrieben.

Eisenwerkstoffe

Von den metallischen Werkstoffen stehen für die Behälter in den Wirtsgesteinen Salz und Ton die Eisenwerkstoffe an erster Stelle. Diese können in Abhängigkeit von den Legierungselementen sehr unterschiedliche Eigenschaften aufweisen. Die Bandbreite reicht hier von niedrig legierten Stählen über Feinkorn-Stähle und Gusseisen bis hin zu rostfreien Stählen.

Trotz der Vielzahl verfügbarer Eisenwerkstoffe werden international nur niedrig legierte Stähle wie Baustähle, Feinkornbaustähle und Druckbehälterstähle sowie Gusseisenwerkstoffe für Tiefenlagerbehälter vorgeschlagen. Auf die Gründe hierfür, sowie auf potentielle alternative Eisenwerkstoffe, wird nachfolgend kurz eingegangen.

Stähle

Die erste Gruppe der Eisenwerkstoffe bilden die Stähle. Hierunter versteht man Eisenlegierungen mit einem Kohlenstoffanteil unter 2 %. Die meisten Stähle können mittels umformender Fertigungsverfahren bearbeitet werden. Die Eigenschaften von Stahlwerkstoffen decken dabei einen sehr breiten Bereich ab, der stark von Art und Menge seiner Legierungselemente sowie der durchlaufenen Wärmebehandlung beeinflusst wird.

Niedrig legierte Stähle

Bis zu einem Kohlenstoffgehalt von 0,22 % sind Stähle gut zum thermischen Fügen, beispielsweise mittels Schweißen, geeignet. Höhere Kohlenstoffgehalte und weitere Legierungselemente können die Schweißeignung durch die Bildung spröder Phasen in der Wärmeeinflusszone des Schweißprozesses reduzieren. Das Kohlenstoffäquivalent (Carbon Equivalent Value, CEV) eines Stahls, welches den Einfluss der unterschiedlichen Legierungselemente berücksichtigt, ist ein Indikator für die prinzipielle Schweißeignung eines Stahles. Mit zunehmendem Kohlenstoffäquivalent nimmt der erforderliche Aufwand zum thermischen Fügen von Stählen zu. Nur durch eine optimale Schweißvorbereitung, die Wahl der passenden Schweißzusatzwerkstoffe, die präzise Einhaltung der Verfahrensparameter (Temperaturführung) während des Prozesses und gegebenenfalls eine Nachbehandlung der Schweißnaht, beispielsweise mittels einer Wärmebehandlung, lassen sich bei höher legierten Stählen dauerhafte und spannungsarme Schweißverbindungen erstellen. Dies ist einer der Gründe dafür, dass international niedrig legierte Stähle mit einem geringen Kohlenstoffäquivalent für den Außenbehälter bevorzugt werden [48].

Die meisten zur Anwendung zu empfehlenden Stähle fallen entsprechend der aktuellen EN-Normen 10027-1 und 10027-2 in die Gruppe der un- und niedriglegierten Stähle, die im Wesentlichen kohlenstoffarm sind [49], [50]. Niedrig legierte Stähle und Baustähle sind schweißbar und können gut umgeformt werden. Beides sind Eigenschaften die für die Fertigung und den Verschluss der Außenbehälter vorteilhaft sind. Gegebenenfalls können Komponenten aus diesen Stählen spannungsarm geglüht werden, wodurch Eigenspannungen in Bauteilen reduziert werden können. Bezüglich der Eignung niedrig legierter Stähle als Behältermaterial ist zu beachten, dass durch die Fertigung mittels fügender und umformender Fertigungsverfahren die fertigbaren Wandstärken limitiert sind. Der Aufwand für eine qualitätsgesicherte Fertigung steigt mit zunehmender Materialstärke erheblich. Aus diesem Grund sind Behälter mit Wandstärken über 200 mm aus diesen Stählen nach dem heutigen Stand der Technik nicht mehr wirtschaftlich qualitätsgesichert fertigbar. [51], [52]

Bei den in einigen internationalen Konzepten vorgeschlagenen Feinkornbaustählen und Druckbehälterstählen handelt es sich ebenfalls um niedrig legierte Stähle. Diese bieten durch ihr feinkörniges Gefüge optimierte Eigenschaften bezüglich Schweißeignung, Zugfestigkeit und Warmfestigkeit. Niedrig legierte Stähle besitzen in den meisten Bereichen gute, jedoch nicht herausragende, mechanische Eigenschaften. Ihr E-Modul liegt üblicherweise bei etwa 200 GPa, die Dehngrenze R_{el} bei Werten zwischen 250 MPa und 360 MPa. Niedrig legierte Stähle übertreffen die mechanischen Anforderungen, die in den meisten Behälterkonzepten an einen Strukturwerkstoff für einen Lagerbehälter gestellt werden, problemlos. Dies liegt unter anderem darin begründet, dass die Strukturmaterialien, auf Grund der für die Abschirmung erforderlichen hohen Materialstärken der Behälter, keine besonders hohen mechanischen Kennwerte besitzen müssen [14], [53].

Bei der Wahl von Eisenwerkstoffen für den Außenbehälter wird davon Kredit genommen, dass bei Tiefenlagern in den Wirtsgesteinen Salz und Ton/Tonstein keine nennenswerten Zuflüsse von Wasser zu erwarten sind. Bei den in der Teufe des Lagers natürlich anzutreffenden Wässern ist kein freier Sauerstoff gelöst. Hieraus ergibt sich ein sehr geringes Oxidationspotential für das Behälterumfeld unter Tiefenlagerbedingungen. Der nach der Verfüllung des Lagers, beispielsweise im Verfüllmaterial, eingeschlossene Sauerstoff wird durch Oxidationsvorgänge, zum Beispiel an metallischen Bauteilen, gebunden. Somit stellen sich im Tiefenlager nach einem Zeitraum von einigen Jahren reduzierende Bedingungen ein. Niedrig legierte Stähle besitzen unter atmosphärischen Umgebungsbedingungen, also dann, wenn Luftsauerstoff verfügbar ist, keinen hohen Widerstand gegen Korrosion. Für die Anwendung als Material für einen Tiefenlagerbehälter ist es allerdings von Vorteil, dass sie über ein gleichmäßiges Korrosionsverhalten verfügen. Die bei niedrig legierten Stählen überwiegend auftretende Korrosionsart ist die flächige Korrosion der Werkstoffoberfläche. Eine lokale Korrosion, die beispielsweise zu Lochfraß führt, kann bei diesen Werkstoffen durch die Optimierung der Gestalt der Komponenten nach Korrosionsschutzaspekten weitestgehend ausgeschlossen werden. Diese flächige Korrosion erfolgt über-

wiegend aerob, erfordert somit also das Vorhandensein von Sauerstoff in der Behälterumgebung. Unter anaeroben Bedingungen kommt diese Korrosionsform bei niedrig legierten Stählen fast vollständig zum Erliegen. Sobald der nach der Verfüllung des Tiefenlagers zurückgebliebene Sauerstoff gebunden wurde, reduziert sich die Korrosionsrate dieser Stähle erheblich. Die in der Literatur angegebenen Korrosionsraten niedrig legierter Stähle unter anaeroben Bedingungen liegen im Bereich von 0,02-68 µm/a, wobei die Mehrzahl der Veröffentlichungen Werte < 1 μ m/a angibt [29]. Niedrig legierte Stähle können somit unter Tiefenlagerbedingungen Behälterstandzeiten von mehreren tausend Jahren ermöglichen. Selbst im Worst-Case-Szenario lässt sich eine Behälterstandzeit gewährleisten die über den für eine Bergbarkeit geforderten Zeitrahmen von 500 Jahren liegt. Durch das gleichmäßige Korrosionsverhalten werden dabei Prognosen über die Entwicklung des Behälters über lange Zeiträume möglich.

Rostfreie Stähle

Als rostfreie Stähle bezeichnet man eine Gruppe von Stählen, die durch Legierungselemente wie Chrom und Nickel einen erhöhten Widerstand gegen Korrosion und Säureangriffe unter atmosphärischen Bedingungen besitzen. Durch diese im Mischkristall gelösten Legierungselemente, üblich ist beispielsweise ein Anteil von über 13 % Chrom, bildet sich eine schützende und dichte Passivschicht an der Werkstoffoberfläche aus. Durch weitere Legierungsbestandteile wie zum Beispiel Nickel, Molybdän, Mangan und Niob können die Korrosionsbeständigkeit und die mechanischen Eigenschaften dieser Werkstoffe weiter gesteigert werden [52].

Rostfreie Stähle zeichnen sich durch eine hohe Zähigkeit aus. Zusätzlich reduzieren sich durch die Legierungselemente im Vergleich zu niedrig legierten Stählen die elektrische- und die Wärmeleitfähigkeit. Die Legierungselemente wie beispielsweise Chrom und Nickel beeinflussen auch die Schweißbarkeit der rostfreien Stähle. Es sind jedoch auch Legierungen verfügbar die eine gute Schweißeignung besitzen. Die Korrosionsbeständigkeit rostfreier Stähle wird in großem Maße von der Art und den Eigenschaften der durch die Legierungselemente ausgebildeten Passivschicht beeinflusst. Diese schützt das Material vor einer flächigen Korrosion. Allerdings sind die ausgebildeten Passivschichten chemisch nicht vollkommen inert. Insbesondere durch salzhaltige Lösungen werden diese Schutzschichten, beispielsweise an Korngrenzen, angegriffen und lokal geschädigt. Durch die Aufprägung von Kräften auf Bauteile aus nichtrostenden Stählen entstehen auch in der Passivschicht Spannungen, die ebenfalls zu einer lokalen Schädigung führen können. Hierdurch kommt es zu Lochfraß-, Spannungsriss- und Spaltkorrosion. Der Name rostfreier Stahl ist somit irreführend und bezieht sich auf die Eigenschaft des Stahles unter bestimmten Bedingungen einen hohen Widerstand gegen flächige Korrosion zu besitzen. Bei den einem Tiefenlager potentiell zufließenden Tiefenwässern handelt es sich in der Regel um gesättigte Natriumchlorid- oder Kaliumchlorid-Lösungen. Unter diesen Bedingungen wird die Passivschicht der rostfreien Stähle stark angegriffen und ihre Korrosionsfestigkeit erheblich vermindert. Die in der Folge überwiegend auftretende lokale Korrosion schreitet schnell voran. Es können Korrosionsraten von mehreren Millimetern pro Jahr auftreten. Aus diesem Grund sind rostfreie Stähle als Material für den Außenbehälter eines Tiefenlagerbehälters wenig geeignet. Diese Stähle finden in internationalen Behälterkonzepten somit überwiegend für Komponenten im Behälterinneren Anwendung. Unter den im Rahmen der Beladung und Konditionierung der Behälter vorherrschenden Bedingungen bieten rostfreie Stähle einen guten Korrosionsschutz. Da die Tragstrukturen bei der Tiefenlagerung im Behälterinneren eingeschlossen sind, ist bei diesen Komponenten auch ein

späterer Kontakt mit salzhaltigen Tiefenwässern ausgeschlossen.

Gusseisen

Gusseisen beschreibt Eisenwerkstoffe, mit einem hohen Kohlenstoffanteil von über 2 %. Durch den hohen Kohlenstoffgehalt wird dieser nicht vollständig als Zementit gebunden, sondern wird fein verteilt als Graphit im Gefüge ausgeschieden. Durch Legierungselemente, insbesondere Magnesium, kann die Form dieser Ausscheidungen beeinflusst werden, wodurch auch die mechanischen Eigenschaften des Materials beeinflusst werden können. Anhand der in der folgenden Abbildung ersichtlichen Form der Graphitausscheidungen wird in Gusseisen mit Lamellengraphit sowie Gusseisen mit Kugelgraphit unterschieden. Als dritte Variante ist das Gusseisen mit Vermiculargraphit zu nennen. Dieses weist langgezogene, wurmartige Graphitausscheidungen auf und liegt in seinen Eigenschaften zwischen den beiden anderen Gusseisenvarianten.

Schliffbild Gusseisen mit Lamellengraphit

Schliffbild Gusseisen mit Kugelgraphit

Abbildung 6: Gefügestruktur von Gusseisen mit Lamellen- und Kugelgraphit

Die Dichte von Gusseisen liegt mit 7,2 g/cm³ unter der von Stahl und reinem Eisen. Die Schmelztemperatur liegt bei etwa 1150 °C, wodurch sich Gusseisen gut überhitzen lässt und sehr gute Gusseigenschaften für urformende Herstellungsverfahren aufweist. Zusätzlich ergibt sich aus dem hohen Kohlenstoffanteil des Gusseisens eine im Vergleich zu Stählen höhere Abschirmwirkung für Neutronenstrahlung [25]. Allerdings führt dieser hohe Kohlenstoffanteil gleichzeitig dazu, dass Gusseisen sehr hart ist und insbesondere in der Variante mit Lamellengraphit ein sehr sprödes, wenig plastisches Materialverhalten besitzt. Eine umformende Bearbeitung von Gusseisen ist hierdurch nicht möglich. Zusätz-Gusseisenwerkstoffe als lich aelten nur bedingt schweißgeeignet, wobei Gusseisen mit Kugelgraphit etwas bessere Schweißeigenschaften aufweist. Thermisch gefügtes Gusseisen besitzt eine Neigung zur Heiß- und Kaltrissbildung. Diese kann jedoch durch eine Vorwärmung des Bauteils auf etwa 650 °C reduziert werden, so dass bei artgleichen Schweißnähten ein Schweißgefüge erzeugt werden kann, dessen mechanischen Eigenschaften sehr nah an denen des Grundwerkstoffes liegen. Durch den hohen Graphitanteil, welcher bei der Bearbeitung als Schmierstoff wirkt, lassen sich Bauteile aus Gusseisen gut spanend bearbeiten.

Gusseisen mit Lamellengraphit, das entsprechend der europäischen Normung als EN-GJL beziehungsweise nach der älteren DIN-Norm als GGL bezeichnet wird, zeichnet sich durch lamellare Graphitausscheidungen aus und stellt die auf dem Markt am weitesten verbreitete Gusseisenvariante dar. Durch die Lamellen im Gefüge, welche bei einer Zugbeanspruchung wie Kerben wirken, besitzt GJL nur eine geringe Zugfestigkeit, die bei etwa 20% der Druckfestigkeit liegt.

Bei Gusseisen mit Kugelgraphit, mit der Bezeichnung EN-GJS, beziehungsweise GGG nach der DIN Bezeichnung, liegt der Kohlenstoff in Form kugeliger oder auch als globular oder sphäroid bezeichneter, Ausscheidungen vor. GJS Gusseisen ist in der Herstellung teurer, besitzt aber eine vergleichsweise hohe Zugfestigkeit und Duktilität. Die Zugfestigkeit dieser Werkstoffe kann Werte von bis zu 900 MPa und die Streckgrenze R_{P02} von 600 MPa erreichen. Allerdings steht bei GJS-Werkstoffen die Zugfestigkeit in direkter Konkurrenz zur möglichen Dehnung. Die hochfesten GJS Gusseisen erzielen somit nur eine Bruchdehnung von unter 3 %. Andererseits gibt es auch sogenannte duktile GJS Gusseisenwerkstoffe, die mit einer mittleren Zugfestigkeit von etwa 400 MPa und einer Dehngrenze R_{P02} von etwa 240 MPa, Bruchdehnungen von mindestens 18 % erzielen. [12], [33]–[35], [54]

Der Werkstoff EN-GJS 400-18 dessen Gefügestruktur in der nachfolgenden Abbildung dargestellt ist, kombiniert eine ausreichende Festigkeit mit einer, für Gusseisen, sehr guten Duktilität. Somit eignet sich EN-GJS 400-18 von seinen mechanischen Eigenschaften gut für den Außenbehälter eines Tiefenlagerbehälters. Zusätzlich verfügt das Material durch seinen hohen Kohlenstoffanteil über gute Abschirmeigenschaften, welche über dem Niveau der meisten Stähle liegen. Auch die Korrosionseigenschaften dieses Werkstoffes liegen unter Tiefenlagerbedingungen auf einem mit niedrig legierten Stählen vergleichbarem Niveau.

Abbildung 7: Gusseisen mit Kugelgraphit GJS

Der Werkstoff EN-GJS-400-18 bietet, verglichen mit niedrig legierten Stählen, einige Eigenschaften welche zu erheblichen Vorteilen bei der Fertigung von Großkomponenten führen. Sehr große Komponenten können aus diesem Werkstoff gualitätsgesichert gegossen und anschließend mittels spanender Bearbeitung auf Fertigmaße gebracht werden. Aus diesem Grund kommt dieser Werkstoff beispielsweise auch für den CASTOR[®] Behälter der GNS zum Einsatz. Die prinzipielle Eignung des Werkstoffes zur serienmäßigen Fertigung von Lagerbehältern mit ausreichender Größe, ist somit erwiesen. Problematisch bei der Verwendung von EN-GJS 400-18 für Tiefenlagerbehälter ist allerdings, dass ein stoffschlüssiger, artgleicher Verschluss des Behälters eine große Herausforderung darstellt. Die hierfür erforderliche Vorwärmung des beladenen Behälters auf Temperaturen über 600 °C würde zu einer Schädigung des im Behälter eingeschlossenen Abschirmmaterials aus Polyethylen und Graphit, sowie im Extremfall auch des eingelagerten Inventars führen. Auch das artfremde thermische Fügen, beispielsweise mittels Nickel-Basis-Legierungen, erfordert eine Vorwärmung des Deckelbereiches auf Temperaturen um etwa 300 °C. Eine lokale Vorwärmung der Fügezone auf diese Temperatur ist gegebenenfalls auch bei einem beladenen Behälter realisierbar. Allerdings entsteht durch den Verschluss mittels eines artfremden Schweiß- beziehungsweise Lötzusatzes ein elektrochemisches Potential, wodurch Korrosion am Behälter, insbesondere im Bereich des Deckelverschlusses, gefördert werden würde. Aus diesem Grund gestaltet sich der Nachweis des langfristig dichten Verschlusses für Behälters aus Gusseisen mittels stoffschlüssigen thermischen Fügens, über einen Zeitraum von mehreren hundert Jahren, als sehr anspruchsvoll. [35], [55], [56]

Alternativ kann der Verschluss von Gussbehältern über einen mechanischen Verschluss, beispielsweise über Verschraubungen, erfolgen. Hierbei müssen im Deckelbereich möglichst langfristig haltbare Dichtungen zum Einsatz kommen, um über den Zeitrahmen der Rückholbarkeit, die Radionuklide im Behälterinneren einzuschließen und ein Eindringen von Fluiden in den Behälter zu verhindern. Durch die auftretenden mechanischen, thermischen als auch radiologischen Belastungen auf die Dichtungen können ausschließlich metallische Werkstoffe für die Dichtung zum Einsatz kommen.

Aus werkstoffkundlicher Sicht stellen auch diese Dichtungen eine Schwachstelle bezüglich der Korrosion dar. Durch entsprechende Auslegung der Dichtung und gegebenfalls Redundanz kann voraussichtlich in einem bezüglich der Korrosion günstigen Umfeld, wie beispielsweise bei einer Lagerung im Steinsalz, eine Dichtheit über mehrere Jahrzehnte bis hin zu wenigen Jahrhunderten erzielt werden. Durch die unterschiedlichen Materialen von Behälter, Dichtung und Schrauben entsteht in Kontakt mit einem Elektrolyten jedoch ein elektrochemisches Potential und somit eine potentielle Schwachstelle am Behälter, die im Falle eines Wasserzutritts eine lokale Korrosion fördern kann.

Gusseisen mit Kugelgraphit bietet somit als Behälterwerkstoff mehrere Vorteile. Eine urformende Fertigung auch großer, dickwandiger Behälter mit Wandstärken bis hin zu 500 mm ist aus diesem Werkstoff möglich. Diese Wandstärken sind aus anderen Eisenwerkstoffen nur unter einem sehr hohen Aufwand fertigbar. Die gegossenen Behälter verbinden eine hohe Stabilität mit einer guten Strahlenabschirmung. Die Korrosionsfestigkeit des Gusseisens als Grundwerkstoff liegt auf einem vergleichbaren bis etwas höherem Niveau wie die von niedrig legierten Stählen. Durch die eingeschränkte Schweißeignung wird bei Lagerbehältern aus Gusseisen allerdings ein artfremder oder mechanischer Verschluss erforderlich, der eine Schwachstelle bezüglich der Korrosion darstellt. Ein dauerhaft dichter Verschluss über einen Zeitrahmen von mehreren Jahrtausenden kann somit nicht gewährleistet werden. Dieser Werkstoff ist demnach nur in Konzepten bei denen die langfristige Rückhaltung der Radionuklide durch die geologische sowie geotechnische Barriere gewährleistet wird, als Material für die äußere Hülle des Tiefenlagerbehälters geeignet. Gusseisen kann somit seine Vorzüge als Material für den Außenbehälter vor allem im Wirtsgestein Steinsalz ausspielen, da hier nur ein geringer Korrosionsangriff während der Zeit der Rückholbarkeit zu erwarten ist und der langfristige Einschluss der Radionuklide durch die Geologie erfolgt. In den anderen Wirtsgesteinen Ton, Tonstein und kristallinem Gestein ist, aufgrund des in diesen Wirtsgesteinen höheren Wassergehalts insbesondere im Versatzmaterial, mit einem wesentlich stärkeren Korrosionsangriff an den Behältern zu rechnen. Durch die Korrosionsanfälligkeit des Behälterverschlusses besitzt Gusseisen alleine für diese Wirtsgesteine keinen ausreichenden Schutz.

Um die Vorteile des Gusseisens, wie die auf Grund der guten Fertigungseigenschaften möglichen hohen Wandstärken mit guten Abschirmeigenschaften, auch in diesen Wirtsgesteinen nutzbar machen zu können, kann der Gusseisenbehälter von einem weiteren, an das Wirtsgestein angepassten, korrosionsbeständigeren Behälter umschlossen werden. Dieser kann im Ton- und Tonstein beispielsweise aus unlegiertem Stahl, im kristallinen Gestein aus Kupfer bestehen. Dieser äußerste Behälter wird durch die innenliegende Gusseisenstruktur gestützt und dient dazu, den innenliegenden Gusseisenbehälter vor dem Zutritt von Fluiden zu schützen. Der Außenbehälter kann in diesem Fall entsprechend seiner Funktion als Korrosionsbarriere ausgelegt werden und benötigt hierdurch nur eine moderate mechanische Festigkeit. Somit kann der Außenbehälter bei entsprechend korrosionsbeständigen Materialien vergleichsweise dünnwandig ausfallen. Somit können die positiven Eigenschaften des Werkstoffs Gusseisen mit Kugelgraphit bei allen Wirtsgesteinen für den Lagerbehälter nutzbar gemacht werden.

Weitere metallische Werkstoffe

Neben den Eisenwerkstoffen kommen nur wenige metallische Werkstoffe als Behälterwerkstoffe in Betracht, da sie unter den Umgebungsbedingungen im Tiefenlager über einen ausreichenden Widerstand gegen Korrosion verfügen. Viele metallische Werkstoffe, beispielsweise Aluminium, Kupfer und Titan, bilden unter atmosphärischen Bedingungen eine dichte Oxidschicht aus, welche die Werkstoffe vor einem weiteren Korrosionsfortschritt schützt. Problematisch kann es bei diesen passivierenden Werkstoffen sein, dass Schädigungen der Oxidschicht, beispielsweise durch Kontaktkorrosion oder chemischen Angriff, zu einer schnell fortschreitenden lokalisierten Korrosion führen. Bei den Zutrittswässern in geologischen Tiefenlagern handelt es sich in der Regel um gesättigte Salzlösungen unterschiedlicher Zusammensetzungen, welche die schützenden Oxidschichten zersetzen können. Andererseits sind diese Lösungen sehr sauerstoffarm beziehungsweise sauerstofffrei wodurch andere Korrosionsvorgänge auftreten als an der Atmosphäre. Aus diesem Grund ist die Beständigkeit metallischer Werkstoffe gegen Korrosionsangriffe immer von der konkreten Geologie abhängig.

Für die Außenbehälter muss der gewählte Werkstoff einen hohen Korrosionswiderstand sowie ein langfristig prognostizierbares Korrosionsverhalten haben. Die Prognostizierbarkeit des Korrosionsverhaltens ist insbesondere bei metallischen Werkstoffen gut, bei denen anhand natürlicher Analoga auf einen dauerhaft hohen Korrosionswiderstand im geologischen Umfeld der möglichen Wirtsgesteine geschlossen werden kann. Somit tritt, neben dem Edelmetall Gold, insbesondere der Werkstoff Kupfer in den Fokus der Untersuchungen. Beide Werkstoffe können in Reinform in geologischen Lagerstätten gefunden werden. Bei dem Werkstoff Gold sprechen, neben seinem Preis, auch die unzureichenden mechanischen Eigenschaften gegen eine Verwendung als Lagerbehälterwerkstoff. Nur für reines Gold ist der Rückschluss von natürlichen Analoga auf das Korrosionsverhalten möglich. Allerdings ist reines Gold sehr weich. Erst durch weitere Legierungsbestandteile lassen sich höhere Festigkeitswerte erzielen, diese Legierungen können sich in Ihrem langfristigen Korrosionsverhalten jedoch erheblich von reinem Gold unterscheiden. Im Gegensatz hierzu besitzt sauerstofffreies, reines Kupfer ausreichende mechanische Kennwerte für die Fertigung der Behälter.

Kupfer

Von den metallischen nicht Eisenwerkstoffen ist Kupfer der einzige der international als Behälterwerkstoff für Tiefenlager betrachtet wird und demnach weiterführend für die Verwendung als Werkstoff für den Außenbehälter von Tiefenlagerbehältern untersucht wurde. Auf die Dauerhaftigkeit von Kupfer unter Tiefenlagerbedingungen wird in diesen Konzepten überwiegend anhand natürlicher Analoga geschlossen. Eingeschlossen in verschiedenen geologischen Formationen konnte Kupfer in metallisch reiner Form gefunden werden, das dort seit Jahrmillionen eingeschlossen war. Unter den in diesen Formationen gegebenen Bedingungen kann somit von einer sehr hohen Korrosionsfestigkeit des Kupfers ausgegangen werden. Kupfer bietet, unter den in einem verfüllten Tiefenlager in allen Wirtsgesteinen anzutreffenden reduzierenden Bedingungen, einen hohen Widerstand gegen Korrosion. Somit ist Kupfer potentiell in allen Wirtsgesteinen als Werkstoff für die Korrosionsbarriere geeignet. Die Korrosionsfestigkeit

des Werkstoffes Kupfer ist allerdings in großem Maße von den geologischen Umgebungsbedingungen im Tiefenlager abhängig, daher ist die Übertragbarkeit der Annahmen auf die Geologie der potentiellen Tiefenlagerstandorte nachzuweisen. [57]–[60]

Neben den guten Korrosionsschutzeigenschaften besitzt Kupfer weitere Eigenschaften welche in Bezug auf die Verwendung als Behälterwerkstoff von Vorteil sind. Kupfer verfügt über eine sehr hohe Wärmeleitfähigkeit, wodurch die Zerfallswärme des Behälterinventars gut an die Umgebung abgeführt werden kann. Kupfer wird der Gruppe der Schwermetalle zugeordnet. Seine Dichte von 8.920 kg/m³ liegt über der von Eisen. Aus dieser hohen Dichte ergibt sich für Kupfer eine vergleichsweise hohe Abschirmwirkung gegen ionisierende Strahlung. [40]

Reines Kupfer besitzt eine Schmelztemperatur von 1083,4 °C. Der Guss großer Bauteile aus Kupfer ist möglich. Der Werkstoff besitzt im Gusszustand, in Abhängigkeit von der Gefügestruktur, jedoch nur eine Festigkeit von 150-200 MPa. Durch Kaltumformung kann die Festigkeit auf Werte von bis zu 450 MPa und somit knapp auf das Niveau von Stählen gesteigert werden. Alternativ können Bauteile aus Kupfer auch bei Temperaturen um 800 °C geschmiedet werden. Hierdurch können höhere Umformgrade erzielt werden. [12]

Das Fügen auch komplexer Bauteile aus Kupfer ist mittels Reibrührschweißens möglich, ohne dass es hierbei zu einer negativen thermischen Beeinflussung des Grundwerkstoffes kommt. Auch das stoffschlüssige, artgleiche Fügen von Kupfer mittels thermischer Fügeverfahren ist möglich. Somit eignet sich Kupfer gut für die Fertigung von Großkomponenten wie Lagerbehältern. Da der Verschluss von Lagerbehältern aus Kupfer artgleich erfolgen kann, stellt der Behälterverschluss bei diesem Material keine Schwachstelle bezüglich des Korrosionsangriffes dar. Zusätzlich besteht auch die Möglichkeit der elektrolytischen Abscheidung von Kupfer auf leitfähigen Bauteilen [61], wodurch eine annähernd homogene Oberfläche erzeugt werden kann. Diese Technologie wird bereits heute für die Fertigung von Kupferzylindern mit einem Durchmesser von bis zu einem Meter, einer Länge von zweieinhalb Metern und einer Wandstärke von etwa 16 mm eingesetzt. Die erzeugten Schichten erzielen derzeit allerdings noch nicht die für die Korrosionsbeständigkeit von Tiefenlagerbehältern erforderliche Reinheit. Auch die erzielbare Schichtstärke ist, in Folge der mit zunehmender Dicke in den Schichten vermehrt auftretenden Eigenspannungen, begrenzt. Die für Lagerbehälter erforderlichen Materialdicken können mit diesem Verfahren noch nicht abgeschieden werden. Aus materialwissenschaftlicher Sicht ist dieser Ansatz weiterzuverfolgen. Wenn es gelingt durch eine optimierte Prozessführung hochreine, spannungsarme Kupferschichten zu erzeugen, wird eine nahtlose Umschließung von Tiefenlagerbehälter mit einer homogenen Kupferschicht ermöglicht. Diese würde im Hinblick auf die Korrosion das Optimum darstellen.

Titan

Der letzte Werkstoff, der regelmäßig in Reinform beziehungsweise seinen Legierungen als möglicher Behälterwerkstoff Erwähnung findet, ist Titan [62]. Bei Titan handelt es sich um ein Übergangmetall mit einer Dichte von etwa 4,5 g/cm³. Reines Titan besitzt bis zu einer Temperatur von etwa 400 °C eine Streckgrenze von etwa 220 MPa. Titanlegierungen wie zum Beispiel Ti-6AL-4V erreichen sogar Werte von etwa 1000 MPa für die Streckgrenze. Unter oxidierenden Bedingungen bildet Titan eine sehr stabile Passivschicht aus. Das Standardpotential E° von Titan beträgt in Abhängigkeit von

der Oxidationsstufe -1,21 V beziehungsweise -1,77 V und liegt somit etwa auf dem Niveau von Aluminium (-1,66 V). Titan ist somit unedler als die meisten anderen Metalle und wird, wenn die schützende Oxidschicht zerstört wird, bei einer elektrochemischen Reaktion oxidiert. Die Korrosionsfestigkeit von Titan wird somit ausschließlich von der Beständigkeit der Passivschicht bestimmt [63]. Diese ist in großem Maße von den Umgebungsbedingungen und somit von der exakten Geologie potentieller Tiefenlagerstandorte abhängig. Bereits geringe Änderungen der chemischen Zusammensetzung der Zutrittswässer oder der an den Behältern erreichten Maximaltemperatur können zu erheblichen Auswirkungen auf die Passivschicht führen. In chlorid-haltigen Umgebungen kommt es beispielsweise bei einigen Titanlegierungen bereits bei Temperaturen von 70-80 °C zu Spaltkorrosion. Es sind allerdings Legierungen verfügbar, welche auch unter diesen Bedingungen, eine Temperaturbeständigkeit von über 200 °C besitzen [62]. Falls die Passivschicht zerstört wird erfolgt eine schnell fortschreitende lokale Korrosion, wodurch die Integrität des Behälters in sehr kurzer Zeit zerstört werden kann. Aus diesem Grund kann die Eignung von Titan als Material für den Außenbehälter eines Tiefenlagerbehälters ausschließlich standortspezifisch untersucht werden.

Es sind somit weiterführender Untersuchungen erforderlich um zu bestimmen, unter welchen geologischen Bedingungen Titan als Behältermaterial zum Einsatz kommen könnte. Bisher wurde von der Verwendung von Titan als Behältermaterial für die äußere Korrosionsbarriere in allen internationalen Behälterkonzepten, zumeist auf Grund des hohen Preises dieses Materials, abgesehen. Somit existiert für Titan derzeit noch keine ausreichende Datenbasis die es gestatten würde abgesicherte Aussagen über seine Dauerhaftigkeit unter Tiefenlagerbedingungen zu treffen. Aus diesem Grunde wird im Rahmen der generischen Behälterkonzepte von der Verwendung von Titan als Werkstoff für die äußere Korrosionsbarriere abgesehen.

Materialen der ENCON-Außenbehälter

Ausgehend von den zuvor beschriebenen Werkstoffeigenschaften musste im Rahmen der Ausgestaltung des generischen Konzeptes eine Festlegung getroffen werden, mit welchen Materialien die ENCON-Behältern für die unterschiedlichen Wirtsgesteine konzeptioniert werden. Aufbauend auf der internationalen Datenbasis ergaben sich für die einzelnen Wirtsgesteine teilweise mehrere potentielle Varianten.

Kristallines Wirtsgestein

Für das kristalline Wirtsgestein wird von den schwedischen und finnischen Endlagerinstitutionen Kupfer als Werkstoff für die Korrosionsbarriere von Tiefenlagerbehälter vorgeschlagen. Für alternative Werkstoffe konnte bisher noch kein Nachweis erbracht werden, dass diese als Korrosionsbarriere für Lagerbehälter im kristallinen Wirtsgestein geeignet sind. Somit wird auch für den generischen ENCON-K Behälter zur Lagerung im kristallinen Wirtsgestein Kupfer als Werkstoff für die äußere Korrosionsbarriere ausgewählt. Insbesondere durch die hohen Rohstoffkosten, aber auch auf Grund der vergleichsweise hohen Duktilität des Werkstoffes, ist die Konstruktion eines monolithischen Lagerbehälters aus Kupfer allerdings nicht zielführend. Anhand der Korrosionsraten von Kupfer unter Tiefenlagerbedingungen wird derzeit angenommen, dass bereits mit einer Kupferschicht von 50 mm Dicke der Einschluss der radioaktiven Reststoffe über den erforderlichen Zeitrahmen von mehreren 100.000 Jahren gewährleistet werden kann [57]. Ein Kupferbehälter mit einer Wandstärke von 50 mm besitzt jedoch weder die erforderliche mechanische Festigkeit noch die erforderliche Abschirmwirkung. Es existieren mehrere Gründe, die gegen eine

Fertigung eines monolithischen Kupferbehälters mit höheren Materialstärken sprechen. Neben wirtschaftlichen Aspekten, welche sich aus dem hohen Werkstoffpreis für Kupfer von über 5.000 €/Tonne ergeben, spielen auch technologische und werkstoffspezifische Aspekte eine große Rolle bei den Überlegungen zur Materialstärke des Kupferbehälters.

Die minimale Wandstärke wird, wie bereits beschrieben, vom Korrosionsverhalten des Kupfers unter den geologischen Bedingungen bestimmt. Die Angaben zu den auftretenden Korrosionsraten decken, in Abhängigkeit von den getroffenen Annahmen, einen Bereich von wenigen Mikrometern bis hin zu etwa 25 mm über den Zeitrahmen von 100.000 Jahren [57]. Somit stellen die zuvor angenommenen 50 mm Wandstärke ein Maß dar, das bereits mit einem Sicherheitsfaktor versehen ist und einen hinreichenden Widerstand gegen Korrosion gewährleistet. Die 50 mm sind nicht willkürlich gewählt. Sie orientieren sich zum einen an der Fertigung des Behältergrundkörpers, bei dem der Aufwand zur Produktion fehlerfreier Außenbehälter mit zunehmender Wandstärke erheblich zunimmt. Vor allem limitieren allerdings die Verschlussverfahren für den Behälter die sinnvoll umsetzbare Wanddicke des Kupferbehälters.

Der Verschluss des Behälters muss aus Gründen der Korrosionsbeständigkeit artgleich erfolgen. Als Fügeverfahren hierfür kommen zum einen thermische Schweißverfahren, zum anderen das Reibrührschweißen in Frage. Bei den thermischen Fügeverfahren nehmen die entstehenden Eigenspannungen mit der Tiefe der Schweißnaht zu, so dass die möglichen Schweißtiefen, die ohne eine thermische Nachbehandlung der Schweißnähte erzielt werden können, auf etwa 50 mm limitiert sind. Höhere Nahttiefen sind potentiell mittels Elektronenstrahlschweißens möglich. Die sichere Beherrschung der hierbei auftretenden Eigenspannungen erfordert allerdings einen sehr hohen Aufwand beim schweißtechnischen Verschluss der Behälter und gegebenenfalls zum Nachweis des Spannungszustandes in der Fügezone. Zusätzlich führt die Wärmeeinbringung thermischer Fügeprozesse zu einer Grobkornbildung in der Fügezone, aus der sich eine lokale mechanische Schwächung des Werkstoffes ergibt. Beim Fügen mittels Reibrührschweißens ist die maximale Einschweißtiefe durch die auftretenden Kräfte am Werkzeug limitiert. Auch hier liegt die bei Kupfer prozesssicher fügbare Materialstärke bei etwa 50 mm. Die Materialstärke der Schweißnaht ist somit bisher auf diesen Wert limitiert. Auch bei Behältern mit einer höheren Wandstärke begrenzt die maximal mögliche Tiefe der Schweißnaht die wirksame Stärke der Korrosionsbarriere. andere Da metallische Werkstoffe, wie beispielsweise Gusseisen, bessere Eigenschaften bezüglich Strahlenabschirmung, Stabilität und nicht zuletzt Kosten besitzen, ist die technisch sinnvolle Materialstärke des Kupfers auf einen Wert knapp oberhalb der fertigbaren Tiefe der Schweißnaht von etwa 50 mm limitiert. [38], [40]

Somit wird beim generischen ENCON-K Behälterkonzept zur Tiefenlagerung in kristallinem Wirtsgestein ein koaxialer Behälteraufbau aus einem inneren Trag- und Abschirmbehälter mit einer äußeren Korrosionsschutzschicht aus Kupfer verfolgt. Als Verschlussvariante wurde das Reibrührschweißen gewählt, da sich mit diesem Verfahren, aufgrund der geringen Wärmeeinbringung, die homogensten Werkstoffeigenschaften zwischen Behälterkörper und der Schweißnaht erzielen lassen. Für den Trag- und Abschirmbehälter kann zum einen niedrig legierter Stahl zum Einsatz gebracht werden, zum anderen Gusseisen mit Kugelgraphit. Der ENCON-K orientiert sich bei der Wahl des inneren Materials am schwedischen KBS-3 Konzept bei dem Gusseisen gewählt wurde. Ursächlich für diese Entscheidung ist, dass zum Fügen des Zusammenbaus aus Innen- und Außenbehälter ein geringer Spalt zwischen diesen Bauteilen erforderlich ist. Dieses Spaltmaß ist so weit möglich zu minimieren. Um dieses Ziel zu erreichen, müssen beide Bauteile hohen Anforderungen an ihre Fertigungstoleranzen erfüllen. Gusseisen bietet, neben besseren Abschirmeigenschaften, eine bessere mechanische Bearbeitbarkeit im Vergleich zu den niedrig legierten Stählen und erleichtert so eine maßhaltige Fertigung des Innenbehälters. Der Nachteil der schlechten Schweißeignung des Gusseisens spielt beim innen liegenden Behälter keine Rolle. Auch der innere Abschirmbehälter muss zwar vor dem Einbringen in den äußeren Kupferbehälter verschlossen werden. Dieser Verschluss ist allerdings durch die Umschließung des Behälters vom äußeren Kupferbehälter keinem Korrosionsangriff ausgesetzt, somit kann der erforderliche Einschluss mittels einer verschraubten Dichtung erfolgen.

Ton und Tonstein

Für Tiefenlager im Ton und Tonstein werden in den internationalen Konzepten zwei unterschiedliche Materialgruppen für den Außenbehälter vorgeschlagen. In diesem Wirtsgestein tragen die geotechnische und die geologische Barriere in einem erheblichen Umfang zum Einschluss der Radionuklide bei. Langfristig übernehmen diese Barrieren die Funktion der Rückhaltung der Radionuklide. Aus diesem Grund ist es in diesem Wirtsgestein ausreichend, wenn der Nachweis der Dichtheit der Behälter über den Zeitrahmen der geplanten Bergbarkeit hinaus bis zu dem Zeitpunkt erbracht werden kann, an dem der Einschluss durch die geologische und geotechnische Barriere gewährleistet ist. International wird als Auslegungslebensdauer für Behälter im Ton/Tonstein eine Zeitdauer in der Größenordnung von 10.000 Jahren genannt [64]. Dadurch, dass die umgebenden Barrieren bereits direkt nach der Verfüllung den Zufluss von Wasser weitestgehend unterbinden, stellen sich in einem Tiefenlager im Ton/Tongestein reduzierende Bedingungen ein.

Somit kann für den Außenbehälter, wie im kristallinen Wirtsgestein, der Werkstoff Kupfer verwendet werden, der unter diesen Bedingungen über einen sehr hohen Korrosionswiderstand verfügt. Der Nachweis der Langzeitbeständigkeit kann im Ton/Tonstein, anders als im Kristallin, jedoch nicht anhand natürlicher Analoga geführt werden. Die Korrosion von Kupfer wird überwiegend über den Zutritt von Sulfid und Sauerstoff an die Behälteroberfläche bestimmt [40]. Die potentielle Dauerhaftigkeit dieses Werkstoffes ist in Tiefenlagern im Tonund Tonstein, auf Grund des Einschlussverhaltens des Wirtsgesteins, jedoch nicht zwingend erforderlich. Mehrere internationale Behälterkonzepte, beispielsweise das der französischen ANDRA, sehen demnach auch niedrig legierter Stähle für den Außenbehälter vor [64]. Bei der Auslegung des generischen ENCON-T Behälters war demnach abzuwägen, welcher der zwei Varianten der Vorzug zu geben ist.

Eines der Hauptentscheidungskriterien für die Materialwahl ergibt sich indirekt aus der Geologie. Ton/Tonstein besitzt von allen der im Rahmen von ENTRIA betrachteten Wirtsgesteinen die niedrigste Wärmeleitfähigkeit und Temperaturbelastbarkeit. Hieraus ergibt sich für die ENCON-T-Behälter eine niedrige Beladung und somit eine sehr hohe Behälterzahl. Da die Materialstärken, auf Grund des nicht linearen Zusammenhangs zwischen Materialstärke und Abschirmwirkung, nicht in gleichem Maße reduziert werden können, spielen ökonomische Aspekte der Fertigung der Behälter bei diesem Wirtsgestein eine große Rolle. Aus materialwissenschaftlicher Sicht bietet der niedrig legierte Stahl Vorteile bei der Festigkeit und liegt bei der Verarbeitbarkeit mit Kupfer etwa gleichauf. Kupfer besitzt gegenüber den Stählen unter den meisten Umgebungsbedingungen einen höheren Korrosionswiderstand. Die geforderte Behälterstandzeit von mindestens 500 Jahren lässt sich, unter den reduzierenden Bedingungen im Tiefenlager, auch bei Behältern aus niedrig legiertem Stahl bereits

mit einer Wandstärke von wenigen Zentimetern erzielen. Für den Außenbehälter des ENCON-T erfolgte somit die Festlegung auf niedrig legierten Stahl als Werkstoff. Auch bei diesem Außenbehälter aus Stahl stellt die Tiefe von reproduzierbar ausführbaren, artgleichen und spannungsarmen Schweißnähten einen der wichtigen Anhaltspunkte für die Wandstärke des Außenbehälters dar. In Abhängigkeit vom Schweißverfahren ergibt sich eine bezüglich der Korrosion wirksame Wandstärke in der Größenordnung von maximal 10-20 cm. Weitere Kriterien für die Wandstärke sind die erforderliche Abschirmwirkung und die mechanische Festigkeit des Behälters. Erste überschlägige Rechnungen ergeben eine für die Abschirmung erforderliche Gesamtwandstärke von etwa 450 mm für den Außenbehälter des ENCON-T. Die für die mechanische Festigkeit erforderliche Wandstärke wird von den potentiell auftretenden Lastfällen und der Geometrie der Behälter beeinflusst. Allerdings übertreffen bereits Behälter mit Wandstärken in der Größenordnung von 10-20 cm die mechanischen Anforderungen [65], [66]. Die für die Außenbehälter anhand der Abschirmwirkung ermittelte Gesamtwandstärke von etwa 400-500 mm kann somit im Rahmen der Konzeption der generischen Behälterkonzepte als abdeckend für die mechanische Festigkeit betrachtet werden.

Monolithische, einteilige Behälter mit einer solchen Wandstärke können aus niedrig legierten Stählen, wenn überhaupt, nur unter sehr großem Aufwand gefertigt werden. Da der erforderliche Verschluss die bezüglich der Korrosion wirksame Materialstärke limitiert, bietet sich auch für den EN-CON-T ein konzentrischer Aufbau des Behälters aus einer äußeren Korrosionsbarriere und einem innenliegenden Abschirmbehälter an. Als Material für den Abschirmbehälter kommt beim ENCON-K Gusseisen mit Kugelgraphit zum Einsatz. Dieses Material wurde auch von der französischen ANDRA vorgeschlagen, da es vorteilhafte Fertigungseigenschaften mit guten Abschirmeigenschaften kombiniert [67].

Salzgestein

Bei der Konzeption des Außenbehälters für den ENCON-S, der für ein Tiefenlager im Salzgestein vorgesehen ist, sind die Besonderheiten dieses Wirtsgesteins zu beachten.

Im Salz übernehmen die geotechnische und die geologische Barriere bereits wenige Jahre nach der Verfüllung des Tiefenlagers den Einschluss der Radionuklide und isolieren die Behälter von potentiellen Zutrittswässern. Der Außenmantel des ENCON-S-Behälters muss somit nur einen vergleichsweise geringen Widerstand gegen Korrosionsangriffe bieten. Auf der anderen Seite ermöglicht das Wirtsgestein Salz, mit seiner hohen Wärmeleitfähigkeit und Temperaturbelastbarkeit, eine sehr hohe Wärmeleistung und somit auch ein hohes radiologisches Inventar der Behälter. Aus dem hohen Behälterinventar ergeben sich für den ENCON-S die größten Behälterabmessungen. Bereits der Behälterschacht weist einen Durchmesser von über 55 Zentimetern auf. Aus der hohen Aktivität und dem hohen Platzbedarf des Inventars ergeben sich besonders hohe Anforderungen an das Abschirmmaterial des Außenbehälters, da es eine besonders gute Abschirmwirkung bieten muss. Nur so lassen sich vergleichsweise geringe Wandstärken realisieren und somit Abmessungen und Gewicht des Gesamtbehälters auf handhabbare Werte begrenzen.

Mit den Werkstoffen Gusseisen mit Kugelgraphit sowie niedrig legierten Stählen lassen sich die materialspezifischen Anforderungen an den Außenbehälter des ENCON-S-Behälters erfüllen. Auch ein Außenbehälter aus Kupfer ist grundsätzlich denkbar, da auch dieser Werkstoff unter reduzierenden Bedingungen über einen hohen Widerstand gegen Korrosion besitzt. Allerdings kann hier die Korrosionsbeständigkeit des Kupfers nicht, wie im kristallinen Gestein, anhand natürlicher Analoga nachgewiesen werden, so dass für die Beständigkeit des Werkstoffes vergleichbare Nachweise wie bei Stählen
oder Gusseisen geführt werden müssen. Die hohen Kosten für den Werkstoff Kupfer sprechen gegen die Verwendung dieses Werkstoffes als Korrosionsbarriere im Salzgestein.

Aus dem niedrigen Feuchtegrad im Salzstein ergeben sich für Behälter aus Gusseisen sehr niedrige Korrosionsraten. Auch ohne eine zusätzliche korrosionsfeste Umschließung können somit sehr hohe Behälterstandzeiten prognostizieren werden. Allerdings ist auch im Salzstein die Rückholbarkeit beziehungsweise Bergbarkeit der Behälter über einen Zeitrahmen von bis zu 500 Jahren vorgesehen. Auch hier ist ein für diesen Zeitraum dichter Einschluss der Radionuklide innerhalb der technischen Barriere erforderlich. Bei einem Abschirmbehälter aus Gusseisen ist nur ein mechanischer Verschluss mittels eines verschraubten Deckels und Dichtungen möglich. Ein solcher Verschluss gewährleistet den sicheren Einschluss der Radionuklide über mehrere Jahrzehnte, allerdings kann der Nachweis der Einschlusswirkung über einen Zeitrahmen von mehreren hundert Jahren nicht geführt werden, so dass der Verlust der Dichtfunktion über diesen Zeitrahmen angenommen werden muss.

Nur bei einem stoffschlüssigen, artgleichen Verschluss kann der dichte Einschluss der Radionuklide über diesen Zeitrahmen angenommen werden. Mit der verschweißten Tragstruktur aus Edelstahl besteht bereits eine erste, gasdichte Barriere im Behälterinneren. Die Aufgabe dieser Barriere ist der sichere Einschluss des Inventars während der Konditionierung der Behälter. Durch die geringe Materialdicke und die Neigung von Edelstahl zu lokalisierter Korrosion unter Einfluss von chloridhaltigen Lösungen kann der Nachweis der Korrosionsfestigkeit für den Innenbehälter im salinaren Umfeld nicht geführt werden. Vielmehr muss der Innenbehälter sicher vor einem Laugenzutritt geschützt werden, damit seine Funktion für die, gegebenenfalls im Rahmen der Rückholung beziehungsweise Bergung erforderliche, Rekonditionierung erhalten bleibt. Somit benötigt auch der Außenbehälter des ENCON-S eine dicht verschweißte Korrosionsbarriere zum Einschluss der Radionuklide. Diese wird, wie beim ENCON-T, aus niedrig legiertem Stahl gefertigt. Die Korrosionsfestigkeit spielt im Salzstein nur eine untergeordnete Rolle. Dennoch wurde für die Korrosionsbarriere aus Stahl eine mit gut 10 Zentimetern vergleichsweise hohe Materialstärke gewählt, wodurch zum einen der Nachweis der langfristigen Dichtheit erleichtert wird. Zum anderen erzielt der Behälter bereits hierdurch eine hohe Stabilität, so dass er nicht auf die Stützwirkung des Gusseisenbehälters angewiesen ist. Der Abschirmbehälter kann somit insbesondere bezüglich seiner Abschirmwirkung optimiert werden. Die Optimierung des Au-Benbehälters auf Abschirmung, geringes Behältergewicht und eine rationelle, sichere Fertigung führt beim ENCON-S zu einer veränderten Abfolge im koaxialen Aufbau des Außenbehälters.

Durch die, aus dem niedrigen Feuchtegrad resultierenden, geringen Korrosionsanforderungen ist es im Salzstein möglich, den gusseisernen Abschirmbehälter als äußere Schale des Außenbehälters zu verwenden. Dieser umschließt den dicht verschweißten Stahlbehälter in seinem Inneren. Hierdurch lässt sich, trotz der höheren Beladung und einer Gesamtwandstärke, die nur wenige Millimeter höher ist als bei den anderen ENCON-Tiefenlagerbehältern, eine ausreichende Abschirmwirkung erzielen. Weiterhin ergeben sich große Vorteile für die Fertigung aus dieser Anordnung, zum einen reduziert sich hierdurch die Größe und der Durchmesser des dicht zu verschweißenden Stahlbehälters und somit die Abmessungen der zum Verschluss erforderlichen Schweißnaht. Zum anderen ist es bei einem Außenbehälter aus Gusseisen, auf Grund dessen guter Zerspanbarkeit sowie der Eignung dieses Werkstoffes zur urformenden Fertigung, möglich die erforderlichen Tragstrukturen als integralen Bestandteil des Behälters zu fertigen.

Aufbau des ENCON-TLB Transport- und Lagerbehälters

Bei der Gestaltung des ENCON-Transport- und Lagerbehälters (ENCON-TLB), der im Konzept der langfristigen Oberflächenlagerung zum Einsatz kommen soll, mussten auch Anforderungen berücksichtigt werden die stark von denen der Tiefenlagerbehälter abweichen. So muss im ENCON-TLB eine, verglichen mit den Behältern zur geologischen Tiefenlagerung, wesentlich höhere Inventarmenge untergebracht werden. Zusätzlich werden diese Behälter zugänglich gelagert, so dass der Behälter, insbesondere zur Minimierung der radiologischen Gefährdung der Mitarbeiter, hohen Sicherheitsansprüchen gerecht werden muss. Hieraus folgen insbesondere hohe Anforderungen an die Stabilität der Behälter und ihre Abschirmwirkung. Die Korrosionsfestigkeit des Behälters spielt allerdings beim ENCON-TLB nur eine untergeordnete Rolle. Durch die Lagerung in der trockenen, wenig korrosionsfördernden Atmosphäre eines speziell für die langfristige Zwischenlagerung konzipierten Gebäudes ist nur ein sehr geringer korrosiver Angriff zu erwarten. Zusätzlich existiert bei dieser Art der Lagerung die Möglichkeit, auftretende Schäden an Korrosionsschutz oder Dichtsystem der Behälter durch ein aktives Monitoring sowie im Rahmen regelmäßiger Inspektionen rechtzeitig zu identifizieren und die Behälter gegebenenfalls instand zu setzen. Allerdings spielt der Aspekt der Zugänglichkeit des eingelagerten Inventars beim ENCON-TLB eine führende Rolle. Der ENCON-TLB ist nicht als Endlagerbehälter konzipiert. Am Abschluss der langfristigen Zwischenlagerung stehen also immer die Entladung des Behälters und eine weitere Behandlung des eingelagerten Inventars.

Behälterschacht / Tragbehälter des ENCON-TLB

Während bei den ENCON-Behältern der Ansatz verfolgt wird, das Inventar möglichst raumsparend in einem zylindrischen

Tragbehälter einzuschließen, wird beim ENCON-TLB ein anderer Ansatz verfolgt. Auf Grund der Notwendigkeit der späteren Entnahme des Inventars aus dem Behälter und der hohen Wahrscheinlichkeit, dass das Inventar eines ENCON-TLB im Anschluss in mehrere, kleinere Tiefenlagerbehälter umgepackt werden muss, sollte es beim ENCON-TLB möglich sein, das Inventar in kleineren Einheiten entnehmen zu können. Hierzu muss der Tragbehälter mehrere Schächte aufweisen, welche jeweils einen Teil des Inventares aufnehmen können. Auch hier ist die Entscheidung zu treffen, ob die kompletten Brennelemente oder die gebündelten, vereinzelten Brennstäbe in den Behälter eingebracht werden sollen. Um diese Entscheidung zu treffen, ist es erforderlich, die aktuellen Lagerungsbedingungen des Inventars als Eingangsgröße der zukünftigen Langzeitzwischenlagerung zu betrachten. Derzeit befinden sich die meisten Brennelemente in den Trockenlagern an den Standorten der einzelnen Kernkraftwerke. Ein weiterer großer Teil befindet sich noch in den Nasslagern zur Abklinglagerung. Die Integrität der Hüllrohre der Brennstäbe ist zum heutigen Zeitpunkt beim größten Teil dieser Brennelemente gewährleistet. Es ist bereits heute abzusehen, dass die spätere Konditionierung der Brennelemente in Endlagerbehälter die sichere Handhabbarkeit des Inventars sowie einen möglichst einfachen Zugang zu dem Inventar erfordert. Über den Zeitrahmen der langfristigen Zwischenlagerung von mindestens 100 Jahren ist davon auszugehen, dass sich die Integrität der Hüllrohre reduziert. Demnach sind in den nächsten Jahren weiterführende Untersuchungen durchzuführen, um die Haltbarkeit der Brennstabhüllrohre über den Zeitrahmen der langfristigen Zwischenlagerung abschätzen zu können. Bei den stärker thermisch sowie mechanisch belasteten Brennstäben ist voraussichtlich ein zusätzlicher, dichter Einschluss anzustreben, während für andere Brennelemente voraussichtlich der Nachweis erbracht werden kann, dass bei diesen die Integrität und somit die

Handhabbarkeit der Brennstäbe auch nach der Zeitspanne der Oberflächenlagerung gewährleistet ist. Um diese beiden Klassen von Brennelementen einlagern zu können, werden im Tragkorb des ENCON-TLB Schächte zur Aufnahme kompletter Brennelemente vorgesehen. In diesen Schächten können alternativ in einem Köcher, einem dicht verschraubten oder verschweißten Overpack, wie er bereits heute für beschädigte Brennelemente vorgesehen ist, auch die vereinzelten Brennstäbe eines Brennelementes eingelagert werden. Hierdurch wird eine hohe Flexibilität bezüglich des Konditionierungszustandes der radioaktiven Abfälle erzielt [26]. Bei der Materialauswahl für den Tragkorb des ENCON-TLB gelten vergleichbare Anforderungen wie bei den ENCON-Tiefenlagerbehältern. Die Fertigung der einzelnen Schächte des Tragkorbes erfolgt nach dem heutigen Stand der Technik durch fügende Fertigungsverfahren. Für den Tragkorb kommt somit rostfreier Stahl zum Einsatz, da dieser Werkstoff eine hohe mechanische Festigkeit mit ausreichender Korrosionsfestigkeit und einer guten Schweißeignung verbindet.

Außenbehälter des ENCON-TLB

Die Hauptforderungen an den Außenbehälter des ENCON-TLB sind eine ausreichende Widerstandskraft gegen die im Rahmen von Lagerung und Transport auftretenden mechanischen Belastungen und eine gute Abschirmwirkung. Beide Eigenschaften sind Grundvoraussetzung einer sicheren Handhabung der Behälter. Des Weiteren muss der sichere Einschluss des Inventars über die Dauer der langfristigen Zwischenlagerung sowie die Zugänglichkeit des Inventars im Rahmen der Konditionierung für die spätere Endlagerung gewährleistet sein. Als Werkstoffe für den Außenbehälter des ENCON-TLB werden niedrig legierte Stähle sowie Gusseisen mit Kugelgraphit favorisiert. Aus der sehr hohen Aktivität des Inventars ergibt sich das Erfordernis einer guten Abschirmwirkung des Außenbehälters. Hieraus resultiert auch eine sehr hohe erforderliche Materialstärke von über 300 mm. Die hohe mögliche Wärmeleistung des Behälterinventares erfordert zusätzlich eine gute Wärmeleitung und Wärmeabgabe des Außenbehälters. Bei einer mehrschaligen, koaxialen Bauweise ergibt sich zwangsläufig ein geringer Spalt zwischen den beiden Behälterkörpern. Dieser Spalt kann die Wärmeabgabe an die Umgebung erheblich beeinflussen. Zusätzlich ist der ENCON-TLB so auszulegen, dass auch ein Transport über öffentliche Straßen möglich ist. Anders als bei Transporten auf dem Betriebsgelände können hier, beispielsweise in Folge von Unfällen, wesentlich höhere Belastungen auf den Behälter auftreten. Bei einer zweischaligen Bauweise des Behälters müssen die hierbei auftretenden Belastungen fast ausschließlich von dem äußeren Behälter aufgenommen werden, da keine kraftschlüssige Verbindung zwischen innerem und äußerem Behälter besteht. Hierdurch ergibt sich für die zweischalige Bauweise aus Stabilitätsgründen eine höhere erforderliche Gesamtwandstärke und somit ein sehr hohes Transportgewicht, welches weit über dem Gewicht der heutigen CASTOR-Behälter liegen würde. Diese hohe Behältermasse würde es zwingend erforderlich machen, die derzeit an den Standorten vorhandenen Krananlagen, Transportwege etc. für dieses höhere Gewicht zu ertüchtigen. Aus diesen Gründen wird beim ENCON-TLB, abweichend von den ENCON-Tiefenlagerbehältern, die Konzeption mit einem monolithischen Außenbehälter verfolgt. Auf Grund der höheren Abschirmwirkung und der besseren Eignung zur Fertigung dickwandiger Bauteile wird für den Außenbehälter des EN-CON-TLB die Verwendung von Gusseisen als Behältermaterial vorgesehen.

Konstruktive Details der ENCON-Behälter

Aus der zuvor beschriebenen Materialauswahl ergibt sich für den ENCON-TLB ein monolithischer Aufbau des Behälters. Für alle ENCON-Tiefenlagerbehälter ist im Gegensatz hierzu ein koaxialer, zweiteiliger Aufbau der Außenbehälter vorgesehen. Die ausgewählten Materialien der generischen ENCON-Tiefenlagerbehälter sind noch einmal in der nachfolgenden Tabelle zusammengefasst.

	ENCON-K	ENCON-S	ENCON-T	ENCON-TLB
Äußerste Barriere	Kupfer	Gusseisen	Niedrig legierter Stahl	Gusseisen
Innerer Behälter	Gusseisen	Niedrig legierter Stahl	Gusseisen	
Tragkorb	rostfreier Stahl	rostfreier Stahl	rostfreier Stahl	rostfreier Stahl

Tabelle 5: Werkstoffklassen der ENCON-Lagerbehälter

Die den innersten Tragkorb umschließenden Schichten erfüllen in den verschiedenen Lagerumgebungen allerdings unterschiedliche Funktionen. Aus der Behälterhandhabung und der Berücksichtigung der Option der Rückholung beziehungsweise der Rekonditionierung des Inventars resultieren Anforderungen, die bei der Auslegung und Gestaltung der jeweiligen Behälter berücksichtigt werden müssen.

Behälterverschluss

Jeder ENCON-Lagerbehälter muss anforderungsgerecht verschlossen werden. Allerdings unterscheiden sich zwischen den Verschlüssen der einzelnen Behälter die Anforderungen, beispielsweise an die Dauerhaftigkeit des Verschlusses, erheblich. Grundsätzlich kann der Verschluss entweder mechanisch und/oder stoffschlüssig erfolgen. Mechanische Verschlüsse können prinzipiell bei allen Behälterwerkstoffen zum Einsatz kommen und sind von Vorteil, wenn der Verschluss wieder geöffnet werden muss. Ein stoffschlüssiger Verschluss bietet insbesondere Vorteile bei der Dauerhaltbarkeit. Er erfordert allerdings, dass das Behältermaterial eine gute Schweißeignung besitzt und kann somit nicht bei allen Behältermaterialien Anwendung finden. Zusätzlich muss beachtet werden, dass stoffschlüssige Verschlüsse nur zerstörend wieder geöffnet werden können. Somit ist für jeden einzelnen Verschluss an den ENCON-Behältern abzuwägen, welche Verschlussvariante zum Einsatz kommen soll.

Bei der Auslegung des ENCON-TLB ist zu beachten, dass die langfristige Zwischenlagerung keine finale Entsorgungsoption darstellt. Somit ist es erforderlich, das Inventar nach dieser langfristigen Zwischenlagerung aus den ENCON-TLB entnehmen zu können, um es für die spätere Endlagerung zu konditionieren oder es einer anderen Entsorgungsoption zuführen zu können. Beim ENCON-TLB ist somit die Möglichkeit vorzusehen, dass ein verschlossener Behälter sicher geöffnet und gegebenenfalls auch erneut verschlossen werden kann.

Aus der Option der Rückholbarkeit ergibt sich auch für die ENCON-Tiefenlagerbehälter die Forderung, das eingelagerte Inventar mit dem Ziel einer Rekonditionierung sicher in einer heißen Zelle aus dem Lagerbehälter entnehmen zu können. Zusätzlich kann eine Öffnung der Behälter auch erforderlich werden, um genauere Kenntnisse über den aktuellen Zustand des Behälterinventares zu gewinnen. Grundvoraussetzung hierfür ist, dass der verschlossene Behälter wieder geöffnet werden kann.

Bei verschraubten Deckelsystemen ist eine Öffnung des Verschlusses durch das Entfernen der Schrauben möglich, eine Schädigung des Inventares kann hierbei ausgeschlossen werden. Aber auch verschweißte Behälter können ohne eine Schädigung des Inventares wieder geöffnet werden, solange die spätere potentielle Öffnung bereits bei der Gestaltung des Schweißverschlusses berücksichtigt worden ist. Während eine Schraubverbindung allerdings ohne Einschränkungen wieder verschlossen werden kann, ist dies bei einem Schweißdeckel in der Regel nicht mehr so einfach möglich.

Stoffschlüssig verschlossene Behälter

Behälter, die stoffschlüssig, also beispielsweise mittels schweißtechnischer Verfahren, verschlossen werden, können ausschließlich zerstörend geöffnet werden. Der Behälter kann hierbei beispielsweise mittels spanender Verfahren geöffnet werden. Diese Trennverfahren eignen sich gut zum Öffnen der Behälter im Rahmen einer Rekonditionierung, da die Trennung sehr definiert geführt werden kann. Auch die Wärmeeinbringung in das zu trennende Bauteil kann hierbei limitiert werden. Prinzipiell kann also durch eine entsprechende Gestaltung des Deckelbereiches sichergestellt werden, dass eine Schädigung des Inventars beim Öffnen des Behälters ausgeschlossen wird. Um dies zu gewährleisten, ist es elementar, den Deckelbereich so zu gestalten, dass ausreichend Platz für den Trennschnitt vorhanden ist. Durch weitere gestalterische Details am Behälter kann eine Optimierung der Arbeitsvorgänge der Rekonditionierung insbesondere in Bezug auf Strahlenschutz- und Sicherheitsaspekte erfolgen. In der nachfolgenden Abbildung sind unterschiedliche Gestaltungsvarianten des Behälterverschlusses dargestellt. Die Vorzüge und Nachteile dieser Varianten werden in Folgenden kurz beschrieben.

Abbildung 8: Unterschiedliche Varianten des stoffschlüssigen Deckelverschlusses und der Trennebenen

Bei den ersten beiden Varianten (1A und 1B) des stoffschlüssigen Verschlusses wird der Behälterdeckel auf den zu verschließenden Schacht aufgelegt. Der Absatz des Deckels dient hierbei der Zentrierung und bildet zusätzlich ausreichend Raum oberhalb des Inventares um den Behälter mittels einer Säge oder eines Trennschleifers öffnen zu können. Bei beiden Varianten verlaufen die Schweißnähte mit einer horizontalen Orientierung. Hierdurch ergeben sich Nachteile beim Behälterverschluss und bei der Rekonditionierung der Behälter im Vergleich zu den Varianten mit eingesetztem Deckel, auf die nachfolgend eingegangen wird.

Die Beladung und der Verschluss der Behälter erfolgen stehend, da in dieser Orientierung nur minimale Biege- oder Querkräfte auf die Brennelemente beim Einführen in den Behälter auftreten. Der Schweißdeckel wird anschließend auf den Behälter aufgelegt und mit diesem verschweißt. Hierbei ergibt sich eine Querposition der Schweißnaht, die soge-

nannte PC-Lage. Der Zugang zu der Schweißnaht wird hierdurch erschwert. Auch bezüglich der möglichst porenfreien Ausführung der Schweißnaht stellt die PC-Lage nach EN ISO 6947 nicht das Optimum dar [48]. Die Verschlussvarianten 1A und 1B bieten allerdings Vorteile bezüglich der Wärmeeinbringung in den Behälter, da die Wärme des Schweißprozesses über vergleichbare Querschnitte an beiden Nahtflanken abgeleitet werden kann. Somit kann, im Vergleich mit Behältern die eine vertikale Nahtorientierung aufweisen, ein geringeres Niveau an Eigenspannungen im Behälter erzielt werden. Bezüglich der Fertigung besitzt die Version mit dem aufgelegten Deckel den Vorteil, dass der Deckel im Rahmen der Konditionierung, beispielsweise über eine kleine Griffmulde am oberen Rand von außen gegriffen und manipuliert werden kann. Während die linke Abbildung die auf geringes Gewicht und Baugröße optimierter Variante 1A darstellt, illustriert die rechte Abbildung eine bezüglich einer potentiellen Behälteröffnung im Rahmen der Rückholung optimierte Version 1B. In den Behälterkörper wird ein zweiter Absatz eingebracht. Auf diesem liegt der untere, leicht vergrößerte Absatz des Deckels im Behälter auf. Hierdurch entsteht, wie bei Version 1A, ausreichend Platz für das Trennwerkzeug zum Öffnen des Behälters. Durch die Auflage am unteren Absatz wird der Deckel beim Auftrennen des Behälters zusätzlich gestützt. Hierdurch reduziert sich das Risiko des Verklemmens des Trennwerkzeuges. Der Deckel behält auch beim Abtrennen eine feste Auflage und Zentrierung. Zusätzlich besitzt die Variante 1B während des Auftrennens eine etwas bessere Abschirmwirkung für die Direktstrahlung des Inventars. Allerdings erfordert diese Variante eine größere Bauhöhe des Deckelbereiches und eine etwas höhere Wandstärke des Behälters.

Die beiden unteren Abbildungen 2A und 2B zeigen mögliche Deckelvarianten mit eingesetztem Deckel, die eine senkrechte Ausrichtung der Schweißnaht besitzen. Hierzu wird der Behälterkörper im Deckelbereich als Kragen nach oben weitergeführt. Dieser Kragen dient als Schweißflansch für den Deckel. Aus Gründen der Aufrechterhaltung einer möglichst homogenen Korrosionsbarriere muss der Kragen von seiner Breite her mindestens der Tiefe der Schweißnaht entsprechen. Bei der Konditionierung wird der Deckel in den Behälterkörper eingesetzt und an seinem Rand mit dem Behälter verschweißt. Hierdurch kann der Verschluss des Deckels in der schweißtechnisch vorteilhaften Wannenlage erfolgen. Beide dargestellten Varianten besitzen einen gestuften Deckel. Der erste Deckelabsatz ist auch bei den Varianten 2A und 2B als Auslauf für das Trennwerkzeug erforderlich. Gleichzeitig bildet diese Stufe des Absatzes die Schweißbadsicherung der Schweißnaht. Bei der ersten, bauraumoptimierten Variante 2A entspricht der Durchmesser des unteren Absatzes des Deckels dem Schachtdurchmesser des Lagerbehälters. Der Deckel liegt somit oberhalb des für die Öffnung des Behälters vorgesehenen Bereiches auf. Somit muss der obere, abzutrennende Bereich des Behälters beim Öffnen gestützt werden, um ein Verklemmen des Schneidwerkzeuges in der Schnittfuge zu verhindern.

Die Variante 2B stellt wiederum eine auf die Rekonditionierung der Behälter optimierte Verschlussvariante dar. Der untere Absatz des Deckels liegt hier auf einer zusätzlichen Stufe im Behälterkörper auf. Diese Auflage bleibt erhalten, wenn der Behälterkörper spanend geöffnet wird. Die Gefahr des Verklemmens des Trennwerkzeuges wird hierdurch erheblich reduziert. Somit bietet Variante 2B Vorteile bei der Öffnung der Behälter, erfordert durch den zweiten Absatz im Behälterkörper allerdings zusätzliche Wandstärke.

Bei der Auswahl der Variante des Deckelverschlusses für die verschiedenen ENCON-Behälter muss zwischen den verschiedenen Aspekten, wie Fertigung, Materialeinsatz und Rekonditionierung, abgewogen werden. Die Deckelvarianten 2A und 2B mit eingesetztem Deckel erfordern, verglichen mit Konzepten mit aufgesetztem Deckel, zwangsläufig eine höhere Wandstärke. Aus diesem Grund werden die Varianten mit eingesetztem Deckel bei den Behältern aus Stahl favorisiert, die ohnehin eine vergleichsweise hohe Materialstärke aufweisen und bei denen auf Grund der zusätzlichen Wandstärke kaum Produktions- oder Kostennachteile zu erwarten sind. Hierbei wird die Variante 2B für den Stahlbehälter des ENCON-T und des ENCON-S vorgesehen, da auf Grund der hohen Masse des dickwandigen Deckels ein Verkanten des Trennwerkzeuges bei der Variante 2A nur schwer zu vermeiden wäre.

Bei dünnwandigeren Behältern, wie dem Außenbehälter des ENCON-K sowie der inneren Tragstruktur aller ENCON-Behälter, würde die Konstruktion mit eingesetztem Deckel zu einer erheblichen Zunahme der Materialstärke führen. Hierdurch erhöht sich zum einen die Baugröße der Behälter, was insbesondere beim Innenbehälter kritisch wäre. Außerdem folgt aus der höheren Materialstärke ein gesteigerter Fertigungsaufwand für den Behälterkörper. Auf der anderen Seite resultieren aus der geringeren Materialstärke dieser Behälter vergleichsweise geringe Schweißnahttiefen. Diese können auch in der unvorteilhaften PC-Lage sicher geschweißt werden. Aus diesen Gründen wird für die Schweißdeckel dünnwandigerer Behälter die Variante 1A mit dem aufgesetzten Deckel bevorzugt. Auf den zusätzlichen Behälterabsatz der Variante 1B kann verzichtet werden, da die vergleichsweise leichten Schweißdeckel während des Trennschnittes auch

über externe Haltevorrichtungen sicher gestützt werden können und die Wahrscheinlichkeit eines Verkantens der Schneidwerkzeuge sehr gering ist.

Mechanisch verschlossene Behälter

Der mechanische Verschluss von Behälterdeckeln erfolgt in der Regel über Schraubverbindungen mit eingepasstem Dichtungssystem. Durch das Anziehen der Schrauben wird der Deckel gegen den Behälterkörper gedrückt und eine Vorspannung auf die Dichtung aufgebracht. Für alle mechanisch verschlossenen Behälter gilt, dass die Komponenten des Verschlusses, also die Schrauben und Dichtungen, bedingt durch ihre geringe Materialstärke und ihre komplexe geometrische Struktur im Vergleich zu Behälterkörper und Deckel einer schnelleren Degradation unterliegen. Werden die Komponenten des mechanischen Verschlusses korrosiven Medien ausgesetzt, verlieren sie somit vergleichsweise schnell ihre Funktionsfähigkeit. Für den geschraubten Deckelverschluss des CASTOR® Behälters wurde bereits eine Haltbarkeit von 40 Jahren unter den definierten Umgebungsbedingungen eines Zwischenlagers nachgewiesen [68], [69]. Durch eine Optimierung der Verschlusskomponenten kann der Zeitrahmen für den der sichere Verschluss gewährleistet werden kann, auch unter Tiefenlagerbedingungen, voraussichtlich auf mehrere Jahrzehnte bis hin zu wenigen Jahrhunderten verlängert werden. Ein Nachweis der langfristigen Dichtheit eines solchen Verschlusses über diesen Zeitrahmen hinaus ist auf Grund der, vom Wirkprinzip vorgegebenen, geringen Querschnitte der Dichtungen ausgeschlossen. Der mechanische Verschluss ist somit nur dort sinnvoll, wo eine langfristige Dichtheit des Behälters über mehrere Jahrhunderte hinweg nicht zwingend erforderlich ist, andererseits der einfache, schnelle Verschluss und die Möglichkeit zum zerstörungsfreien Öffnen des Behälters von Vorteil ist. Beim ENCON-Behälterkonzept treffen diese Bedingungen ausschließlich auf den Abschirmbehälter der Tiefenlagerbehälter sowie den Außenbehälter des ENCON-TLB zu.

Auch für den mechanischen Verschluss kann der Deckel, wie in der nachfolgenden Abbildung dargestellt, sowohl als aufgesetzte sowie als eingesetzte Variante ausgeführt werden. Das Beispiel stellt den geschraubten Verschluss eines Abschirmbehälters dar. Hier ist bei beiden Varianten ein gestufter Deckel vorgesehen. Dieser ermöglicht die Erzielung der zur Abschirmung erforderlichen Materialstärke unter gleichzeitiger Verwendung von vergleichsweise kurzen Schrauben. Zusätzlich wird hierdurch ein gestufter Verlauf der Trennfuge zwischen Deckel und Behälter erzeugt, der zu einer Optimierung der Abschirmung, insbesondere während der Montage, führt.

Abbildung 9: Geschraubter Deckelverschluss mit aufgelegtem und eingelegtem Deckel

Die linke Variante mit dem aufgesetzten Deckel bietet die Möglichkeit dünnerer Behälterwände und der leichten Handhabbarkeit des Behälterdeckels im Rahmen der Montage. Dieser Vorteil bei der Montage kann sich, insbesondere bei dem späteren Transport der Behälter, zu einem Nachteil entwickeln. Der freiliegende Deckel ist beim Transport des Behälters nicht geschützt. Kommt es, beispielsweise bei einem Sturz, zu Kräften die seitlich auf den Deckel einwirken, werden die Schrauben auf Scherung belastet und können somit leicht überlastet werden. Falls der Behälter in einem weiteren Behälter eingeschlossen wird, ist der Deckelbereich allerdings durch diesen umschließenden Behälter geschützt. Von dem so umschlossenen Behälter ist jedoch nur noch der Deckel zugänglich. Das gesamte Gewicht des Behälters lastet demnach bei Handhabungsvorgängen des inneren Behälters, beispielsweise beim Einsetzen dieses in den umgebenden Behälter, an den Schrauben des Deckels. Dies kann zu einer Überlastung der Schrauben und somit zu einer Gefährdung des dichten Einschlusses führen. Demnach ist es bei der Variante mit aufgesetztem Deckel nicht möglich, den inneren Behälter zu verschließen und diesen erst danach in den umgebenden Behälter einzustellen. Stattdessen muss der Zusammenbau aus dem zu verschraubenden Innenbehälter und dem äußeren Schweißbehälter bereits vor der Beladung mit dem Inventar montiert werden.

Hierdurch ergibt sich durch den überstehenden Außenbehälter faktisch dieselbe Konfiguration wie bei der auf der rechten Seite dargestellten Variante mit dem eingesetzten Behälterdeckel. Diese weist allerdings den Vorteil auf, dass der innere, verschraubte Behälterkörper auch nach dem Verschluss weiterhin von oben direkt zugänglich ist. Über Aufnahmebohrungen oder eine entsprechende Griffmulde am Behälterrand wird es möglich, den bereits verschlossenen Behälter weiterhin zu manipulieren. Somit kann der innere Behälter auch nach dem Verschrauben von oben in den äußeren Behälter eingesetzt und auch wieder aus diesem herausgezogen werden. Hierdurch kann flexibler auf eventuelle Probleme im Rahmen der Konditionierung der Behälter reagiert werden.

Beim ENCON-Behälterkonzept ist der geschraubte Behälterverschluss ausschließlich für die Abschirmbehälter der jeweiligen Tiefenlagerbehälter vorgesehen. Die weisen zur Erfüllung ihrer Funktion eine sehr hohe Materialstärke von mehr als 200 mm auf. Der prinzipiell geringere Bedarf an Bauraum der aufgesetzten Deckelvariante führt hier demnach nicht zu Vorteilen, da die Wandstärke der Behälter bereits durch die erforderliche Abschirmwirkung vorgegeben ist und nicht reduziert werden kann. Für alle verschraubten EN-CON-Deckelverschlüsse wurde somit die eingesetzte Deckelvariante gewählt. Beim ENCON-TLB, bei dem auf Grund der geringen Schweißeignung des monolithischen Außenbehälters aus Gusseisen ausschließlich mechanische Deckelverschlüsse zum Einsatz kommen können, ist aus Redundanzgründen der Verschluss mit einem doppelten eingesetzten Schraubdeckel vorgesehen.

Lastanschlagpunkte

Im vorangegangenen Kapitel wurde der Aspekt der Handhabung einzelner Behälterkomponenten bereits in Bezug auf das Öffnen des Deckels beschrieben. Während der Fertigung, der Beladung und Konditionierung müssen alle Behälterkomponenten manipuliert und positioniert werden. Um dies zu ermöglichen, müssen alle Einzelkomponenten der Behälter mindestens einen geeigneten Angriffspunkt besitzen, an denen ein Manipulator das Bauteil sicher aufnehmen kann. Nachfolgend wird auf Möglichkeiten zur Gestaltung der zur Handhabung erforderlichen Lastanschlagpunkte an den Bauteilen eingegangen und die Auswahl geeigneter Lastanschlagpunkte für die einzelnen Komponenten der ENCON-Behälter getroffen.

Prinzipiell muss jedes Bauteil so aufgenommen werden, dass alle im Rahmen der Handhabung auftretenden Kräfte und Momente in das Manipulatorsystem abgeleitet werden können. Es stehen verschiedene Möglichkeiten zur Verfügung, mit denen die Verbindung zwischen den Komponenten und dem Handhabungssystem hergestellt werden kann. Diese Varianten können grundsätzlich den drei Wirkprinzipien Formschluss, Kraftschluss und Stoffschluss zugeordnet werden. Auch eine Kombination der Wirkprinzipien ist möglich.

Stoffschlüssige Lastübertragung

Als stoffschlüssig werden hier alle Verbindungen bezeichnet, bei denen die Kräfte und Momente zwischen Bauteil und Manipulator über eine Schweiß-, Löt- oder Klebeverbindung übertragen werden [70]. Eine Verbindung mit Formschluss besitzt den Vorteil, dass sie selbst über eine kleine, zweidimensionale Fläche, an die nur geringe geometrische Anforderungen gestellt werden, vergleichsweise große Kräfte und Momente übertragen kann. Somit können auch Bauteile, welche nur von einer Seite zugänglich sind, einfach gehandhabt werden. Der große Nachteil einer stoffschlüssigen Verbindung besteht darin, dass diese nicht beziehungsweise nur mit hohem Aufwand wieder gelöst werden kann. Schweißverbindungen besitzen in der Regel die höchste flächenbezogene Festigkeit, diese kann annähernd denselben Wert erreichen wie der Grundwerkstoff. Bei niedrig legierten Stählen sind somit Festigkeitswerte von etwa 180 bis 350 MPa zu erzielen [48]. Dies bedeutet, dass ein Bauteil mit einer Masse von 2000 kg theoretisch bereits mit einem etwa einen Quadratzentimeter messenden Schweißpunkt gehoben werden könnte. Schweißverbindungen können allerdings ausschließlich mittels spanender Verfahren wieder gelöst werden, hierdurch kommt es zumindest zu einer oberflächlichen Schädigung des Bauteils. Auch über Lötverbindungen können vergleichsweise hohe Kräfte und Momente übertragen werden. Diese Verbindungen können durch Erwärmen wieder gelöst werden. Allerdings erfordern sie eine gute Vorbereitung

der Fügeflächen. Nach dem Trennen der Verbindung verbleibt ein Teil des Lotes auf dem Bauteil und muss gegebenenfalls mechanisch entfernt werden [70]. Klebeverbindungen besitzen gegenüber Löt- und Schweißverbindungen den Vorteil, dass weder beim Fügen noch beim Trennen eine Wärmeeinbringung in das Bauteil erforderlich ist. Zum Lösen der Klebeverbindung kann diese durch eine gezielte Überlastung gelöst und die verbleibenden Klebstoffreste auf dem Bauteil im Anschluss mechanisch oder chemisch gelöst werden. Im Gegensatz zu den Löt- und Schweißverbindungen kann bei Klebeverbindungen die Schädigung der Bauteiloberfläche vermindert oder sogar ausgeschlossen werden. Die übertragbaren Kräfte sind allerdings limitiert. Sie sind in großem Maße von den zu fügenden Materialien, dem gewählten Klebstoffsystem und den Einsatzbedingungen abhängig. Für das Fügen von Metallen und Einsatztemperaturen bis etwa 100 °C liegt die Klebverbindungsfestigkeit im Bereich zwischen etwa 5 MPa und 20 MPa. Somit eignen sich Klebeverbindungen nicht für die sichere Handhabung von schweren Behälterbauteilen. Löt- und Schweißverbindungen können die bei der Handhabung schwerer Bauteile auftretenden Kräfte sicher übertragen, bei diesen beiden Varianten kommt es allerdings zu einer Schädigung der Bauteile, sodass der Einsatzbereich dieser Verbindungen nicht im Bereich der Behältermontage und Beladung, sondern eher im Bereich der Rückholung und Rekonditionierung der Behälter liegt. [70]

Kraftschlüssige Lastübertragung

Als kraftschlüssig werden Verbindungen bezeichnet, bei denen die Kräfte und Momente zwischen Bauteil und Manipulator über Haftreibung übertragen werden. Die mittels Kraftschluss übertragbaren Kräfte sind vom Reibwert μ der betreffenden Materialpaarung sowie der Höhe der vom Greifer auf

das Bauteil übertragbaren Normalkraft abhängig. Der Reibwert µ liegt dabei bei Paarungen mit metallischen Werkstoffen üblicherweise zwischen etwa 0,15 (Stahl auf Stahl) und 0,6 (Bronze auf Grauguss) [70], [71]. Durch die Beschichtung der Kontaktflächen, beispielsweise mit Acrylkautschuk kann dieser gegebenenfalls auf einen Wert > 1 gesteigert werden. Hieraus ergibt sich, dass die erforderliche Normalkraft etwa um den Faktor 2-10 höher sein muss als die zu übertragende Reibkraft, um einen sicheren Reibschluss zu erzeugen. Das kraftschlüssige Greifen der Bauteile erfordert demnach eine gute Zugänglichkeit zu den Greifflächen, um die erforderlichen hohen Normalkräfte auf diese Flächen aufbringen zu können. Optimal ist die Gestaltung der Greifflächen als plane, parallel zueinander ausgerichtete Flächen. Praxisbeispiele zeigen, dass aber auch eine hiervon abweichende Gestaltung, bis hin zum Zylinder, mit Einschränkungen möglich ist [72]. In der nachfolgenden Abbildung ist die Funktionsweise eines solchen Greifers exemplarisch an einem auf reinem Kraftschluss basierenden Schwerlastgreifer dargestellt.

Abbildung 10: Funktion eines kraftschlüssigen Greifersystems

Bei dem abgebildeten, mechanischen Greifer erzeugt die Hebelkinematik aus der Gewichtskraft der Last die erforderliche Normalkraft auf die Greifflächen. Die kraftschlüssige Übertragung der notwendigen Manipulatorkräfte ist bei den meisten Behälterkomponenten möglich. Zur Klemmung sehr großer Bauteile, wie des Behälterkörpers, sind allerdings sehr große Normalkräfte erforderlich. Aus diesem Grund sind bei diesen Komponenten im Rahmen des ENCON-Behälterkonzeptes Aufnahmen vorgesehen, die einen zusätzlichen Formschluss beim Greifen dieser Teile ermöglichen.

Formschlüssige Lastübertragung

Als Formschluss bezeichnet man eine Lastübertragung über das Ineinandergreifen von mindestens zwei Verbindungspartnern. Auch bei einem Ausfall der Energieversorgung bleibt diese Verbindung bestehen. Alle Varianten der formschlüssigen Kraftübertragung bieten den Vorteil, dass sehr hohe Kräfte übertragen werden können. Bereits mit einer M20-Schraube kann eine Zugkraft in der Größenordnung von 200 kN (20 Tonnen) übertragen werden. Um einen Formschluss herstellen zu können, ist an dem zu handhabenden Bauteil eine entsprechende Aufnahme vorzusehen. [73]

Im einfachsten Fall werden an dem Bauteil Löcher oder Ösen vorgesehen, an denen der Manipulator zum Beispiel mit einem beweglichen Bolzen verankert werden kann. Diese Variante kommt unter anderem in Form von sogenannten Twistlock Verbindungen bei ISO-Containern zum Einsatz (s. Abbildung 11). [74]

Abbildung 11: Formschlüssige Lastaufnahmeeinrichtung (Twist-Lock) [75]

Einen Sonderfall dieser Verbindungsvariante stellen Verschraubungen dar. Diese erzeugen auf den ersten Blick einen Formschluss. Beim Anziehen der Schraube wird durch den Kopf der Schraube allerdings auch eine Normalkraft erzeugt, wodurch in Folge des hierdurch entstehenden Reibschlusses zwischen Bauteil und Lastanschlagmittel auch eine erhebliche zusätzliche Kraftkomponente über diesen Reibschluss übertragen werden kann. Auch bei den in Deutschland entwickelten CASTOR[®] Transport- und Lagerbehältern werden die Tragzapfen (s. Abbildung 12), welche für die formschlüssige Aufnahme der Behälter im Traggestell vorgesehen sind, an den Behältern verschraubt, so dass auch hier eine Kombination aus Kraft- und Formschluss vorliegt.

Abbildung 12: Tragzapfen eines CASTOR[®]-Behälters [76]

Die erforderlichen Aufnahmebohrungen, sowohl für Verschraubungen als auch für Bolzenverbindungen, begünstigen durch ihre scharfen Kanten und Hinterschneidungen lokale Korrosion und stellen somit eine erhebliche Schwachstelle bezüglich des Korrosionsangriffes dar. Aus diesem Grund kann diese Variante des Formschlusses bei den Tiefenlagerbehältern nur bei Behälterkomponenten zum Einsatz kommen, bei denen ein Korrosionsangriff weitestgehend auszuschließen ist. Denkbar wäre der Einsatz verschraubter Lastangriffspunkte bei den ENCON-Tiefenlagerbehältern somit nur bei Behälterkomponenten, die in der Tiefenlagerkonfiguration der Behälter innerhalb der Korrosionsbarriere liegen. Beim ENCON-TLB, der nur einem geringen Korrosionsangriff ausgesetzt ist, ist eine Verwendung geschraubter Tragstrukturen auch am Außenbehälter denkbar. Vorteilhaft ist diese Variante der Aufnahme dann, wenn bei Bauteilen, wie beispielsweise den Schraubdeckeln der Abschirmbehälter, bereits für die Verschraubung Durchgangslöcher vorgesehen sind. Werden diese Durchgangslöcher, wie in der nachfolgenden Abbildung dargestellt, auf der Rückseite mit einer zusätzlichen Fase beziehungsweise einem zusätzlichen Absatz versehen, können diese als Anschlagpunkt für einen Greifer verwendet werden.

Einführen des Greifers

Heben der Last

Abbildung 13: Hinterschnittene Durchgangsbohrung mit schematischem Greifer

Bei allen Komponenten der Lagerbehälter die, wie beispielsweise die Außenbehälter der Tiefenlagerbehälter, einem direkten Korrosionsangriff ausgesetzt sind, müssen potentielle Angriffspunkte für Korrosion vermieden werden. Aus diesem Grund sind enge Radien und scharfe Kanten bei der Gestaltung der Lastanschlagspunkte zu vermeiden. Dieser Anforderung lässt sich durch die großflächige Verrundung der Lastanschlagpunkte umsetzen. Hierdurch ergeben sich umlaufende Nuten oder Kragen an den Bauteilen. Diese beiden Bauformen sind in der nachfolgenden Abbildung in der Form einer Tragmulde, wie sie für den HAW-Overpack der französischen ANDRA vorgesehen ist und einem Tragpilz, wie er an den darin eingelagerten HAW-Kokillen zu finden ist, dargestellt.

Abbildung 14: Darstellung einer HAW-Kokille (Tragzapfen) und des zugehörigen Overpacks (Tragmulde) [77]

Bei dieser Gestaltungsform umfasst der Greifer die Tragstruktur großflächig. Hierdurch können bereits über vergleichsweise schmale Nuten beziehungsweise Kragen sehr große Kräfte übertragen werden. Werden hierbei die Übergänge vom Behälter zur Tragstruktur mit einem ausreichend großen Radius versehen, ergibt sich nur eine sehr geringe Neigung zu lokaler Korrosion. Durch die hohe Materialstärke solcher ringförmigen Aufnahmepunkte besitzen diese eine sehr hohe Tragfähigkeit, die auch durch die innerhalb des Zeitrahmens der Rückholbarkeit auftretende flächige Korrosion nicht nennenswert herabgesetzt wird. Auf Grund der vielen Vorzüge welche formschlüssige Aufnahmen bieten, werden diese für alle Großkomponenten des ENCON-Behälters favorisiert.

Auswahl von geeigneten Lastanschlagpunkten für die Hauptkomponenten der ENCON-Behälter

Wie zuvor beschrieben, werden für die Hauptkomponenten des ENCON-Behälterkonzeptes formschlüssige Lastanschlagspunkte favorisiert. Nachfolgend wird am Beispiel des ENCON-K für kristallines Wirtsgestein, dem ENCON-S für salinare Tiefenlager sowie dem ENCON-TLB beschrieben, welche Anschlagpunkte bei den einzelnen Behälterkonzepten zum Einsatz kommen und welche Kriterien bei dem betreffenden Bauteil zu der Auswahl der betreffenden Gestaltungsvariante geführt haben.

Der ENCON-K (s. Abbildung 15) besteht, von innen nach au-Ben, aus der inneren Tragstruktur aus Edelstahl, dem Abschirmbehälter Gusseisen, der aus mittels eines Schraubdeckels verschlossen wird und dem äußeren, verschweißten Korrosionsschutzbehälter aus Kupfer. Das Gesamtgewicht dieses Behälters beträgt etwa 45 Tonnen. Diese Gesamtmasse teilt sich wie folgt auf. Der äußere Kupferbehälter wiegt etwa 12 Tonnen und der innere Gusseisenbehälter circa 26 Tonnen. Der Schraubdeckel aus Gusseisen, der eine Materialstärke von etwa 340 mm hat ein Gewicht von etwa 1.200 kg und der Schweißdeckel des äußeren Kupferbehälters mit 150 mm Materialstärke ein Gewicht von 1.650 kg. Der innerste Tragbehälter, der einen Durchmesser von etwa 400 mm und in Abhängigkeit von den Abmessungen des Inventars eine Länge von etwa 4,5 m besitzt, wiegt beladen zwischen 4-5 Tonnen. Alle diese Teilkomponenten müssen im Rahmen der Behälterbeladung sicher manipuliert werden und stellen auf Grund ihres Gewichtes hohe Anforderungen an die Handhabungskomponenten und Lastanschlagpunkte.

Abbildung 15: Schematische Darstellung des generischen ENCON-K für Brennelemente

Bei der Auswahl geeigneter Lastanschlagspunkte für die einzelnen Komponenten ist das erste Kriterium die erforderliche Korrosionsfestigkeit des Bauteils. Weitere Auslegungsaspekte sind die Zugänglichkeit der Lastanschlagpunkte sowie der zur Verfügung stehende Bauraum. Nachfolgend wird auf die Gründe für die Wahl der bei den unterschiedlichen Behälterkomponenten ausgewählten Lastanschlagpunkte eingegangen.

Tragstruktur

Der Tragbehälter aller ENCON-Tiefenlagerbehälter nimmt das Inventar in seiner inneren Tragstruktur auf und schließt dieses ein. Da dieser Behälter vom eigentlichen Tiefenlagerbehälter vollständig umschlossen werden muss, spielt der Platzbedarf beim Tragbehälter eine erhebliche Rolle. Jede Vergrößerung seiner Abmessungen führt auch zu einer Erhöhung der Abmessungen und des Gewichtes der umgebenden Behälter. Hierbei führt insbesondere eine Vergrößerung des Durchmessers zu einer erheblichen Zunahme des Materialbedarfs für die Außenbehälter. Im Rahmen der Konditionierung werden die Brennstäbe in den stehenden Tragbehälter geladen. Dieser wird dann mit einem Schweißdeckel verschlossen. Im Anschluss muss der Tragbehälter von oben in den Schacht des Außenbehälters abgesenkt werden. Hierzu ist ein stabiler Lastanschlagpunkt am Deckelbereich des Tragbehälters erforderlich um das Gewicht von bis zu 5 Tonnen sicher handhaben zu können. Als weitere Randbedingung ist zu beachten, dass der Tragbehälter nur eine geringe Wandstärke von wenigen Zentimetern aufweist. Außerdem kann es bei der Beladung des Tragbehälters theoretisch zu einer Kontamination kommen. Somit ist der Tragbehälter möglichst glattflächig zu gestalten, um die Herstellung beziehungsweise den Nachweis der Kontaminationsfreiheit zu erleichtern. Demnach können keine verschraubten Lastanschlagmittel zum Einsatz kommen, da die hierfür erforderlichen Bohrungen nur schwer dekontaminiert werden können. Als mögliche Lastanschlagpunkte resultieren somit zum einen der Tragpilz, zum anderen die Tragmulde. Diese unterscheiden sich bezüglich des erforderlichen Bauraumes nur geringfügig. Der Tragpilz besitzt allerdings den Vorteil, dass er so gestaltet werden kann, dass sich keine Hinterschneidungen ergeben an denen sich Verschmutzungen oder Flüssigkeiten ablagern können. Somit bietet dieser Vorteile bei der Dekontamination sowie einer potentiellen Nasslagerung der Tragbehälter nach einer gegebenenfalls erforderlichen Rückholung oder Bergung der Behälter. Aus diesem Grund wird im Deckelbereich der Tragstruktur aller ENCON-Behälter ein Tragpilz als Lastanschlagpunkt vorgesehen.

Innerer Abschirmbehälter ENCON-K

Der gusseiserne Abschirmbehälter des ENCON-K besteht aus dem eigentlichen Behälterkörper und dem verschraubten Behälterdeckel. Im Rahmen der Konditionierung wird der bereits dicht verschlossene Tragbehälter in den Schacht des stehenden Abschirmbehälters abgelassen. Nun wird der Deckel eingesetzt und verschraubt. Nach der Überprüfung der Dichtheit kann der zum Einstellen des Tragbehälters in den Abschirmbehälter erforderliche Spalt, falls erforderlich mit einem inerten, rieselfähigen Material verfüllt werden. Im Anschluss wird der Gusseisenbehälter in den korrosionsfesten äußeren Kupferbehälter eingestellt. Alternativ kann der Gusseisenbehälter auch bereits vor der Beladung mit dem Inventar in den umgebenden Kupferbehälter eingestellt werden. Allerdings verändern sich die Anforderungen an die Lastanschlagpunkte hierdurch nicht, da in jedem Fall im Rahmen der Rekonditionierung beispielsweise im Rahmen der Rückholung gegebenenfalls die Entnahme des Abschirmbehälters aus dem Kupferbehälter möglich sein muss. [12], [36], [37]

Auf Grund des hohen Behältergewichtes von über 30 Tonnen kann die Aufnahme des gusseisernen Behälterkörpers nicht über den verschraubten Deckel erfolgen, da durch die Krafteinwirkung bei der Handhabung die Verschraubung überlastet werden kann. Auch können beim Heben des Behälters dynamische Belastungen auf das Dichtsystem des Deckels auftreten, welche ebenfalls zu vermeiden sind. Aus diesem Grund ist es vorteilhaft den Rand des Abschirmbehälters höher zu gestalten, so dass oberhalb des Deckels einige Zentimeter überstehen. Dieser Bereich kann mit einer umlaufenden Nut versehen werden. Hierdurch entsteht eine sehr stabile Tragmulde. Durch den Überstand der Tragmulde über den Behälterkörper entsteht ein Hohlraum mit einer Höhe von einigen Zentimetern. In diesen Hohlraum kann im Rahmen der weiteren Behältermontage eine Platte aus Polyethylen (PE) eingelegt werden. Alternativ kann am Deckel des Kupferbehälters ein entsprechender Absatz vorgesehen werden, der diese Aussparung füllt (s. Abbildung 16).

Abbildung 16: Deckelbereich des generischen ENCON-K Behälters

Bei dem etwa 1,2 Tonnen schweren Deckel des Abschirmbehälters bietet es sich an, einige der zur Verschraubung vorhandenen Durchgangslöcher als Lastanschlagpunkte zu verwenden. Hierzu werden diese auf der Unterseite mit einer etwa 5-10 mm breiten, etwa 20 mm tiefen Senkung versehen. Hierdurch kann, wie in der nachfolgenden Abbildung dargestellt über entsprechende Greifer der Formschluss hergestellt werden.

Außenbehälter ENCON-K

Nachdem der Abschirmbehälter und das Inventar in den aus Kupfer gefertigten Außenbehälter des ENCON-K eingebracht worden sind, muss der ebenfalls aus Kupfer bestehende Deckel aufgesetzt und im Anschluss mit dem Behälterkörper

verschweißt werden. Nach dem Verschluss des Außenbehälters stehen ausschließlich die an ihm angebrachten Lastanschlagpunkte Handhabung des zur gesamten, etwa 45 Tonnen schweren Behälters zur Verfügung. Abweichend von den inneren Behältern, bei denen eine Manipulation ausschließlich unter den kontrollierten Bedingungen der Konditionierungsanlage erfolgt, dienen die Lastanschlagpunkte des Kupferbehälters auch der Manipulation der Tiefenlagerbehälter im Rahmen von Transport und Einlagerung. Bei diesen Vorgängen sind komplexe Handhabungsvorgänge erforderlich. So muss der Behälter für den Transport beispielsweise von der vertikalen in die horizontale Position gedreht werden können. Um die aus diesen Manipulationsvorgängen resultierenden, hohen Kräfte sicher in den Behälter leiten zu können, ist die Aufnahme des Behälters über einen Formschluss anzustreben. Beispielsweise kann der Behälter mit einem Traggestell angeschlagen werden, welches wie es in der nachfolgenden Abbildung dargestellt, den Lastanschlagpunkt sicher umschließt.

Abbildung 17: Umschließung der Lastanschlagpunkte des Behälters mit einem Traggestell

Diese Lastaufnahmepunkte liegen am Behälter außen, im korrosionsgefährdeten Bereich. Aus diesem Grund müssen die Aufnahmepunkte korrosionsschützend gestaltet werden. Somit können Tragpilze oder Tragmulden Anwendung finden. Beim ENCON-K wurde für den Außenbehälter die Gestaltung der Lastanschlagspunkte als Tragpilz gewählt. Die lasttragenden Flächen bei dieser Variante sind leichter zugänglich als bei einer Tragmulde. Hierdurch werden Inspektionen und potentielle Ertüchtigungen im Rahmen der Rückholung erleichtert. Auf Grund der stoffschlüssigen, homogenen Verbindung zwischen Deckel und Behälter, die eine Festigkeit auf dem Niveau des Grundwerkstoffes erreicht, kann der obere Tragpilz auch als integraler Bestandteil des Behälterdeckels gefertigt werden. Hierdurch ist am eigentlichen Behälterkörper keine Tragstruktur erforderlich. Der Behälterkörper kann somit in der von der Fertigung, als auch von der Korrosionsbeständigkeit optimaler, einfacher Zylinder ohne Vorsprünge oder Nuten gefertigt werden.

Innenbehälter ENCON-S

Beim ENCON-S für Salzstein stellt der innen liegende, verschweißte Stahlbehälter die langfristige Korrosionsbarriere des Behälters dar. Somit gelten hier ähnliche Anforderungen wie beim Außenbehälter des ENCON-K. Der Behälter besitzt allerdings, durch die Verwendung des Werkstoffes Stahl, eine erheblich höhere Wandstärke von ca. 160 mm und muss nach seinem Verschluss in den umschließenden Abschirmbehälter eingestellt werden. Aus der hohen Masse des beladenen Behälters sowie der eingeschränkten Zugänglichkeit der Tragstruktur im montierten Zustand ergeben sich hohe Anforderungen bezüglich des Bauraumes der Tragstruktur. Durch die stoffschlüssige Verbindung des Behälterdeckels mit dem Behälterkorpus ist es beim Innenbehälter des ENCON-S möglich, die bei der Handhabung auftretenden Kräfte über einen im Deckel integrierten Lastanschlagpunkt in den Behälter einzuleiten. Wenn der Innenbehälter in den Schacht des Abschirmbehälters eingestellt worden ist, ist er nur noch von oben zugänglich. Die in der nachfolgenden Abbildung dargestellte, gewählte Ausführung des Lastanschlagpunktes als Tragmulde stellt in diesem Fall die Variante dar, die bei der Rückholung die bessere Zugänglichkeit der lasttragenden Flächen zur Inspektion und Ertüchtigung bietet.

Außenbehälter ENCON-S

Die Anforderungen an die Lastanschlagpunkte des gusseisernen Außenbehälters entsprechen weitestgehend denen, die auch für den Abschirmbehälter des ENCON-K gelten. Allerdings besitzt der ENCON-S mit etwa 50 Tonnen das höchste Gewicht der ENCON-Tiefenlagerbehälter. Der Deckel des äußeren Abschirmbehälters besitzt, bedingt durch seine hohe Materialstärke und die großen Abmessungen, ein sehr hohes Eigengewicht von etwa 2 Tonnen. Da der Deckel des verschlossenen Behälters leicht zugänglich ist, muss verhindert werden, dass seine Anschlagpunkte, beispielsweise im Rahmen der Bergung, zur Handhabung des gesamten Behälters verwendet werden. Aus diesem Grund werden die Durchgangslöcher der Deckelverschraubung als Lastanschlagpunkte ausgelegt. Diese sind beim verschlossenen Behälter nicht mehr zugänglich. Somit kann sicher ausgeschlossen werden, dass der Lastanschlagpunkt des Deckels als Lastanschlagpunkt für den gesamten Behälter verwendet und so die Deckelverschraubung überlastet wird.

Für die Handhabung des ENCON-S sind am Behälterkörper des Abschirmbehälters stabile Lastanschlagpunkte vorzusehen, welche die erforderliche hohe Tragfähigkeit besitzen. Da die Tragstrukturen einem korrosiven Angriff ausgesetzt sind, müssen diese dementsprechend korrosionsgeschützt gestaltet werden. Da die Zugänglichkeit des Behälters von allen Seiten gegeben ist, werden am Behälterkörper Lastanschlagpunkte vorgesehen, die in Ihrer Funktionsweise Tragzapfen entsprechen. Allerdings ist die Umsetzung klassischer Tragzapfen im oberen Deckelbereich nicht möglich, da hier bereits der Behälterdeckel eingelassen ist. Gusseisen bietet allerdings aufgrund seiner guten gießtechnischen Fertigungseigenschaften die Möglichkeit, den Behälterkörper im Kopfund Fußbereich mit zwei umlaufenden Tragringen zu versehen. Diese Variante des Tragpilzes bietet den Vorteil, dass ihre Integration am Behälter keine zusätzliche Baulänge erfordert, die bei dem großen Behälterdurchmesser zu einer erheblichen Gewichtszunahme führen würde.

Außenbehälter ENCON-TLB

Die ENCON-TLB Transport- und Lagerbehälter zur langfristigen Zwischenlagerung müssen bezüglich der Handhabbarkeit anderen Anforderungen gerecht werden als die Tiefenlagerbehälter. Während die Tiefenlagerbehälter im Idealfall kurz nach ihrer Beladung im Tiefenlager eingelagert und danach im Regelfall nicht mehr manipuliert werden, ist beim ENCON-TLB nach der Zwischenlagerungszeit in jedem Fall mindestens eine erneute Handhabung des Behälters erforderlich. Auch aus dem regulären Betriebsablauf des Zwischenlagers kann sich, beispielsweise im Rahmen von Sicherheitsüberprüfungen an den Behältern oder den Zwischenlagergebäuden, die Notwendigkeit ergeben, die Behälter transportieren zu müssen. Zusätzlich ergeben sich aus dem sehr hohen Gewicht des ENCON TLB von maximal 150 Tonnen sowie der Forderung, dass die Behälter im Rahmen der Langzeitzwischenlagerung jederzeit bewegt werden können müssen, höhere Anforderungen an die Lastanschlagpunkte.

Abbildung 19: Schematische Darstellung des ENCON-TLB

Der ENCON-TLB (s. Abbildung 19) muss demnach über Tragstrukturen verfügen, welche die hohen Kräfte bei der Handhabung sicher in die Behälterstruktur leiten können. In der Umgebung des Zwischenlagers ist allerdings nur mit einem geringen Korrosionsangriff auf die Behälterstruktur zu rechnen. Allerdings müssen die Tragstrukturen auch nach einer langen Lagerdauer innerhalb einer kurzen Frist in einen ein-
satzfähigen Zustand versetzt werden können. Die Anforderungen an die Lastanschlagpunkte des gusseisernen Behälters entsprechen somit weitestgehend denen, die auch für den Abschirmbehälter des ENCON-S gelten.

Die beiden Deckel des ENCON-TLB besitzen, auf Grund ihrer großen Abmessungen ein sehr hohes Eigengewicht von etwa 2 Tonnen. Der äußere Deckel des verschlossenen Behälters ist leicht zugänglich, daher muss verhindert werden, dass seine Anschlagpunkte zur Handhabung des gesamten Behälters verwendet werden. Aus diesem Grund werden auch hier die Durchgangslöcher der Deckelverschraubung als Lastanschlagpunkte ausgelegt. Diese sind beim verschlossenen Behälter nicht mehr zugänglich. Somit ist ausgeschlossen, dass der Lastanschlagpunkt des Deckels, beispielsweise im Rahmen von Transportvorgängen, im Rahmen der Behälterinspektion oder des Transportes der Behälter, als Lastanschlagpunkt für den gesamten Behälter verwendet und so die Deckelverschraubung überlastet wird.

Für sämtliche Handhabungsvorgänge sind am Behälterkörper des ENCON-TLB stabile Lastanschlagpunkte vorzusehen, welche die erforderliche hohe Tragfähigkeit besitzen. Über die Lagerdauer der langfristigen Oberflächenlagerung kann nicht ausgeschlossen werden, dass die Tragstrukturen korrosiven Angriffen ausgesetzt werden. Diese sind dementsprechend so auszulegen, dass sie einen hohen Korrosionswiderstand besitzen. Aus diesem Grund werden beim ENCON-TLB, anders als beim derzeit zur Zwischenlagerung vorgesehenen CAS-TOR[®]behälter, keine verschraubten Tragzapfen als Lastangriffspunkte vorgesehen, da die Verschraubung dieser einen potentiellen Angriffspunkt für Korrosion darstellt. Stattdessen wird der Behälterkörper wie beim ENCON-S mit einem umlaufenden Tragring versehen.

Zusammenfassung und Ausblick

Im vorangegangenen Text wurde der Entstehungsprozess des generischen ENCON-Behälterkonzeptes dargelegt. Es wurde auf die Gründe eingegangen, die zur Entwicklung der generischen Behälterkonzepte im Rahmen der ENTRIA Plattform geführt haben. In einem ersten Schritt wurden als Arbeitsgrundlage Informationen zu international für die Lagerung von radioaktiven Reststoffen entwickelten Behältersystemen zusammengetragen. Diese Informationen wurden, auch um sie den anderen Bearbeitern von ENTRIA verfügbar zu machen, in Form der im Anhang dieser Veröffentlichung angefügten Behälterdossiers zusammengestellt. Die Informationen zu den verschiedenen Behälterkonzepten wurden anschließend analysiert und ausgewertet und dienen als Datenbasis, beispielsweise für die wirtsgesteinsspezifische Materialauswahl, der generischen ENCON-Behälterkonzepte.

Die Analyse der internationalen Konzepte war allerdings auch erforderlich, um die wirtsgesteinsspezifischen Anforderungen für die generischen ENCON-Behälter identifizieren beziehungsweise entwickeln zu können. Der Großteil der internationalen Behälterkonzepte basiert auf der Geologie eines spezifischen Lagerstandortes oder einer Lagerregion. Für die Schaffung der generischen Behälterkonzepte war es daher zuerst erforderlich, die den internationalen Konzepten zugrundeliegenden Anforderungen zu identifizieren und im Anschluss deren Übertragbarkeit auf generische, wirtsgesteinsspezifische Behälterkonzepte zu überprüfen.

Auf der Grundlage der identifizierten Anforderungen an die generischen Behälterkonzepte sowie der zusammengetragenen Informationen über Werkstoffe und Gestaltungsmerkmale unterschiedlichster Behälterkonzepte wurden anschließend vom Institut für Werkstoffkunde, in enger Zusammenarbeit mit den Kollegen aus dem ENTRIA Verbund, die ENCON-Behälter gestaltet und die Arbeitsergebnisse im Rahmen von Projekttreffen und bilateralen Treffen mit den ENTRIA-Kollegen diskutiert. Während der Projektlaufzeit erfolgte so eine Rückkopplung von Arbeitsergebnissen anderer ENTRIA Teams, wodurch einzelne Aspekte der Behälter weiter ausgearbeitet werden konnten. Der finale Stand des ENCON-Behälterkonzeptes ist in den im Anhang dieser Veröffentlichung befindlichen ENCON-Behälterdossiers in komprimierter Form zusammengefasst.

Während der Erarbeitung der generischen ENCON-Behälterkonzepte zeigte sich auch, dass diese zwangsläufig immer nur auf dem aktuellen, publizierten Stand der Forschung aufbauen können. In vielen technischen Teilbereichen zeigte sich, dass derzeit einige Annahmen, insbesondere zum Korrosionsverhalten der Werkstoffe unter Endlagerbedingungen, noch nicht ausreichend mit Forschungsergebnissen belegt sind, beziehungsweise die Übertragbarkeit der getroffenen Annahmen auf einen ausgewählten Lagerstandort noch nachgewiesen werden muss.

Auch ist im Rahmen der fortgeführten Bemühungen zur Endlagersuche in Deutschland regelmäßig zu überprüfen, ob sich auf Grund neuer Erkenntnisse oder rechtlicher Entscheidungen Änderungen, beispielsweise an den der Entwicklung der ENCON-Behälter zugrundeliegenden Einlagerungskonzepten, ergeben. In diesem Fall kann es erforderlich werden die generischen Behälterkonzepte an die geänderten Randbedingungen anzupassen.

Die Betrachtungen zeigen aber sehr deutlich, dass das Behältersystem bereits in einem frühen Stadium der Endlagerforschung eine zentrale Rolle spielt. Dabei wird deutlich, dass die modulare Konzeption von Tiefenlagerbehältern die Möglichkeit bietet anforderungsspezifisch auf verschiedenste Szenarien Rücksicht nehmen zu können. Für die Zukunft sollte dieser Gedanke unbedingt weiterverfolgt werden.

Quellenverzeichnis

- [1] F. Peiffer, B. McStocker und D. Gründler, "Abfallspezifikation und Mengengerüst, Basis Ausstieg aus der Kernenergienutzung (Juli 2011), Vorläufige Sicherheitsanalyse Gorleben, Bericht zum Arbeitspaket 3", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-278, ISBN 978-3-939355-54-2, Sep. 2011.
- [2] Kommission Lagerung hoch radioaktiver Abfallstoffe, "Bericht der Kommission, Leitbild B - Bilanz der Wiederaufarbeitung, Ergänzung Kapitel 2.2.3", Kommission Lagerung hoch radioaktiver Abfallstoffe, K-Drs./Ag 4-24, März 2016.
- [3] Bürgerinitiative Umweltschutz Lüchow-Dannenberg e.V., "Stellungnahme zum Entwurf eines Gesetzes zur Fortentwicklung des Gesetzes zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle und anderer Gesetze", Ausschussdrucksache 18(16)526-D, März 2017.
- [4] Deutscher Bundestag, "13. Novelle des AtG", BGBl. I S. 1704, Juli 2011.
- [5] Deutscher Bundestag, "Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle (Standortauswahlgesetz -StandAG)", BGBI. I S. 2553, zuletzt geändert durch Art. 4 des Gesetzes vom 27. Januar 2017 (BGBI. I S. 114), Juli 2013.
- [6] Kommission; Lagerung hoch radioaktiver Abfallstoffe, "Abschlussbericht der Kommission Lagerung hoch radioaktiver Abfälle", DRS-268, Juli 2016.
- [7] J. Stahlmann, R. P. Leon Vargas und V. Mintzlaff, "ENTRIA-Arbeitsbericht-03: Generische Tiefenlagermodelle mit Option zur Rückholung der radioaktiven Reststoffe: Geologische und Geotechnische Aspekte für die Auslegung." Braunschweiq-2015.
- [8] Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), "Sicherheitsanforderungen an die Endlagerung wärmeentwickelnder radioaktiver Abfälle", Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Sep. 2010.
- [9] J. C. L. Meeussen und E. Rosca-Bocancea, "Determination of the inventory: part B matrix composition", Centrale Organisatie Voor Radioactief Afval (COVRA NV), OPERA-PU-NRG112B, 2014.
- [10] E. Verhoef, E. Neeft, J. Grupa und A. Poley, "Projectplan "Onderzoeks Programma Berging van Radioactief Afval"", Centrale Organisatie Voor Radioactief Afval (COVRA NV), OPERA-PG-COV008, Nov. 2014.
- [11] International Atomic Energy Agency, "Fundamental safety principles: safety fundamentals", IAEA, Wien, IAEA SF-1, ISBN 978-92-0-110706-0, 2006.
- [12] L. Boerjesson, D. Gunnarsson, L.-E. Johannesson und E. Jonsson, "Design, production and initial state of the canister", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-14, ISSN 1404-0344, Dez. 2010.
- [13] H. Raiko, R. Sandstroem, H. Ryden und M. Johansson, "Design analysis report for the canister", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-28, ISSN 1404-0344, Apr. 2010.
- [14] W. Bollingfehr, W. Filbert und C. Lerch, "Endlagerkonzepte: Bericht zum Arbeitspaket 5; vorläufige Sicherheitsanalyse für den Standort Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, GRS-272, Juli 2011.
- [15] W. Bollingerfehr, W. Filbert und S. Dörr, "Endlagerauslegung und -optimierung: Bericht zum Arbeitspaket 6; vorläufige Sicherheitsanalyse für den Standort Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, GRS-281, ISBN 978-3-939355-57-1, Juni 2012.
- [16] C. Walter und M. Riemann, "Wie viel Strahlendosis für wen? Lange Lagerung, Offenhaltung und ein langer Entsorgungsprozess bedeuten zusätzliche Dosis für Beschäftigte", GAiA-Ökologische Perspektiven für Wissenschaft und Gesellschaft 26/2 (2017) S.106-109, DOI: 10.14512/gaia.26.2.11.

- [17] R. León-Vargas und J. Stahlmann, "Thermal impact in the geometrical settings in deep geological repositories for HLW with retrievability", Phoenix AZ, USA, Proceedings of the 42th Waste Management Symposia, WMS 2016, März 2016.
- [18] DBEtec, "Gutachten: Flächenbedarf für ein Endlager für wärmeentwickelnde hoch radioaktive Abfälle", DBE TECHNOLOGY GmbH, Kommission Lagerung hoch radioaktiver Abfälle K-MAT 58 (TEC-09-216-G).
- [19] Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, "Programm für eine verantwortungsvolle und sichere Entsorgung bestrahlter Brennelemente und radioaktiver Abfälle (Nationales Entsorgungsprogramm)", Aug. 2015.
- [20] Agence nationale pour la gestion des déchets radioactifs, "Stockage réversible profond- Options de sûreté du stockage en formation géologique profonde", ANDRA, C.NT.ASSN.09.0029.B, 2009.
- [21] SKB, "Long-term safety for the final repository for spent nuclear fuel at Forsmark - Main report of the SR-Site project", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR-11-01 Vol. 1-3, ISSN 1404-0344, Dez. 2012.
- [22] A. Rübel und A. Meleshyn, "Methodik und Anwendungsbezug eines Sicherheitsund Nachweiskonzeptes für ein HAW-Endlager im Tonstein: Sicherheitskonzept und Nachweisstrategie", Ges. für Anlagen- und Reaktorsicherheit (GRS), Köln, GRS-338, ISBN 978-3-944161-18-1, Aug. 2014.
- [23] D. Köhnke, M. Reichardt und F. Semper, Hrsg., Zwischenlagerung hoch radioaktiver Abfälle. Wiesbaden: Springer Fachmedien, 2017.
- [24] Strahlenschutzkommission des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, "Strahlenschutz und Strahlenbelastung im Zusammenhang mit Polizeieinsätzen anläßlich von CASTOR-Transporten", SSK, SSK 1998-5, 1998.
- [25] E. Pönitz, C. Walter und T. Hassel, "Calculations of Dose Rates at the Surface of Storage Containers for High-Level Radioactive Waste", 14th International Congress of the International Radiation Protection Association (IRPA), Kapstadt, Südafrika, 2016.
- [26] Gesellschaft für Nuklear-Service mbH, "Patent: Brennstabköcher", GNS, Essen, EP 2 824 669 A1, Juli 2013.
- [27] K. Lintner und E. Schmid, "Werkstoffe des Reaktorbaues mit besonderer Berücksichtigung der Metalle", Springer, Berlin, Heidelberg, ISBN 978-3-662-13421-4 978-3-662-13420-7, 1962.
- [28] J. Stahlmann, R. L. Vargas und V. Mintzlaff, "Geotechnische und geologische Aspekte für Tiefenlagerkonzepte mit der Option der Rückholung der radioaktiven Reststoffe", Bautechnik, Bd. 93, Nr. 3, S. 141–150, 2016.
- [29] L. H. Johnson und F. King, "Canister options for the disposal of spent fuel", National Cooperative for the Disposal of Radioactive Waste (NAGRA), NTB-02-11, ISSN 1015-2636, Apr. 2003.
- [30] Nuclear Waste Management Commission, "Requirements for packages for the disposal of heat generating radioactive waste", ESK, Jan. 2017.
- [31] Gesellschaft für Nuklear-Service mbH, "CASTOR[®] V/19 Transport- und Lagerbehälter für Brennelemente (DWR)", GNS, Essen, Apr. 2014.
- [32] R. Graf, K.-J. Brammer und W. Filbert, "Direkte Endlagerung von Transport- und Lagerbehältern – ein umsetzbares technisches Konzept -", GNS Gesellschaft für Nuklear-Service mbH, DBE TECHNOLOGY GmbH, Jahrestagung Kerntechnik, 2012.
- [33] DIN EN 1563:201, "Gusseisen mit Kugelgraphit". März-2012.
- [34] J. Wolf, J. Behlau und T. Beuth, "FEP-Katalog für die VSG Dokumentation Bericht zum Arbeitspaket 7; vorläufige Sicherheitsanalyse für den Standort Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-283-7, Juni 2012.
- [35] C. Bartels, R. Gerhards und H. Hanselka, "BDGuss Gusseisen mit Kugelgraphit", Bundesverband der Deutschen Gießerei-Industrie (BDG), Juni 2010.

- [36] L. Nolvi, "Manufacture of disposal canisters", Posiva Oy, Olkiluoto, Posiva 2009-03, ISBN 978-951-652-171-1, Dez. 2009.
- [37] H. Raĭko, "Disposal canister for spent nuclear fuel design report", Posiva Oy, Olkiuoto, Posiva 2005-02, ISBN 978-951-652-134-6, Juli 2005.
- [38] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix C: Container Fabrication", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [39] L. Moren, "Design and production of the KBS-3 repository", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-12, ISSN 1404-0344, Dez. 2010.
- [40] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-B1-Corrosion-of-Copper", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [41] SKB, "Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses - TR-09-22", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR 09-22, ISSN 1404-0344, Nov. 2009.
- [42] J. Heinrich und C. Gomes, "Einführung in die Technologie der Keramik", TU Clausthal, Clausthal, 2010.
- [43] Steinzeug-Keramo GmbH, "Rohrsysteme aus Steinzeug", Steinzeug-Keramo GmbH, Frechen, 2014.
- [44] S. Eberhart, "Keramik, ein vielseitiger Werkstoff", Hochschule Rapperswil, 2003.
- [45] P. Poskas, V. Simonis und A. Smaizys, "Main Characteristics for CASTOR[®] and Constor casks loaded with spent RBMK-1500 nuclear fuel", Lithuan Energy Institute, Nuclear Engineering Laboratory, Kaunas, Lithuania, IAEA CN 102 33.
- [46] Gesellschaft für Nuklear-Service mbH, "Datenblatt: Constor", GNS, Essen, Dez. 2014.
- [47] DIN EN ISO 8044:2015, "Korrosion von Metallen und Legierungen".
- [48] H. J. Fahrenwaldt, V. Schuler und J. Twrdek, "Praxiswissen Schweißtechnik", Springer Fachmedien, Wiesbaden, ISBN: 978-3-658-03141-1, 2014.
- [49] DIN 10027-1:2016, "Bezeichnungssysteme für Stähle".
- [50] DIN 10027-2:2011, "Bezeichnungssysteme für Stähle Teil 2: Nummernsystem".
- [51] Raul B. Rebak, "Materials in Nuclear Waste Disposition", Journal of Materials (JOM), Ausgabe 3, Band 66, ISSN: 1047-4838, DOI: 10.1007/s11837-014-0878-2, Feb. 2014.
- [52] H. Berns und W. Theisen, "Eisenwerkstoffe Stahl und Gusseisen", Springer Berlin Heidelberg, ISBN: 978-3-540-32319-5, 2006.
- [53] M. Tholen, "Forschungsvorhaben Chemisch-toxische Stoffe in einem Endlager für hochradioaktive Abfälle, APII – Inventar chemotoxischer Stoffe", DBE TECH-NOLOGY GmbH, Peine, Aug. 2009.
- [54] C.-G. Andersson, "Development of fabrication technology for copper canisters with cast inserts", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-02-07, Apr. 2002.
- [55] K. Hachenberg, H. Kowalke, J. M. Motz, K. Roehrig, W. Siefer, H. P. Staudinger, P. Toelke, H. Werning und D. B. Wolters, "Gusseisen mit Kugelgraphit", VDI-Verlag, 1988.
- [56] E. Roos und K. Maile, "Werkstoffkunde für Ingenieure: Grundlagen, Anwendung, Prüfung, 5. Auflage", Springer Vieweg, Berlin, ISBN: 978-3-642-54988-5, 2015.
- [57] F. King, "Copper corrosion under expected conditions in a deep geologic repository", Posiva, Helsinki, ISBN: 978-951-652-108-7, 2002.
- [58] L. Werme, P. Sellin und N. Kjellbert, "Copper canisters for nuclear high level waste disposal. Corrosion aspects", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR-92-26, Okt. 1992.

- [59] W. H. Bowyer und H.-P. Hermansson, "Comments on SKB RD and D-Programme 98 - Focused on canister integrity and corrosion", Swedish Nuclear Power Inspectorate, 1999.
- [60] T. E. Eriksen, P. Ndalamba und I. Grenthe, "On the corrosion of copper in pure water", Corros. Sci., Bd. 29, Nr. 10, S. 1241–1250, Jan. 1989.
- [61] T. Hernandez-Selva, D. L. Engelberg, F. Scenini, D. Fox und A. McClusky, "Manufacturing technology for implementing geological disposal: electroforming of copper canisters", *Mineral. Mag.*, Bd. 79, Nr. 06, S. 1521–1528, Nov. 2015.
- [62] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-B5-Corrosion-of-Titanium-Alloys", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [63] G. Lütjering und J. Williams, "Titanium 2nd edition", Springer-Verlag, Berlin Heidelberg, ISBN: 978-3-540-71379-5, Berlin Heidelberg.
- [64] J. L. Tisom, "Update on French Deep Geological program for High Level Waste", Agence nationale pour la gestion des déchets radioactifs (ANDRA), Bommersvik, CEG Workshop, Feb. 2009.
- [65] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-A -mechanical-processes", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [66] S. R. Holdsworth, T. Graule und E. Mazza, "Arbeitsbericht Feasibility evaluation study of candidate canister solutions for the disposal of spent nuclear Fuel and high level waste", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen, NAB 14-90, Sep. 2014.
- [67] ANDRA, "Dossier 2005 Argile Architecture and management of a geological repository", Agence nationale pour la gestion des déchets radioactifs, ANDRA-286VA, ISBN 2-9510108-7-70108-8-5, Dez. 2006.
- [68] S. Schubert, U. Probst und H.-P. Winkler, "Behaviour of metallic seals in CASTOR casks under normal and accident conditions of transport: qualification requirements", *Packag. Transp. Storage Secur. Radioact. Mater.*, Bd. 20, Nr. 4, S. 179– 182, Dez. 2009.
- [69] E.On Kernkraft, "Kurzbeschreibung des Brennelementbehälterlagers Isar KKI BELLA", E.ON Kernkraft GmbH, Essen, Hannover, Feb. 2001.
- [70] G. Köhler, H. Rögnitz und B. Künne, "Maschinenteile. 1, 10. überarb. und aktualisierte Auflage", Teubner, Wiesbaden, ISBN: 978-3-8351-0093-0, 2007.
- [71] A. Maissen, "Festkörperreibung: Reibungszahlen verschiedener Werkstoffe", Schweizer Ingenieur und Architekt, Band 111, Heft 3, DOI: 10.5169/seals-78120, Jan. 1993.
- [72] Eichinger GmbH, "Greifer und Hebezeuge für Kran und Kranhaken". [Online]. Verfügbar unter: https://www.eichinger.de/wp-content/uploads/2017/02/1086_2web.jpg. [Zugegriffen: 04-Juli-2018].
- [73] H. Roloff und W. Matek, "Maschinenelemente", Vieweg+Teubner Verlag, Wiesbaden, DOI: 10.1007/978-3-322-85908-2, 1974.
- [74] DIN 15002, "Lastaufnahmeeinrichtungen". Apr-1980.
- [75] Wikipedia, "Twistlock Container Verriegelung". [Online]. Verfügbar unter: https://de.wikipedia.org/wiki/Twistlock#/media/File:Container_Verriegelung_2.jpg. [Zugegriffen: 04-Juli-2018].
- [76] "CASTOR[®] Demonstrator der GNS eigene Aufnahme", Sep. 2015.
- [77] D. Féron, D. Crusset und J.-M. Gras, "Corrosion issues in nuclear waste disposal", J. Nucl. Mater., Bd. 379, Nr. 1–3, S. 16–23, Sep. 2008.

Anhang A:

Dossiers zum generischen ENCON-Behälterkonzept

Dossiers der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungssystem und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde Leibniz Universität Hannover

Version 1.4 / April 2018

Inhaltsverzeichnis

ANHANG A: DOSSIERS ZUM GENERISCHEN ENCON-BEHÄLTERKONZEPT
VORWORT ZU DEN GENERISCHEN ENCON – BEHÄLTERDOSSIERS DER
ARBEITSPAKETE 6.5 UND 6.6 147
ENCON-T 152
ENCON-T / HAW158
ENCON-K
ENCON-K / HAW
ENCON-S
ENCON-S / HAW 189
ENCON-TLB 199
LITERATUR ZUM ENCON-BEHÄLTERKONZEPT 209

Vorwort zu den generischen ENCON – Behälterdossiers der Arbeitspakete 6.5 und 6.6

Seit 2013 befasst sich die Forschungsplattform ENTRIA mit der Schaffung von Bewertungsgrundlagen für den Vergleich unterschiedlicher Optionen zum Umgang mit den in Deutschland angefallenen, wärmeentwickelnden Reststoffen aus der friedlichen Nutzung der Kernenergie. Betrachtet werden hierbei die Optionen Tiefenlagerung mit und ohne Vorkehrungen zur geplanten Rückholbarkeit sowie die langfristige Oberflächenlagerung als Bindeglied zu späteren Entsorgungspfaden. Der Fokus der Arbeitspakete des Instituts für Werkstoffkunde (IW) lag im Rahmen von ENTRIA auf der erforderlichen Handhabung der Lagerbehälter sowie dem Monitoring dieser Behälter, insbesondere im Kontext der Option Tiefenlagerung mit Vorkehrungen zur Rückholbarkeit.

Aus der im Rahmen von ENTRIA betrachteten Option der Tiefenlagerung mit Vorkehrungen zur Rückholbarkeit der eingelagerten Reststoffe ergeben sich neue Forderungen und Randbedingungen für die Konzeptionierung von Lagerbehältern. Um die Rückholbarkeit gewährleisten zu können, müssen die Behälter, die insbesondere im Kontext der Handhabung des Inventars als Kernkomponente der technischen Barriere betrachtet werden können, für den Zeitrahmen einer potentiellen Rückholung oder Bergung (etwa 500 Jahre) den dichten Einschluss der Radionuklide sowie eine ausreichende Abschirmung der ionisierenden Strahlung gewährleisten. Andererseits müssen die Behälter im Zusammenspiel mit den umgebenden geotechnischen sowie geologischen Barrieren den langfristig sicheren Einschluss des Inventares über Zeiträume von über 100.000 Jahren gewährleisten. Die Wechselwirkungen, die sich im Tiefenlager zwischen den Behältern und den umgebenden Barriereschichten ergeben, sind in großem Maße von der Geologie des Lagerstandortes und insbesondere von dem jeweiligen Wirtsgestein abhängig. Allerdings ist in Deutschland bislang noch kein konkreter Lagerstandort bestimmt worden, dessen Geologie als Eingangsgröße der Behälterauslegung dienen kann. Auf der anderen Seite ist bereits für die Standortsuche ein grob skizziertes Behälterkonzept für die potentiellen Standorte erforderlich. Als Grundlage der weiteren Arbeiten ist somit eine Spezifizierung von angepassten Behältersystemen für alle in Deutschland potentiell geeigneten Wirtsgesteine Salz/Salzstein, Ton und Tonstein sowie kristallines Hartgestein erforderlich.

International wurde bereits eine Vielzahl von unterschiedlichen Behälterkonzepten für unterschiedliche Wirtsgesteine entwickelt. In den "Behälterdossiers" werden für unterschiedliche Wirtsgesteine entwickelten Behälter beschrieben. Es zeigt sich, dass diesen Konzepten allerdings sehr unterschiedliche Lagerkonzepte und stark abweichende Randbedingungen, beispielsweise bei der Art und Menge des einzulagernden Inventars, zu Grunde liegen. Auch die Funktionen, welche die technische Barriere im Rahmen der jeweiligen Lagerkonzepte übernehmen muss, unterscheiden sich zum Teil erheblich. Hieraus resultieren unterschiedliche Lösungsansätze zur praktischen Umsetzung dieser Anforderungen bei der Gestaltung der Behälter in den jeweiligen Konzepten. Die unterschiedlichen, internationalen bereits entwickelten Behälter können somit nicht ohne teilweise weitreichende Modifikationen unter den in Deutschland gültigen Randbedingungen verwendet werden und sind somit als Grundlage für den standortunabhängigen Optionenvergleich ungeeignet. Diese in den unterschiedlichen Ländern entwickelten Behälterkonzepte stellen die umfangreiche Datenbasis für die Gestaltung von an die Randbedingungen des

ENTRIA-Optionenvergleichs angepassten, wirtsgesteinsspezifischen Lagerbehälterkonzepten dar. Auf der Grundlage der zusammengetragenen Daten zu unterschiedlichen Behälterkonzepten sowie der im Rahmen von ENTRIA identifizierten, wirtsgesteinsspezifischen Anforderungen an die Behälter wurde es möglich aus dem Projekt heraus das ENCON (ENtria CONtainer) Behälterkonzept zu entwickeln.

Bei den ENCON-Behältern handelt es sich um generische, wirtsgesteinsspezifische Lagerbehälterkonzepte die sich bezüglich spezifischer Gestaltungsdetails, wie beispielsweise der Materialauswahl der Behälter, an den internationalen, wirtsgesteinsspezifischen Behälterkonzepten orientieren. Zusätzlich werden bei den ENCON-Behälter die ENTRIA-spezifischen Anforderungen berücksichtigt, die sich beispielsweise aus der Option der Rückholbarkeit ergeben. Ausgehend von einer groben Beschreibung der einzelnen ENCON-Behälter konnten diese in einem iterativen Prozess während der Projektlaufzeit in einzelnen Aspekten, wie beispielsweise in Bezug auf die erforderlichen Materialstärken oder der Behälterverschluss, weiter ausdetailliert werden. Der für den ENTRIA Optionenvergleich erforderliche Detaillierungsgrad einzelner Gestaltungsmerkmale der generischen **ENCON-Behälter** musste hierzu mit den Kollegen aus den anderen technisch-/naturwissenschaftlichen Disziplinen im ENTRIA Verbund abgestimmt werden. Aus diesen Diskussionen ergab sich auch der Wunsch nach der Schaffung eines ENCON-Transport- und Lagerbehälters (ENCON-TLB) für die Option der langfristigen Oberflächenlagerung.

Um den interdisziplinären Austausch innerhalb des ENTRIA-Verbundes, beispielsweise über unterschiedliche Gestaltungsmerkmale der wirtsgesteinsspezifischen generischen ENCON-Behälterkonzepte sowie die sich hieraus ergebenden Unterschiede, mit den Kollegen aus den technischen aber insbesondere auch aus den geisteswissenschaftlichen Disziplinen zu ermöglichen, wurde es erforderlich, die Informationen zur Gestaltung der generischen ENCON-Behälterkonzepte in einer übersichtlichen, nachvollziehbaren Form zusammenzustellen. Herausforderungen hierbei ergaben sich aus dem unterschiedlichen Background sowie dem sehr heterogenen Informationsbedürfnis der unterschiedlichen Disziplinen. Um diesen Herausforderung gerecht werden zu können wurden die grundlegenden Daten der ENCON-Behälter in Form von Behälterdossiers zusammengestellt.

Der zweiteilige Aufbau der Behälterdossiers ermöglicht es, dem unterschiedlichen Informationsbedürfnis der Nutzer der Dossiers gerecht zu werden. Im ersten Teil jedes Dossiers sind die elementaren Eigenschaften der einzelnen Behälter zusammengefasst. Hier wird beispielsweise ihr grundsätzlicher Aufbau und das Inventar beschrieben. Des Weiteren werden aus Gründen der Vollständigkeit kurz das zugrundeliegende Lagerkonzept sowie das zugehörige Wirtsgestein benannt. Dieser erste Teil ermöglicht es, beispielsweise der interessierten Öffentlichkeit, sich einen schnellen Überblick über die unterschiedlichen ENCON-Lagerbehälter für die verschiedenen Wirtsgesteine zu verschaffen. Im anschließenden Teil der Dossiers wird der Aufbau der ENCON-Behälter detaillierter beschrieben. Da insbesondere die Eigenschaften der Behälterwerkstoffe einen großen Einfluss auf die Wechselwirkung der Behälter mit dem Lagerumfeld besitzen, stellen die im Anhang zusammengefassten Eigenschaften der vorgesehenen Behälterwerkstoffe den letzten elementaren Bestandteil der Behälterdossiers dar. Die Dossiers ermöglichen somit sowohl einen schnelle Überblick als auch einen ersten Vergleich einzelner Aspekte unterschiedlicher Behälterkonzepte. Die Dossiers fassen die wichtigsten Gestaltungsmerkmale der Behälter sowie einige herausragende Gestaltungsdetails der unterschiedlichen Behälter zusammen. Durch den limitierten Umfang der Dossiers ist es allerdings nicht möglich und mit dem Ziel der Übersichtlichkeit und der Vergleichbarkeit der unterschiedlichen generischen Behälterkonzepte auch nicht sinnvoll, alle gestalterischen Details in den Dossiers darzustellen. Weitere Details zur Entstehung der ENCON-Behälter sowie den Gründen für die Auswahl einzelner Gestaltungsdetails können unter anderem dem ENCON-Arbeitsbericht entnommen werden.

ENCON-T

Kurzdossier

Der ENCON-T wurde als generischer Behälter zur Einlagerung Wärme entwickelnder Reststoffe für Tiefenlagerkonzepte im Ton bzw. Tonstein entwickelt.

Als Einlagerungsvariante für den ENCON-T soll die Streckenlagerung Anwendung finden. Die den Lagerbehälter umgebenden Bereiche der Einlagerungsstrecken werden mit Bentonit verfüllt. Dieses kann thermisch bis etwa 100 °C belastet werden. Hieraus resultiert eine zulässige Wärmeleistung der einzulagernden Reststoffe von 1 kW pro Behälter. Bei geeigneter Planung der Einlagerungsstrecken des Tiefenlagers kann so gewährleistet werden, dass die zulässige Temperatur von 100 °C nicht überschritten wird. Auch die zulässige Maximaltemperatur auf der Monitoringsohle kann so eingehalten werden. Bei einem Lagerbergwerk im Tonstein kann die Wärmeleistung der Behälter, aufgrund der besseren Wärmeableitung, gegebenenfalls geringfügig erhöht werden [17].

Im Inneren verfügt der ENCON-T über eine dicht verschlossene Tragstruktur zur Aufnahme der aus den Brennelementen entnommenen Brennstähe In der alternativen Variante ENCON-T/HAW besitzt der Behälter im Inneren einen Schacht zur Aufnahme von drei Kokillen mit Wärme entwickelnden Wiederaufarbeitungsabfällen.

Der selbstabschirmend ausgelegte Lagerbehälter besitzt einen zweischaligen Aufbau aus einem dicht verschraubten inneren Behälter aus Gusseisen mit Kugelgraphit sowie einen dicht verschweißten Außenbehälter aus niedrig legiertem Stahl.

Zur Abschirmung der ionisierenden Strahlung sind im Innenbehälter zusätzlich Abschirmmaterialien aus Polyethylen und Graphit in der Gestalt von Stäben bzw. Abschirmplatten vorgesehen.

ENCON-T schematisch Wirtsgestein Ton (Ton-Strecke Einlagerung Masse Länge Durchmesser

Anzahl gesamt

(BE+HAW) [1]

stein)

41 t

5,6 m

1.26 m

ca. 11.200

Aufbau des Behälters

Der ENCON-T besitzt einen zylindrischen Aufbau mit einem Durchmesser von 1,26 m und einer Länge von 5.6 m. Beladen wiegt er etwa 41 Tonnen. Er besitzt an beiden Enden Tragpilze, welche in die Behälterstruktur integriert sind. An diesen kann zur Handhabung ein Transportgestell mit Tragzapfen angeschlagen werden, wodurch der Behälter sowohl waagerecht als auch senkrecht transportiert werden kann.

	Material	Beschre	eibung			
Tragstruktur	Edelstahl (alt. Zirkalloy)	Der ENCON-T besitzt einen zylindrischen, inneren Tragbehälter mit einem Durchmesser von 0,39 m und einer Wandstärke von 1 cm. Dieser besitzt in seinem Inneren eine Tragstruktur zur Aufnahme der gezogenen Brennstäbe. Die Tragstruktur er- möglicht Falle einer Rückholung die sichere Ent- nahme des Inventars zur Nachkonditionierung der Reststoffe.				
Innenbehälter	Gusseisen mit Kugelgraphit 285 mm	Der Innenbehälter dient der Stabilität sowie dem primären, dichten Einschluss der Radionuklide. Gusseisen besitzt eine gute Abschirmwirkung fün Neutronen- und Gammastrahlung. Um die Neutro- nenabschirmung zusätzlich zu erhöhen, sind im In- nenbehälter Moderatorstäbe und Abschirmplatter aus Polyethylen eingelassen Der Behälter wird mit einem verschraubten Decke dicht verschlossen				
Außenbehälter	niedrig-legier- ter Stahl 150 mm	Der Außenbehälter dient dem langfristigen Ein- schluss der Radionuklide über einen Zeitraum von mehreren 1.000 Jahren. Er wird mittels eines ver- schweißten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legier- ter Stahl verwendet, der unter den reduzierenden Bedingungen des Einlagerungs-bergwerkes ein gu- tes Korrosionsverhalten aufweist und nicht zu loka-				
		Inventa	ar			
Beschreibung	Das Inventar eir ben mehrerer E geometrischen u Unter der Vorau zwischengelager elementen eines sion können eingelagert were	nes ENCO Brennelem und thern ssetzung, t wurden, Druckwa drei Ko den.	N-T besteht aus ente. Das Inv hischen Gründe dass die Bren entspricht die sserreaktors. I killen mit N	s den vereinzelten Brennstä- entar des Behälters ist aus en auf etwa 3,1 t begrenzt. nstoffe mindestens 75 Jahre s etwa drei zerlegten Brenn- n der alternativen HAW-Ver- Wiederaufarbeitungsabfällen		
Wärmeleistung	Max. 1 kW bei E rung	inlage-	Aktivität	Max. 9,5 *10 ¹⁵ Bq		

Die innere Tragstruktur des ENCON-T dient der Aufnahme sowie der dauerhaften Gewährleistung einer unterkritischen Anordnung des Inventars. Das generische Inventar besteht hierbei aus den gezogenen Brennstäben von bis zu drei Druckwasserreaktor-Brennelementen. Zusätzlich dient die Tragstruktur der sicheren Handhabbarkeit und dem Einschluss des Inventars im Rahmen der Konditionierung des Inventars in die Lagerbehälter sowie gegebenenfalls im Rahmen einer Rekonditionierung des Inventars nach einer Rückholung / Bergung der Behälter aus dem Tiefenlager. Hieraus ergeben sich bei der Konzeption der Tragstruktur hohe Anforderungen an den Korrosionswiderstand der Tragstruktur unter atmosphärischen Bedingungen sowie an die Dekontaminierbarkeit. Um den Platz- und Materialbedarf der Lagerbehälter gering zu halten, wurden die Baugröße der Tragstruktur und somit auch die Wandstärke dabei so gering wie möglich gehalten.

Geometrisch ist die Tragstruktur als metallischer Zylinder ausgeführt und ist am Kopfund Boden mit einem Deckel verschlossen. Gegebenenfalls kann sie durch Einsätze in mehrere Kammern unterteilt werden um das Einladen des Inventars in einer geometrisch bestimmten Anordnung zu erleichtern. Im Rahmen der Konditionierung muss die Zwischenlagerung bereits beladener Tragstrukturen in einem Nasslager möglich sein. Somit muss der Werkstoff aus der die Tragstruktur gefertigt wird einen hohen Korrosionswiderstand unter oxidierenden Bedingungen besitzen. Zusätzlich ist das Material der Tragstruktur während der gesamten Lagerdauer einer hohen radiologischen Belastung ausgesetzt. Die zu erwartende Strahlendosis liegt allerdings weit unter der welche beispielsweise metallische Reaktorbauteile aus Zirkonium oder nicht rostenden Stählen während ihrer üblichen Lebensdauer erhalten. Mit einer Versprödung des Materials, welches die Handhabbarkeit gefährdet, ist demnach nicht zu rechnen. Somit eignen sich sowohl Zirkonium als auch nicht rostende Stähle als Werkstoff für den Tragbehälter. Im Rahmen der Konzeptionierung der generischen Behälterkonzepte musste demnach eine Festlegung erfolgen. Diese erfolgte auf der Grundlage, dass bei den ENCON-Behältern für die Einlagerung verglaster Abfälle, die aus nicht rostendem Stahl gefertigte, HAW-Kokille die Funktion des inneren Tragbehälters übernimmt. Die Fertigung der Tragstruktur für die ENCON zur Einlagerung bestrahlter Brennstäbe aus demselben, nicht rostenden Stahl (1.4833) führt zu einer Reduktion der Variantenvielfalt und erleichtert somit die Führung der zur Einlagerung erforderlichen Nachweise [1].

Die Auswahl der Verschlussvariante für den Deckel der Tragstruktur sowie die Gestaltung der Lastanschlagpunkte erfolgt unter der besonderen Berücksichtigung der erforderlichen Korrosionsfestigkeit sowie der leichten Dekontaminierbarkeit. Aus diesem Grund wurden ein artgleicher Verschluss mittels einer Schweißnaht und die Verwendung eines gut zugänglichen Tragpilzes im Deckelbereich gewählt.

ENCON-T						
Gestaltungsdetails						
Innenbehälte	Innenbehälter					
Material	Gusseisen mit Kugelgraphit – EN-GJS 400-18	Länge	5000 mm			
Verschluss	verschraubter Deckel mit Vollmetall- dichtungen	Durchmesser	960 mm			
Tragstruktur	Der Abschirmbehälter verfügt über	Wandstärke	285 mm			
	eine umlaufende Tragmulde am Behäl- terkörper.	Gewicht	14,3 to			
Beschreibung						

Der Innenbehälter des ENCON-T Behälters übernimmt mehrere Funktionen. Er dient der Abschirmung der vom Inventar ausgehenden ionisierenden Strahlung. Zusätzlich leistet der Innenbehälter auch einen Beitrag zur Gewährleistung der mechanischen Stabilität des gesamten Lagerbehälters. Der Innenbehälter wird vom Aussenbehälter umschlossen und muss daher keine erhöhten Anforderungen an die Korrosionssicherheit erfüllen.

Strukturen und Bauteile mit Wandstärken von über 200 mm, wie der Abschirmbehälter, können wirtschaftlich und prozesssicher nur mittels Urformender Verfahren, wie dem Gießen, gefertigt werden. Somit muss für den Behälter ein Werkstoff zum Einsatz kommen, der neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, eine gute Gießeignung aufweist. Das Material des Innenbehälters muss zusätzlich über gute Zerspanungseigenschaften verfügen, um den Behälter nach dem Guss durch spanende Verfahren auf Fertigmaß bringen zu können. Auch die Einbringung der über 4 m langen Aufnahmebohrungen für die Abschirmstäbe aus Polyethylen erfordert eine gute Zerspanbarkeit des Behälterwerkstoffes. Aufgrund des bereits vorhandenen Erfahrungsschatzes in der Verarbeitung dieses Werkstoffes wurde Gusseisen mit Kugelgraphit (EN-GJS-400) als Werkstoff gewählt. Dieser Werkstoff findet bereits bei den CASTOR®-Behältern Anwendung und wird auch von der SKB für den Innenbehälter des KBS-3V Behälters vorgesehen [12], [32], [36], [37].

Im Rahmen der Konditionierung des Inventars in den Behälter sowie des Behälterzusammenbaus muss der Innenbehälter des ENCON sicher manipuliert werden. Hierfür ist eine in den verlängerten Behälterkörper eingelassene Tragmulde im nach oben verlängerten Behälterkörper vorgesehen an der der Behälter mit einem Greifer manipuliert werden kann. Diese Konstruktion wurde gewählt, da die zur der Manipulation der Behälter erforderlichen Kräfte nicht sicher über einen Tragzapfen am verschraubten Deckel übertragen werden könnten. Zusätzlich ermöglicht diese Gestaltung, dass oberhalb des Behälterdeckels eine Abschirmplatte aus Polyethylen eingelegt werden, welche von dem umlaufenden Behälterrand vor mechanischen und thermischen Einwirkungen geschützt wird. Hierdurch ergibt sich eine erhebliche Reduktion der vom Behälter in axialer Richtung ausgehende Dosisleistung. Hierdurch werden die nachfolgenden Arbeitsschritte der Konditionierung, insbesondere der schweißtechnische Verschluss des Außenbehälters erleichtert.

Außenbehälter						
Material	niedrig legierter Stahl	Länge	5600 mm			
	Eingelegter, artgleich verschweißter					
Verschluss	Deckel	Durchmesser	1260 mm			
Tragstruktur	Tragstruktur Der Außenbehälter verfügt über je		150 mm			
	einen massiven i ragpilz am Behal- terboden und Deckel	Gewicht	25,0 t			

Der Außenbehälter des ENCON-T dient dem langfristigen dichten Einschluss der Radionuklide. Zusätzlich muss er die Handhabbarkeit der Behälter, auch im Rahmen einer Rückholung / Bergung, sicherstellen. Da der Außenbehälter nach der Verfüllung des Tiefenlagers in direktem Kontakt mit der geotechnischen Barriere steht, muss er erhöhte Anforderungen an die Korrosionsbeständigkeit erfüllen. Unter den zu erwartenden Bedingungen spielt die aerobe Korrosionsneigung der Behälterwerkstoffe eine untergeordnete Rolle. Hier kann insbesondere lokale Korrosion, welche auch unter anaeroben Bedingungen stattfindet zu einem Integritätsverlust bei den Behältern führen. Somit muss für den Behälter ein Material zum Einsatz kommen, welches neben widerstand gegen lokale Korrosionsangriffe unter anaeroben Bedingungen verfügt.

Um den langfristig gasdichten Verschluss der Behälter zu gewährleisten, muss der Verschluss des Behälters mittels einer Schweißnaht erfolgen. Der Behälterwerkstoff muss demnach eine gute Schweißeignung besitzen. Hierbei muss der Verschluss mit einem artgleichen Zusatzwerkstoff erfolgen, da ein artfremder Schweißzusatz zu einer starken Lokalelementbildung und demnach zu einem verstärkten Korrosionsangriff führen würde. Um den Behälter gegebenenfalls im Rahmen einer Rückholung wieder öffnen zu können, verfügt der Schweißdeckel des Außenbehälters über zwei Absätze. Am oberen Absatz erfolgt die Verschweißung mit dem Behälterkörper. Durch den zweiten Absatz entsteht ein gesicherter Arbeitsraum für den Einsatz eines Trennwerkzeuges. Zusätzlich gewährleistet dieser Absatz auch im Falle der Behälteröffnung mittels spanender Verfahren eine sichere Auflage des Deckels, wodurch ein Verkanten des Trennwerkzeuges verhindert wird.

Im Rahmen des Transports der Einlagerung, aber auch der potentiellen Rückholung, der Behälter muss der Außenbehälter des ENCON sicher manipuliert und gegriffen werden können. Hierfür ist am Boden sowie am Deckel des Behälters ein massiver Tragpilz vorgesehen. Die Vorteile dieser Konstruktion bestehen darin, dass sie eine gute Zugänglichkeit beim Lastanschlag ermöglichen. Zusätzlich kann diese Gestaltungsvariante des Lastanschlagpunktes sehr massiv ausgelegt werden, so dass fortschreitende Korrosion die Tragfähigkeit nur geringfügig reduziert. Aufgrund der guten Zugänglichkeit ist es zudem im Rahmen der Bergung möglich, die Funktionsfähigkeit auch nach mehreren Jahrhunderten durch den Abtrag oberflächlicher Korrosionsschichten, wieder herzustellen.

ENCON-T / HAW Kurzdossier Der ENCON-T/HAW wurde als generischer Behälter zur Einlagerung Wärme entwickelnder Reststoffe für Tiefenlagerkonzepte im Ton bzw. Tonstein entwickelt. Als Einlagerungsvariante für den ENCON-T soll die Streckenlagerung Anwendung finden. Die den Lagerbehälter umgebenden Bereiche der Einlagerungsstrecken werden mit Bentonit verfüllt. Dieses kann thermisch bis etwa 100 °C belastet werden. Hieraus resultiert eine zulässige Wärmeleistung der einzulagernden Reststoffe von 1 kW pro Behälter. Bei geeigneter Planung der Einlagerungsstrecken des Tiefenlagers kann so gewährleistet werden, dass die zulässige Temperatur von 100 °C nicht überschritten wird. Auch die zulässige Maximaltemperatur auf der Monitoringsohle kann so eingehalten werden. Bei einem Lagerbergwerk im Tonstein kann die Wärmeleistung der Behälter, aufgrund der besseren Wärmeableitung, gegebenenfalls geringfügig erhöht werden [17]. Die Funktion der inneren Tragstruktur wird beim ENCON-T/HAW von den bereits dicht verschweißten Kokillen mit den Wiederaufarbeitungsabfällen übernommen, welche in den Behälterschacht eingestellt werden. Um dieses Inventar sicher aufnehmen zu können unterscheidet sich die HAW Variante in ihren Abmaßen leicht von der Variante **ENCON-T** schematisch zur Einlagerung von Brennstäben deren Gestal-Wirtsgestein Ton (Tontungsmerkmale sie jedoch grundsätzlich überstein) nimmt. Einlagerung Strecke Der selbstabschirmend ausgelegte Lagerbehälter Masse 39,4 t besitzt einen zweischaligen Aufbau aus einem Länge 4,96 m dicht verschraubten inneren Behälter aus Gussei-1,30 m Durchmesser sen mit Kugelgraphit sowie einen dicht ver-Anzahl gesamt ca. 11.200

Stahl. Zur Abschirmung der jonisierenden Strahlung sind im Innenbehälter zusätzlich Abschirmmaterialien aus Polvethylen und Graphit in der Gestalt von Stäben bzw. Abschirmplatten vorgesehen.

schweißten Außenbehälter aus niedrig legiertem (BE+HAW)

[1]

Aufbau des Behälters

Der ENCON-T/HAW besitzt einen zylindrischen Aufbau mit einem Durchmesser von 1,30 m und einer Länge von 4,96 m. Beladen wiegt er etwa 39,4 Tonnen. Er besitzt an beiden Enden Tragpilze, welche in die Behälterstruktur integriert sind. An diesen kann zur Handhabung ein Transportgestell mit Tragzapfen angeschlagen werden, wodurch der Behälter sowohl waagerecht als auch senkrecht transportiert werden kann.

	Material	Beschreibung
Tragstruktur / Kokillen	Edelstahl	Der ENCON-T/HAW besitzt einen zylindri- schen Schacht mit einem Durchmesser von 0,43 m. In diesen werden drei dicht ver- schweißte Edelstahlkokillen mit den Wieder- aufarbeitungsabfällen eingestellt die beim ENCON-T/HAW die Funktion der Tragstruk- tur übernehmen. Da der Boden der Kokillen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3.9 m. [67]
Innenbehälter	Gusseisen mit Kugelgraphit 283 mm	Der Innenbehälter dient der Stabilität sowie dem primären, dichten Einschluss der Radi- onuklide. Gusseisen besitzt eine gute Ab- schirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenab- schirmung zusätzlich zu erhöhen, sind im Innenbehälter Moderatorstäbe und Ab- schirmplatten aus Polyethylen eingelassen. Der Behälter wird mit einem verschraubten Deckel dicht verschlossen.
Außenbehälter	niedrig-legier- ter Stahl 152 mm	Der Außenbehälter dient dem langfristigen Einschluss der Radionuklide über einen Zeit- raum von mehreren 1.000 Jahren. Er wird mittels eines verschweißten Deckels gas- dicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet, der unter den reduzierenden Be- dingungen des Einlagerungs-bergwerkes ein gutes Korrosionsverhalten aufweist und nicht zu lokaler Korrosion neigt.
	Ir	iventar
Beschreibung	Das Inventar ein Kokillen in dener sind. Die Wärme sungen von Mis dung nach 75 J 500 W / Kokille CON-T/HAW mit eine Homogenis Gegebenenfalls Zeitraum zwisch Wärmeleistung.	es ENCON-T/HAW besteht aus drei Edelstahl- h Wiederaufarbeitungsabfällen eingeschlossen eleistung von Kokillen mit verglasten Spaltlö- schoxidbrennelementen liegt bei einer Bela- ahren Abklinglagerung zum Teil noch über [67]. Durch eine gezielte Beladung des EN- t Kokillen aus unterschiedlichen Chargen ist sierung der Behälterinventare anzustreben. sind einzelne Kokillen für einen verlängerten enzulagern um die Einhaltung der maximalen und Aktivität pro Behälter sicherzustellen
Wärmeleistung	1 kW bei Einlage	erung Aktivität Max. 9.5 *10 ¹⁵ Bg

160 – Anhang A

Die der Konzeption der Kokillen zugrundeliegenden Anforderungen an die Materialeigenschaften (Schweißbarkeit, Beständigkeit gegen Korrosion unter atmosphärischen Bedingungen sowie bei der Nasslagerung, hoher Widerstand gegen Strahlenschädigung) entsprechen den Anforderungen an die Tragstruktur. Auch die Gestaltung des Deckelverschlusses der Kokillen sowie ihrer Lastanschlagpunkte erfolgten, wie bei der Tragstruktur, unter der besonderen Berücksichtigung der erforderlichen Korrosionsfestigkeit sowie der leichten Dekontaminierbarkeit. Aus diesem Grund wurden diese nach ihrer Befüllung mit den verglasten Abfällen mittels einer Schweißnaht verschlossen und weisen, wie die Tragstruktur des ENCON-T für Brennelemente, einen gut zugänglichen Tragpilz im Deckelbereich auf. Somit ist davon auszugehen, dass die aus dem nicht rostenden Stahl (1.4833) gefertigten Kokillen auch unter den Bedingungen, welche sich nach der Konditionierung in den umgebenden Tiefenlagerbehälter einstellen, eine ausreichende Dauerhaftigkeit erzielen und sich dies auch im Rahmen eines zu einem später Zeitpunkt für einen konkreten Standort zu führenden Sicherheitsnachweises bestätigen lässt [1], [67].

ENCON-T / HAW						
	Gestaltungsdetails					
Innenbehälte	er					
Material	Gusseisen mit Kugelgraphit – EN-GJS 400-18	Länge	4435 mm			
Verschluss	verschraubter Deckel mit Voll- metalldichtungen	Durchmesser	996 mm			
Tragstruktur	Der Abschirmbehälter verfügt	Wandstärke	283 mm			
	über eine umlaufende Tragmulde am Behälterkörper.	Gewicht	12,9 t			
Beschreibung						

Der Innenbehälter des ENCON-T/HLW Behälters übernimmt mehrere Funktionen. Er dient der Abschirmung der vom Inventar ausgehenden ionisierenden Strahlung. Zusätzlich leistet der Innenbehälter auch einen Beitrag zur Gewährleistung der mechanischen Stabilität des gesamten Lagerbehälters. Der Innenbehälter wird vom Aussenbehälter umschlossen und muss daher keine erhöhten Anforderungen an die Korrosionssicherheit erfüllen.

Strukturen und Bauteile mit Wandstärken von über 200 mm, wie der Abschirmbehälter, können wirtschaftlich und prozesssicher nur mittels Urformender Verfahren, wie dem Gießen, gefertigt werden. Somit muss für den Behälter ein Werkstoff zum Einsatz kommen, der neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, eine gute Gießeignung aufweist. Das Material des Innenbehälters muss zusätzlich über gute Zerspanungseigenschaften verfügen, um den Behälter nach dem Guss durch spanende Verfahren auf Fertigmaß bringen zu können. Auch die Einbringung der über 4 m langen Aufnahmebohrungen für die Abschirmstäbe aus Polyethylen erfordert eine gute Zerspanbarkeit des Behälterwerkstoffes. Aufgrund des bereits vorhandenen Erfahrungsschatzes in der Verarbeitung dieses Werkstoffes wurde Gusseisen mit Kugelgraphit (EN-GJS-400) als Werkstoff gewählt. Dieser Werkstoff findet bereits bei den CASTOR®-Behältern Anwendung und wird auch von der SKB für den Innenbehälter des KBS-3V Behälters vorgesehen [12], [32], [36], [37].

Im Rahmen der Konditionierung des Inventars in den Behälter sowie des Behälterzusammenbaus muss der Innenbehälter des ENCON sicher manipuliert werden. Hierfür ist eine in den verlängerten Behälterkörper eingelassene Tragmulde im nach oben verlängerten Behälterkörper vorgesehen an der der Behälter mit einem Greifer manipuliert werden kann. Diese Konstruktion wurde gewählt, da die zur der Manipulation der Behälter erforderlichen Kräfte nicht sicher über einen Tragzapfen am verschraubten Deckel übertragen werden könnten. Zusätzlich ermöglicht diese Gestaltung, dass oberhalb des Behälterdeckels eine Abschirmplatte aus Polyethylen eingelegt werden, welche von dem umlaufenden Behälterrand vor mechanischen und thermischen Einwirkungen geschützt wird. Hierdurch ergibt sich eine erhebliche Reduktion der vom Behälter in axialer Richtung ausgehenden Dosisleistung. Hierdurch werden die nachfolgenden Arbeitsschritte der Konditionierung, insbesondere der schweißtechnische Verschluss des Außenbehälters erleichtert.

Außenbehälter						
Material	niedrig legierter Stahl	Länge	4950 mm			
Verschluss	Eingelegter, artgleich ver- schweißter Deckel	Durchmesser	1300 mm			
Tragstruktur	Der Außenbehälter verfügt über	Wandstärke	152 mm			
	Behälterboden und Deckel	Gewicht	24,0 t			

Der Außenbehälter des ENCON-T/HAW dient dem langfristigen dichten Einschluss der Radionuklide. Zusätzlich muss er die Handhabbarkeit der Behälter, auch im Rahmen einer Rückholung / Bergung, sicherstellen. Da der Außenbehälter nach der Verfüllung des Tiefenlagers in direktem Kontakt mit der geotechnischen Barriere steht, muss er erhöhte Anforderungen an die Korrosionsbeständigkeit erfüllen. Unter den zu erwartenden Bedingungen spielt die aerobe Korrosionsneigung der Behälterwerkstoffe eine untergeordnete Rolle. Hier kann insbesondere lokale Korrosion, welche auch unter anaeroben Bedingungen stattfindet zu einem Integritätsverlust bei den Behältern führen. Somit muss für den Behälter ein Material zum Einsatz kommen, welches neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, einen hohen Widerstand gegen lokale Korrosionsangriffe unter anaeroben Bedingungen verfügt.

Um den langfristig gasdichten Verschluss der Behälter zu gewährleisten, muss der Verschluss des Behälters mittels einer Schweißnaht erfolgen. Der Behälterwerkstoff muss demnach eine gute Schweißeignung besitzen. Hierbei muss der Verschluss mit einem artgleichen Zusatzwerkstoff erfolgen, da ein artfremder Schweißzusatz zu einer starken Lokalelementbildung und demnach zu einem verstärkten Korrosionsangriff führen würde. Um den Behälter gegebenenfalls im Rahmen einer Rückholung wieder öffnen zu können, verfügt der Schweißdeckel des Außenbehälters über zwei Absätze. Am oberen Absatz erfolgt die Verschweißung mit dem Behälterkörper. Durch den zweiten Absatz entsteht ein gesicherter Arbeitsraum für den Einsatz eines Trennwerkzeuges. Zusätzlich gewährleistet dieser Absatz auch im Falle der Behälteröffnung mittels spanender Verfahren eine sichere Auflage des Deckels, wodurch ein Verkanten des Trennwerkzeuges verhindert wird.

Im Rahmen des Transports der Einlagerung, aber auch der potentiellen Rückholung, der Behälter muss der Außenbehälter des ENCON sicher manipuliert und gegriffen werden können. Hierfür ist am Boden sowie am Deckel des Behälters ein massiver Tragpilz vorgesehen. Die Vorteile dieser Konstruktion bestehen darin, dass sie eine gute Zugänglichkeit beim Lastanschlag ermöglichen. Zusätzlich kann diese Gestaltungsvariante des Lastanschlagpunktes sehr massiv ausgelegt werden, so dass fortschreitende Korrosion die Tragfähigkeit nur geringfügig reduziert. Aufgrund der guten Zugänglichkeit ist es zudem im Rahmen der Bergung möglich, die Funktionsfähigkeit auch nach mehreren Jahrhunderten durch den Abtrag oberflächlicher Korrosionsschichten, wieder herzustellen.

ENCON-T / ENCON-T/HAW							
	Materialien						
Niedrig legierter Stahl	(exemplariso	h P235 G	iH / 1.034	15) [78]-[80]			
Anmerkung	Beispielwerks Außenbehälte	toff verwei r im Konze	ndet als Be ept der ANI	hältermaterial DRA für Ton [6	für den 57]		
Verwendet für	Aussenbehälte	er des ENC	CON T				
Werkstoff-beschreibung	Gute Schweiß rosion[67, S.	<i>barkeit, ge</i> 128ff]	eringe Anfä	illigkeit für Loc	hfraßkor-		
Masse ges.	ca. 25,5 / 24 t	E-Mo- dul	210 GPa	Schmelz- punkt	1420- 1460 °C [80]		
Dichte	7,85 Kg/dm ³ Bei 20 °C	Wärme- leitfä- higkeit	57 W/m K	Ausdeh- nungs-koef- fizient	12,5*10 ⁻ ⁶ K ⁻¹		
0,2 % Dehngrenze RT	218 MPa [79] (abh. von der Material- stärke)	0,2 % Dehn- grenze 150 °C	190 MPa [79] (abh. von der Materi- al- stärke)	0,2 % Dehngrenze 250 °C	160 MPa [79] (abh. von der Material- stärke)		
Kompressions-modul	ca. Schub- ca. Poissonzahl ca. 0,3 175,5 GPa modul 81 GPa (berech- net) net						
Legierungselemente in % [79]							
C ≤ 0,16	Si ≤ 0,35	Mn ≤ 1,20	P ≤ 0,025	S ≤ 0,015	AI ≥ 0,020		
$Cu+Cr+Mo+Ni \leq 0,70$							

Gusseisen mit Kuge	lgraphit GGG	640 (0.7040	oder EN-G	JS-400-1	5)		
Anmerkung	Werkstoffwah GNS und SKE	Werkstoffwahl orientiert sich an den Konzepten von ANDRA, GNS und SKB [34], [54], [67]					
Verwendet für:	Innenbehälte	r					
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss han- delt es sich um einen Gusswerkstoff mit einem Kohlenstoff- gehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die aus- geschiedenen Graphitphasen in Form kugeliger Ausscheidun- gen aus und es entsteht ein überwiegend ferritisches Gefüge welches dem Werkstoff seine duktilen, stahlähnlichen Eigen- schaften verleiht.						
Masse ges.	14,3 / E- 169 GPa Schmelz- ca. 12,9 to Modul [33, S. punkt 1150 °C [35, S. 32]						
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärme- 35,0-41,5 Ausdeh- 11,2-13,4 leitfähig- W/m*K nungs- *10 ⁻⁶ /K keit [35, S. koeffizient [35, S. 651 651 651 651					
0,2 % Dehngrenze RT	250 MPa 0,2 % 210 MPa 0,2 % 180 MPa [13, S. 57] Dehn- [35, S. 57] Dehn- [35, S. 57] Dehn- [35, S. 57] (abh. von grenze (abh. von grenze (abh. von der Materi- alstärke) 150°C alstärke) alstärke) alstärke alstärke						
Kompressionsmodul	125,2 GPa Schubmo- (berechnet) dul 66,3 GPa Pois- (berech- son- net) zahl [33, S. 32]						
Legierungselemente i	n %: [33]						
C = 2,9 - 3,7	Si = 1,7 - 4,1	Mn ≤ 0,2	Cu = 0,15- 0,75				

Nicht rostend	er Stahl 1.483	3 (Z 15 C	N 24.13) [53]		
Anmerkung	Werkstoffwahl	orientiert	sich am Material	der HAW-K	okillen
Verwendet für:	Innere Tragstru	uktur			
Werkstoff- beschreibung	Bei dem besch korrosionsbest	riebenen S ändigen St	Stahl handelt es ahl mit guter So	sich um ein hweißeignur	en warmfesten, ng
Masse ges.	ca. 460 kg	E-Mo- dul	196 GPa [53]	Schmelz- punkt	
Dichte	20°C 7,9 Kg/dm ³ [53]	Wärme- leitfä- higkeit	15 W/mK [53]	Ausdeh- nungs- koeffi- zient	600°C 18,8*10 ⁻⁶ /°C [53]
0,2% Dehngrenze RT	210 MPa [53] (abh. von der Material- stärke)	0,2% Dehn- grenze 150°C	128 MPa [53] (abh. von der Material- stärke)	0,2% Dehn- grenze 250°C	108 MPa [53] (abh. von der Material- stärke)
Kompressi- ons-modul	192 GPa (berechnet)	Schub- modul	75 GPa [81]	Poisson- zahl	0,33 [81]
Legierungselemente in % [53]					
C < 0,15	Si < 1,0	N = 0,08	Mn < 2,0	Cr = 0,22 - 0,24	Ni = 12 - 14

E	ENCON-T / ENCON-T/HAW					
Materialien						
Polvethvien (Lupo	olen, Gur, Hosta	alen, PE-HD)	[82]-[84]			
Verwendet für	Moderatorstäbe	, Abschirmpla	tten			
Werkstoff-be- schreibung	Moderatorstabe, Abschirmplatten Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halbdurchsichtiges Thermoplast. Es weist, verglichen mit Po- lyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemischen Substanzen sowie höhere Temperaturfestigkeit auf. Die mechanischen Eigenschaften von PE sind verglichen mit an- deren Werkstoffen, welche bei Lagerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an					
	wirksamer abso	rhiert werden	können	so nacinoig	enu	
Masse ges.	Bis zu 1 to	E-Modul	1,15 GPa [82]]	Schmelz- punkt	130- 145 °C	
Dichte	0,95 Kg/dm³ Bei 20 °C [82]	Wärmeleit- fähigkeit	0,42 W/m K	Ausdeh- nungs- koeffi- zient	100 - 200 *10 ⁻⁶ K ⁻¹	
0,2 % Dehngrenze RT	27 MPa					
Kompressionsmo- dul	7,9-10 GPa (berechnet)	Schubmo- dul	0,32- 0,41 GPa (berechnet)	Poisson- zahl	0,46 [83]	
Graphit						
Verwendet für:	Abschirmplatte,	Alternative zu	u PE			
Werkstoff- beschreibung	Graphit ist eine schen Eigenscha nes Lagerbehält Polyethylen, gu	Modifikation of aften des Grap ters bei. Graph transformer des Graph ters des Graph ters Abschirm des Graph ters des Graph ter	des Kohlenstof phits tragen ni nit eignet sich nung von Neut	fs. Die mec cht zur Stat jedoch, ähr ronenstrahl	hani- pilität ei- nlich wie ung.	
Masse ges.	wenige kg bis ca. 2,4 to	E-Modul	4,8 GPa [85, S. 1]	Sublima- tions- Tempe- ratur	3370 °C [85, S. 1]	
Dichte	2,267 kg/dm³ [85, S. 1]	Wärmeleit- fähigkeit	155 W/m*K [85, S. 1]	Ausdeh- nungs- koeffi- zient	2*10- 6 1/K [85, S. 1]	
0,2 % Dehngrenze RT	14-34 MPa [86, S. 16]					
Kompressionsmo- dul	33 GPa [85, S. 1]	Schubmo- dul	1,62 GPa (berechnet)	Poisson- zahl	0,48 [85, S. 1]	

ENCON-K

<u>Kurzdossier</u>

Der ENCON-K wurde als generischer Behälter zur Einlagerung Wärme entwickelnder Reststoffe für Tiefenlagerkonzepte im kristallinen Hartgestein entwickelt.

Als Einlagerungsvariante für den ENCON-K soll die Streckenlagerung Anwendung finden. Die den Lagerbehälter umgebenden Bereiche der Einlagerungsstrecken werden mit Bentonit verfüllt. Dieses kann thermisch bis etwa 100 °C belastet werden. Hieraus resultiert eine zulässige Wärmeleistung der einzulagernden Reststoffe von etwa 1,8 kW pro Behälter. Bei geeigneter Planung der Einlagerungsstrecken des Tiefenlagers kann so gewährleistet werden, dass die zulässige Temperatur von 100 °C nicht überschritten wird [21]. Auch die zulässige Maximaltemperatur auf der Monitoringsohle kann so eingehalten werden [17].

Im Inneren verfügt der ENCON-K über eine dicht verschlossene Tragstruktur zur Aufnahme der aus den Brennelementen entnommenen Brennstäbe. In der alternativen Variante ENCON-K/HAW besitzt der Behälter im Inneren einen Schacht zur Aufnahme von drei Kokillen mit Wärme entwickelnden Wiederaufarbeitungsabfällen.

Der selbstabschirmend ausgelegte Lagerbehälter besitzt einen zweischaligen Aufbau aus einem dicht verschraubten inneren Behälter aus Gusseisen mit Kugelgraphit sowie einen dicht verschweißten Außenbehälter aus sauerstofffreiem (OFC) Kupfer.

Zur Abschirmung der ionisierenden Strahlung sind im Innenbehälter zusätzlich Abschirmmaterialien aus Polyethylen und Graphit in der Gestalt von Stäben bzw. Abschirmplatten vorgesehen.

Der ENCON-K besitzt einen zylindrischen Aufbau mit einem Durchmesser von 1,26 m und einer Länge von 5,6 m. Beladen wiegt er etwa 43,2 Tonnen. Er besitzt an beiden Enden Tragpilze, welche in die Behälterstruktur integriert sind. An diesen kann zur Handhabung ein Transportgestell mit Tragzapfen angeschlagen werden, wodurch der Behälter sowohl waagerecht als auch senkrecht transportiert werden kann.

ENCON-K schematisch Wirtsgestein Einlagerung Strecke Masse 43,2 t Länge 5,58 m Durchmesser 1,26 m Anzahl gesamt BE und HAW [1]

	Material	Beschr	eibung				
Tragstruktur	Edelstahl	Der EN	CON-K besitzt	: einen zylindrischen,			
-	(alt. Zirkalloy)	inneren	Tragbehälter	mit einem Durchmes-			
		ser von 0,43 m und einer Wandstärke von					
		1 cm. Dieser besitzt in seinem Inneren ein					
		Tragstruktur zur Aufnahme der gezogene					
		Brennstäbe. Die Tragstruktur ermöglich					
		Falle e	iner Rückholu	ng die sichere Ent-			
		nahme	des Inventars	zur Nachkonditionie-			
		rung de	er Reststoffe.				
Innenbehälter	Gusseisen mit	Der Inn	enbehälter die	nt der Stabilität sowie			
	Kugelgraphit	dem pr	imären, dichte	n Einschluss der Radi-			
	365 mm	onuklid	e. Gusseisen l	besitzt eine gute Ab-			
		schirm	virkung für	Neutronen- und			
		Gamma	istrahlung. Ur	n die Neutronenab-			
		schirmu	ing zusätzlich	zu erhöhen, sind im			
		Innenbehälter Moderatorstäbe und Ab					
		schirmplatten aus Polyethylen eingelassen.					
		Der Bel	halter wird mit	einem verschraubten			
		Deckel dicht verschlossen.					
Außenbehalter	Sauerstofffreies	S Der Aubenbenalter dient dem sicheren Ein-					
	Kupter (OFC)	raum von mehreren 100.000 lahren Er					
	50 mm	wird mittels eines verschweißten Deckels					
		asdicht verschlossen. Als Werkstoff wird					
		gasuicht verschlossen. Als werkstoff wird					
		diesem Werkstoff aufgrund natürlicher Ana-					
		loga eine Nachweisführung für die Dauer-					
		haltharkeit notentiell möglich ist					
	In	ventar		in ogner i oc			
Beschreibung	Das Inventar eir	nes ENCO	ON-K besteht	aus den vereinzelten			
	Brennstäben mel	nrerer Br	ennelemente.	Das Inventar des Be-			
	hälters ist aus geometrischen und thermischen Gründen auf						
	etwa 4,3 to begrenzt. Unter der Voraussetzung, dass die						
	Brennstoffe mind	destens	75 Jahre zwiso	chengelagert wurden,			
	entspricht dies	ntspricht dies etwa fünf zerlegten Brennelementen eines					
	Druckwasserreak	tors. In	der alternative	en HAW-Version kön-			
	nen drei Kokillen	len mit Wiederaufarbeitungsabfällen eingelagert					
	werden.	rerden.					
Wärmeleistung	1,8 kW bei Einlag	gerung	Aktivität	Max. 17 *10 ¹⁵ Bq			

Die innere Tragstruktur des ENCON-K dient der Aufnahme sowie der dauerhaften Gewährleistung einer unterkritischen Anordnung des Inventars. Das generische Inventar besteht hierbei aus den gezogenen Brennstäben von bis zu fünf Druckwasserreaktor-Brennelementen. Zusätzlich dient die Tragstruktur der sicheren Handhabbarkeit und dem Einschluss des Inventars im Rahmen der Konditionierung des Inventars in die Lagerbehälter sowie gegebenenfalls im Rahmen einer Rekonditionierung des Inventars nach einer Rückholung / Bergung der Behälter aus dem Tiefenlager. Hieraus ergeben sich bei der Konzeption der Tragstruktur hohe Anforderungen an den Korrosionswiderstand der Tragstruktur unter atmosphärischen Bedingungen sowie an die Dekontaminierbarkeit. Um den Platz- und Materialbedarf der Lagerbehälter gering zu halten, wurden die Baugröße der Tragstruktur und somit auch die Wandstärke dabei so gering wie möglich gehalten.

Geometrisch ist die Tragstruktur als metallischer Zylinder ausgeführt und ist am Kopfund Boden mit einem Deckel verschlossen. Gegebenenfalls kann sie durch Einsätze in mehrere Kammern unterteilt werden um das Einladen des Inventars in einer geometrisch bestimmten Anordnung zu erleichtern. Im Rahmen der Konditionierung muss die Zwischenlagerung bereits beladener Tragstrukturen in einem Nasslager möglich sein. Somit muss der Werkstoff aus der die Tragstruktur gefertigt wird einen hohen Korrosionswiderstand unter oxidierenden Bedingungen besitzen. Zusätzlich ist das Material der Tragstruktur während der gesamten Lagerdauer einer hohen radiologischen Belastung ausgesetzt. Die zu erwartende Strahlendosis liegt allerdings weit unter der welche beispielsweise metallische Reaktorbauteile aus Zirkonium oder nicht rostenden Stählen während ihrer üblichen Lebensdauer erhalten. Mit einer Versprödung des Materials, welches die Handhabbarkeit gefährdet, ist demnach nicht zu rechnen. Somit eignen sich sowohl Zirkonium als auch nicht rostende Stähle als Werkstoff für den Tragbehälter. Im Rahmen der Konzeptionierung der generischen Behälterkonzepte musste demnach eine Festlegung erfolgen. Diese erfolgte auf der Grundlage, dass bei den ENCON-Behältern für die Einlagerung verglaster Abfälle, die aus nicht rostendem Stahl gefertigte, HAW-Kokille die Funktion des inneren Tragbehälters übernimmt. Die Fertigung der Tragstruktur für die ENCON zur Einlagerung bestrahlter Brennstäbe aus demselben, nicht rostenden Stahl (1.4833) führt zu einer Reduktion der Variantenvielfalt und erleichtert somit die Führung der zur Einlagerung erforderlichen Nachweise [1].

Die Auswahl der Verschlussvariante für den Deckel der Tragstruktur sowie die Gestaltung der Lastanschlagpunkte erfolgt unter der besonderen Berücksichtigung der erforderlichen Korrosionsfestigkeit sowie der leichten Dekontaminierbarkeit. Aus diesem Grund wurden ein artgleicher Verschluss mittels einer Schweißnaht und die Verwendung eines gut zugänglichen Tragpilzes im Deckelbereich gewählt.

ENCON-K			
Gestaltungsdetails			
Innenbehälter			
	Gusseisen mit Kugelgraphit – EN-GJS		
Material	400-18	Länge	5280 mm
	verschraubter Deckel mit Vollmetall-		
Verschluss	dichtungen	Durchmesser	1160 mm
Tragstruktur	Der Abschirmbehälter verfügt über	Wandstärke	365 mm
	eine umlaufende Tragmulde am Be-		
	hälterkörper	Gewicht	26 to

Der Innenbehälter des ENCON-K Behälters übernimmt mehrere Funktionen. Er dient der Abschirmung der vom Inventar ausgehenden ionisierenden Strahlung. Zusätzlich leistet der Innenbehälter auch einen Beitrag zur Gewährleistung der mechanischen Stabilität des gesamten Lagerbehälters. Der Innenbehälter wird vom Aussenbehälter umschlossen und muss daher keine erhöhten Anforderungen an die Korrosionssicherheit erfüllen.

Strukturen und Bauteile mit Wandstärken von über 200 mm, wie der Abschirmbehälter, können wirtschaftlich und prozesssicher nur mittels Urformender Verfahren, wie dem Gießen, gefertigt werden. Somit muss für den Behälter ein Werkstoff zum Einsatz kommen, der neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, eine gute Gießeignung aufweist. Das Material des Innenbehälters muss zusätzlich über gute Zerspanungseigenschaften verfügen, um den Behälter nach dem Guss durch spanende Verfahren auf Fertigmaß bringen zu können. Auch die Einbringung der über 4 m langen Aufnahmebohrungen für die Abschirmstäbe aus Polyethylen erfordert eine gute Zerspanbarkeit des Behälterwerkstoffes. Aufgrund des bereits vorhandenen Erfahrungsschatzes in der Verarbeitung dieses Werkstoffes wurde Gusseisen mit Kugelgraphit (EN-GJS-400) als Werkstoff gewählt. Dieser Werkstoff findet bereits bei den CASTOR®-Behältern Anwendung und wird auch von der SKB für den Innenbehälter des KBS-3V Behälters vorgesehen [12], [32], [36], [37].

Im Rahmen der Konditionierung des Inventars in den Behälter sowie des Behälterzusammenbaus muss der Innenbehälter des ENCON sicher manipuliert werden. Hierfür ist eine in den verlängerten Behälterkörper eingelassene Tragmulde im nach oben verlängerten Behälterkörper vorgesehen an der der Behälter mit einem Greifer manipuliert werden kann. Diese Konstruktion wurde gewählt, da die zur der Manipulation der Behälter erforderlichen Kräfte nicht sicher über einen Tragzapfen am verschraubten Deckel übertragen werden könnten. Zusätzlich ermöglicht diese Gestaltung, dass oberhalb des Behälterdeckels eine Abschirmplatte aus Polyethylen eingelegt werden, welche von dem umlaufenden Behälterrand vor mechanischen und thermischen Einwirkungen geschützt wird. Hierdurch ergibt sich eine erhebliche Reduktion der vom Behälter in axialer Richtung ausgehenden Dosisleistung. Hierdurch werden die nachfolgenden Arbeitsschritte der Konditionierung, insbesondere der schweißtechnische Verschluss des Außenbehälters erleichtert.
Außenbehälter					
Material	Sauerstofffreies Kupfer (OFC)	Länge	5580 mm		
	Eingelegter, artgleich verschweißter		10.50		
Verschluss	Deckel	Durchmesser	1260 mm		
Tragstruktur	Der Außenbehälter verfügt über je	Wandstärke	50 mm		
	einen massiven Tragpliz am Benai-				
	terboden und Deckel	Gewicht	11,8 to		

Der Außenbehälter des ENCON-K dient dem langfristigen dichten Einschluss der Radionuklide. Zusätzlich muss er die Handhabbarkeit der Behälter, auch im Rahmen einer Rückholung / Bergung, sicherstellen. Da der Außenbehälter nach der Verfüllung des Tiefenlagers in direktem Kontakt mit der geotechnischen Barriere steht und im kristallinen Hartgestein vom Zutritt von Tiefenwässern auszugehen ist, muss er erhöhte Anforderungen an die Korrosionsbeständigkeit erfüllen. Unter den zu erwartenden Bedingungen Bei der Lagerung im kristallinen Hartgestein muss die Barrierefunktion des Behälters für Zeiträume von über 100.000 Jahren gewährleistet sein. Somit muss für den Behälter ein Material zum Einsatz kommen, welches neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, einen sehr hohen Widerstand gegen lokale Korrosionsangriffe unter anaeroben Bedingungen verfügt.

Der dauerhaft gasdichte Verschluss der Behälter erfolgt mittels einer Verschweißung ohne den Einsatz von Zusatzwerkstoff mittels Rührreibschweißens, da ein artfremder Schweißzusatz zu einer starken Lokalelementbildung und demnach zu einem verstärkten Korrosionsangriff führen würde. Um den Behälter gegebenenfalls im Rahmen einer Rückholung wieder öffnen zu können, verfügt der aufgesetzte Schweißdeckel über zwei Absätze. Am oberen Absatz erfolgt die Verschweißung mit dem Behälterkörper. Der zweite Absatz erzeugt einen gesicherten Arbeitsraum für den Einsatz eines Trennwerkzeuges. Anders als beispielsweise beim ENCON-T ist im Behälterkörper auf Grund der hierfür erforderlichen höheren Materialdicken, keine zweite Stufe vorgesehen, auf der der Deckel beim Öffnen aufliegt. Durch das vergleichsweise geringe Gewicht des Behälterdeckels und dem am Deckel vorhandenen Tragpilz kann durch eine entsprechende Aufnahme des Deckels während der Behälteröffnung mittels spanender Verfahren ein Verkanten des Trennwerkzeuges dennoch sicher verhindert werden.

Im Rahmen des Transports der Einlagerung, aber auch der potentiellen Rückholung, der Behälter muss der Außenbehälter des ENCON sicher manipuliert und gegriffen werden können. Hierfür ist am Boden sowie am Deckel des Behälters ein massiver Tragpilz vorgesehen. Die Vorteile dieser Konstruktion bestehen darin, dass sie eine gute Zugänglichkeit beim Lastanschlag ermöglichen. Zusätzlich kann diese Gestaltungsvariante des Lastanschlagpunktes sehr massiv ausgelegt werden, so dass fortschreitende Korrosion die Tragfähigkeit nur geringfügig reduziert. Durch die gute Zugänglichkeit ist es zudem im Rahmen der Bergung möglich, die Funktionsfähigkeit auch nach mehreren Jahrhunderten durch den Abtrag oberflächlicher Korrosionsschichten, wieder herzustellen.

ENCON-K / H	AW	
Kurzdossier		
Der ENCON-K/HAW wurde als generischer Behäl- ter zur Einlagerung Wärme entwickelnder Rest- stoffe für Tiefenlagerkonzepte im kristallinen Hartgestein entwickelt.		
Als Einlagerungsvariante für den ENCON-K/HAW soll die Streckenlagerung Anwendung finden. Die den Lagerbehälter umgebenden Bereiche der Ein- lagerungsstrecken werden mit Bentonit verfüllt. Dieses kann thermisch bis etwa 100 °C belastet werden. Hieraus resultiert eine zulässige Wärme- leistung der einzulagernden Reststoffe von 1 kW pro Behälter. Bei geeigneter Planung der Einlage- rungsstrecken des Tiefenlagers kann so gewähr- leistet werden, dass die zulässige Temperatur von 100 °C nicht überschritten wird. Auch die zuläs- sige Maximaltemperatur auf der Monitoringsohle kann so eingehalten werden. Bei einem Lager- bergwerk im Tonstein kann die Wärmeleistung der Behälter, aufgrund der besseren Wärmeableitung, gegebenenfalls geringfügig erhöht werden [17].		
Die Funktion der inneren Tragstruktur wird beim ENCON-K/HAW von den bereits dicht verschweiß- ten Kokillen mit den Wiederaufarbeitungsabfällen übernommen, welche in den Behälterschacht ein- gestellt werden. Um dieses Inventar sicher auf- nehmen zu können unterscheidet sich die HAW Variante in ihren Abmaßen leicht von der Variante zur Einlagerung von Brennstäben deren Gestal-	ENCON-K/HAW	schematisch
tungsmerkmale sie jedoch grundsätzlich über-	Wirtsgestein	Kristallines Hartgestein
nimmt.	Einlagerung	Strecke
Der selbstabschirmend ausgelegte Lagerbehälter	Masse	43,2 t
besitzt einen zweischaligen Aufbau aus einem	Länge	5,58 m
sen mit Kugelgraphit sowie einen dicht ver-	Durchmesser	1,26 m
schweißten Außenbehälter aus sauerstofffreiem (OFC) Kupfer.	Anzahl gesamt BE und HAW	ca. 8.350 [1]
Zur Abschirmung der ionisierenden Strahlung sind im Innenbehälter zusätzlich Abschirmmaterialien aus Polyethylen und Graphit in der Gestalt von Stäben bzw. Abschirmplatten vorgesehen		

Aufbau des Behälters

Der ENCON-T/HAW besitzt einen zylindrischen Aufbau mit einem Durchmesser von 1,30 m und einer Länge von 4,96 m. Beladen wiegt er etwa 39,4 Tonnen. Er besitzt an beiden Enden Tragpilze, welche in die Behälterstruktur integriert sind. An diesen kann zur Handhabung ein Transportgestell mit Tragzapfen angeschlagen werden, wodurch der Behälter sowohl waagerecht als auch senkrecht transportiert werden kann.

	Material	Beschreibung			
Tragstruktur / Kokillen	Edelstahl	Der ENCON-T/HAW besitzt einen zylindri- schen Schacht mit einem Durchmesser von 0,43 m. In diesen werden drei dicht ver- schweißte Edelstahlkokillen mit den Wieder- aufarbeitungsabfällen eingestellt die beim ENCON-T/HAW die Funktion der Tragstruk- tur übernehmen. Da der Boden der Kokillen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3,9 m. [67]			
Innenbehälter	Gusseisen mit Kugelgraphit 365 mm	Der Innenbehälter dient der Stabilität sowie dem primären, dichten Einschluss der Radi- onuklide. Gusseisen besitzt eine gute Ab- schirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenab- schirmung zusätzlich zu erhöhen, sind im Innenbehälter Moderatorstäbe und Ab- schirmplatten aus Polyethylen eingelassen. Der Behälter wird mit einem verschraubten Deckel dicht verschlossen.			
Außenbehälter	Sauerstoff- freies Kupfer (OFC) 50 mm	Der Außenbehälter dient dem sicheren Ein schluss der Radionuklide über einen Zeit raum von mehreren 100.000 Jahren. Er wirn mittels eines verschweißten Deckels gas dicht verschlossen. Als Werkstoff wird sau erstofffreies Kupfer eingesetzt, da be diesem Werkstoff aufgrund natürlicher Ana loga eine Nachweisführung für die Dauer			
	Ir	iventar			
Beschreibung	Das Inventar ein Kokillen in dener sind. Die Wärme sungen von Mis dung nach 75 J 500 W / Kokille meleistung und kristallinen Hart falls durch eine e killen aus unter der Behälterinve	es ENCON-K/HAW besteht aus drei Edelstahl- n Wiederaufarbeitungsabfällen eingeschlossen eleistung von Kokillen mit verglasten Spaltlö- ichoxidbrennelementen liegt bei einer Bela- ahren Abklinglagerung zum Teil noch über (67]. Eine Überschreitung der zulässigen Wär- Aktivität pro Behälter ergibt sich hierdurch im gestein zwar nicht, Dennoch ist gegebenen- gezielte Beladung des ENCON-K/HAW mit Ko- schiedlichen Chargen eine Homogenisierung ntare anzustreben			
Wärmeleistung	1.8 kW bei Einla	gerung Aktivität Max, 17 *10 ¹⁵ Bg			

Die in den Behälterschacht eingestellten Edelstahlkokillen übernehmen beim ENCON-K/HAW die Funktion der Tragstruktur und gewährleisten den dichten Einschluss sowie die dauerhaft unterkritische Anordnung des Inventars. Zusätzlich stellen die Kokillen die Handhabbarkeit und dem Einschluss des Inventars im Rahmen der Konditionierung des Inventars in die Lagerbehälter sowie gegebenenfalls im Rahmen einer Rekonditionierung des Inventars nach einer Rückholung / Bergung der Behälter aus dem Tiefenlager sicher. Sie müssen demnach hohen Anforderungen an den Korrosionswiderstand unter atmosphärischen Bedingungen sowie an die Dekontaminierbarkeit gerecht werden. Da die verschweißten Edelstahlkokillen diesen Anforderungen bereits gerecht werden, wurde um den Platz- und Materialbedarf der Lagerbehälter gering zu halten, bei den ENCON-T/HLW Behältern auf eine Umhüllung der Kokillen mit einem weiteren Tragbehälter verzichtet.

In Ihrer Gestaltung entsprechen die Kokillen der Tragstruktur des ENCON-K Behälters für die Einlagerung von Brennelementen. Sie sind als ein metallischer Zylinder ausgeführt und am Kopf- und Boden mit einem Deckel verschlossen. Das Material der Tragstruktur ist während der gesamten Lagerdauer einer hohen radiologischen Belastung ausgesetzt. Die zu erwartende Strahlendosis liegt allerdings weit unter der welche beispielsweise metallische Reaktorbauteile aus nicht rostenden Stählen während ihrer üblichen Lebensdauer erhalten. Mit einer Versprödung des Materials, welches die Handhabbarkeit gefährdet, ist demnach nicht zu rechnen.

Die der Konzeption der Kokillen zugrundeliegenden Anforderungen an die Materialeigenschaften (Schweißbarkeit, Beständigkeit gegen Korrosion unter atmosphärischen Bedingungen sowie bei der Nasslagerung, hoher Widerstand gegen Strahlenschädigung) entsprechen den Anforderungen an die Tragstruktur. Auch die Gestaltung des Deckelverschlusses der Kokillen sowie ihrer Lastanschlagpunkte erfolgten, wie bei der Tragstruktur, unter der besonderen Berücksichtigung der erforderlichen Korrosionsfestigkeit sowie der leichten Dekontaminierbarkeit. Aus diesem Grund wurden diese nach ihrer Befüllung mit den verglasten Abfällen mittels einer Schweißnaht verschlossen und weisen, wie die Tragstruktur des ENCON-K für Brennelemente, einen gut zugänglichen Tragpiz im Deckelbereich auf. Somit ist davon auszugehen, dass die aus dem nicht rostenden Stahl (1.4833) gefertigten Kokillen auch unter den Bedingungen, welche sich nach der Konditionierung in den umgebenden Tiefenlagerbehälter einstellen, eine ausreichende Dauerhaftigkeit erzielen und sich dies auch im Rahmen eines zu einem später Zeitpunkt für einen konkreten Standort zu führenden Sicherheitsnachweises bestätigen lässt [1], [67].

ENCON-K / HAW				
Gestaltungsdetails				
Innenbehält	er			
	Gusseisen mit Kugelgraphit – EN-GJS			
Material	400-18	Länge	4695 mm	
	verschraubter Deckel mit Vollmetall-	Durchmes-		
Verschluss	dichtungen	ser	1160 mm	
Tragstruktur	Der Abschirmbehälter verfügt über eine	Wandstärke	365 mm	
	umlaufende Tragmulde am Behälter-			
	körper.	Gewicht	23,2 to	
Beschreibung				

Der Innenbehälter des ENCON-K/HLW Behälters übernimmt mehrere Funktionen. Er dient der Abschirmung der vom Inventar ausgehenden ionisierenden Strahlung. Zusätzlich leistet der Innenbehälter auch einen Beitrag zur Gewährleistung der mechanischen Stabilität des gesamten Lagerbehälters. Der Innenbehälter wird vom Aussenbehälter umschlossen und muss daher keine erhöhten Anforderungen an die Korrosionssicherheit erfüllen.

Strukturen und Bauteile mit Wandstärken von über 200 mm, wie der Abschirmbehälter, können wirtschaftlich und prozesssicher nur mittels Urformender Verfahren, wie dem Gießen, gefertigt werden. Somit muss für den Behälter ein Werkstoff zum Einsatz kommen, der neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, eine gute Gießeignung aufweist. Das Material des Innenbehälters muss zusätzlich über gute Zerspanungseigenschaften verfügen, um den Behälter nach dem Guss durch spanende Verfahren auf Fertigmaß bringen zu können. Auch die Einbringung der über 4 m langen Aufnahmebohrungen für die Abschirmstäbe aus Polyethylen erfordert eine gute Zerspanbarkeit des Behälterwerkstoffes. Aufgrund des bereits vorhandenen Erfahrungsschatzes in der Verarbeitung dieses Werkstoffes wurde Gusseisen mit Kugelgraphit (EN-GJS-400) als Werkstoff gewählt. Dieser Werkstoff findet bereits bei den CASTOR®-Behältern Anwendung und wird auch von der SKB für den Innenbehälter des KBS-3V Behälters vorgesehen [12], [32], [36], [37].

Im Rahmen der Konditionierung des Inventars in den Behälter sowie des Behälterzusammenbaus muss der Innenbehälter des ENCON sicher manipuliert werden. Hierfür ist eine in den verlängerten Behälterkörper eingelassene Tragmulde im nach oben verlängerten Behälterkörper vorgesehen an der der Behälter mit einem Greifer manipuliert werden kann. Diese Konstruktion wurde gewählt, da die zur der Manipulation der Behälter erforderlichen Kräfte nicht sicher über einen Tragzapfen am verschraubten Deckel übertragen werden könnten. Zusätzlich ermöglicht diese Gestaltung, dass oberhalb des Behälterdeckels eine Abschirmplatte aus Polyethylen eingelegt werden, welche von dem umlaufenden Behälterrand vor mechanischen und thermischen Einwirkungen geschützt wird. Hierdurch ergibt sich eine erhebliche Reduktion der vom Behälter in axialer Richtung ausgehenden Dosisleistung. Hierdurch werden die nachfolgenden Arbeitsschritte der Konditionierung, insbesondere der schweißtechnische Verschluss des Außenbehälters erleichtert.

Außenbehälter					
Material	Sauerstofffreies Kupfer (OFC)	Länge	5580 mm		
	Eingelegter, artgleich verschweißter		10.50		
Verschluss	Deckel	Durchmesser	1260 mm		
Tragstruktur	Der Außenbehälter verfügt über je	Wandstärke	50 mm		
	einen massiven Tragpliz am Benai-				
	terboden und Deckel	Gewicht	11,8 to		

Der Außenbehälter des ENCON-K dient dem langfristigen dichten Einschluss der Radionuklide. Zusätzlich muss er die Handhabbarkeit der Behälter, auch im Rahmen einer Rückholung / Bergung, sicherstellen. Da der Außenbehälter nach der Verfüllung des Tiefenlagers in direktem Kontakt mit der geotechnischen Barriere steht und im kristallinen Hartgestein vom Zutritt von Tiefenwässern auszugehen ist, muss er erhöhte Anforderungen an die Korrosionsbeständigkeit erfüllen. Unter den zu erwartenden Bedingungen Bei der Lagerung im kristallinen Hartgestein muss die Barrierefunktion des Behälters für Zeiträume von über 100.000 Jahren gewährleistet sein. Somit muss für den Behälter ein Material zum Einsatz kommen, welches neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, einen sehr hohen Widerstand gegen lokale Korrosionsangriffe unter anaeroben Bedingungen verfügt.

Der dauerhaft gasdichte Verschluss der Behälter erfolgt mittels einer Verschweißung ohne den Einsatz von Zusatzwerkstoff mittels Reibrührschweißens, da ein artfremder Schweißzusatz zu einer starken Lokalelementbildung und demnach zu einem verstärkten Korrosionsangriff führen würde. Um den Behälter gegebenenfalls im Rahmen einer Rückholung wieder öffnen zu können, verfügt der aufgesetzte Schweißdeckel über zwei Absätze. Am oberen Absatz erfolgt die Verschweißung mit dem Behälterkörper. Der zweite Absatz erzeugt einen gesicherten Arbeitsraum für den Einsatz eines Trennwerkzeuges. Anders als beispielsweise beim ENCON-T ist im Behälterkörper auf Grund der hierfür erforderlichen höheren Materialdicken keine zweite Stufe vorgesehen, auf der der Deckel beim Öffnen aufliegt. Durch das vergleichsweise geringe Gewicht des Behälterdeckels und dem am Deckel vorhandenen Tragpilz kann durch eine entsprechende Aufnahme des Deckels während der Behälteröffnung mittels spanender Verfahren ein Verkanten des Trennwerkzeuges dennoch sicher verhindert werden.

Im Rahmen des Transports der Einlagerung, aber auch der potentiellen Rückholung, der Behälter muss der Außenbehälter des ENCON sicher manipuliert und gegriffen werden können. Hierfür ist am Boden sowie am Deckel des Behälters ein massiver Tragpilz vorgesehen. Die Vorteile dieser Konstruktion bestehen darin, dass sie eine gute Zugänglichkeit beim Lastanschlag ermöglichen. Zusätzlich kann diese Gestaltungsvariante des Lastanschlagpunktes sehr massiv ausgelegt werden, so dass fortschreitende Korrosion die Tragfähigkeit nur geringfügig reduziert. Durch die gute Zugänglichkeit ist es zudem im Rahmen der Bergung möglich, die Funktionsfähigkeit auch nach mehreren Jahrhunderten durch den Abtrag oberflächlicher Korrosionsschichten, wieder herzustellen.

ENC	ON-K /	ENCO	N-K/HA	W	
	Mat	erialie	n		
Sauerstofffreies (OFC)) Kupfer nach	KTS001	[12], [34], [36	5], [54], [8]	7], [88]
Anmerkung	Die Werkstoff der KBS-3 Be siva [12], [36	auswahl of hälter der [], [54]	rientiert sich a schwedischen	m Behälter SKB sowie	material der Po-
Verwendet für	Aussenbehälte	er ENCON-	·К		
Werkstoff-beschreibung	Werkstoff-beschreibung Das verwendete sauerstofffreie Kupfer zeichnet sich durch einen optimierten Anteil der Legierungselemente Phosphor, Schwefel und Wasserstoff aus. Unter den gegebenen, anaeroben Bedingungen besitzt es einen hohen Korrosionswiderstand und kann ohne Zusatzwerkstoff mittels Reibrührschweißens gefügt werden [12], [36]				
Masse ges.	11,8 /	E-Modul	115 GPa	Schmelz-	1083 °C
Dichte	8,94 kg/dm ³ [88]	Wärme- leitfä- higkeit	[34] 391 W/m*K [88]	Ausdeh- nungs- koeffi- zient	[87] 17,0*10 ⁻ ⁶ 1/K [88]
0,2 % Dehngrenze RT	360 MPa [88]				
Kompressionsmodul	100,1 GPa (berechnet)	Schub- modul	44 GPa (berechnet)	Poisson- zahl	0,31 [87]
Legierungselemente in %	<u>6 [12, S. 74]</u>				
Cu >= 99,9	AG ≤ 25×10 ⁻⁶	As ≤ 5×10 ⁻⁶	Fe ≤ 10×10 ⁻⁶	S ≤ 15×10 ⁻⁶	Sb ≤ 4×10 ⁻⁶
Te ≤ 2×10 ⁻⁶	$Pb \leq 5 \times 10^{-6}$	Bi ≤ 1×10 ⁻⁶	$Cd \leq 1 \times 10^{-6}$	Mn ≤ 0,5×10⁻⁵	Hg ≤ 1×10 ⁻⁶
$Ni \leq 10 \times 10^{-6}$	$0 \le 5 \times 10^{-6}$	Sn ≤ 2×10 ⁻⁶	Zi ≤ 1×10 ⁻⁶		
Gusseisen mit Kugelgi	raphit GGG40	(0.7040	oder EN-GJS	-400-15)	
Anmerkung	Werkstoffwah ANDRA, GNS	l orientiert und SKB[3	sich an den H [54], [54], [67]	(onzepten v 	ron
Verwendet für:	Innenbehälter	-			
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Koh- lenstoffgehalt von >2,06 %. Durch eine geeignete Legie- rungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die ausgeschiedenen Graphitphasen in Form kugeliger Aus- scheidungen aus und es entsteht ein überwiegend ferriti- sches Gefüge welches dem Werkstoff seine duktilen, stahlähnlichen Eigenschaften verleiht				
Masse ges.	26 / 24 to	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 ℃ [35, S. 96]

Dichte	7,1 kg/dm ³ [33, S. 32]	Wärme- leitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2- 13,4*10 ⁻ ⁶ /K [35, S. 65]
0,2 % Dehngrenze RT	250 MPa [13, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 150°C	210 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 250 °C	180 MPa [35, S. 57] (abh. von der Material- stärke)
Kompressions-modul	125,2 GPa (berechnet)	Schub- modul	66,3 GPa (berechnet)	Poisson- zahl	0,275 [33, S. 32]
Legierungselemente in %	6:[33]				
C = 2,9 - 3,7	Si = 1,7 - 4,1	Mn ≤ 0,2	CU = 0,15- 0,75		
Nicht rostender Stahl	1.4833 (Z 15	CN 24.13	3) [53]		
Anmerkung	Werkstoffwah	l orientiert	: sich am Mate	erial der HA	N-Kokillen
Verwendet für:	Innere Tragst	ruktur			
Werkstoff- beschreibung	Bei dem bes warmfesten, Schweißeignu	chriebener korrosior ng	n Stahl hande nsbeständigen	elt es sich Stahl n	um einen nit guter
Masse ges.	ca. 490 kg	E-Mo- dul	196 GPa	Schmelz- punkt	
Dichte	20°C 7,9 Kg/dm ³ [53]	Wärme- leitfä- higkeit	15 W/m K [53]	Ausdeh- nungs- koeffi- zient	600°C 18,8*10 ⁻ ⁶ /°C [53]
0,2 % Dehngrenze RT	210 MPa [53] (abh. von der Material- stärke)	0,2 % Dehn- grenze 150°C	128 MPa [53] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 250°C	108 MPa [53] (abh. von der Material- stärke)
Kompressions-modul	192 GPa (berechnet)	Schub- modul	75 GPa [81]	Poisson- zahl	0,33 [81]
Legierungselemente in %	6	·	· - · ·		
C < 0,15	Si < 1,0	N = 0,08	Mn < 2,0	Cr = 0,22 - 0,24	Ni = 12 - 14

ENC	ENCON-K / ENCON-K/HAW				
	Mate	erialiei	า		
Polyethylen (Lupolen,	Gur, Hostalen	, PE-HD)	[82]-[84]		
Verwendet für	Moderatorstät	e, Abschii	mplatten		
Verwendet für Moderatorstäbe, Abschirmplatten Werkstoff-beschrei- bung Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißli- ches, halbdurchsichtiges Thermoplast. Es weist, verglichen mit Polyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemischen Substanzen höhere Temperatur- festigkeit auf. Die mechanischen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei La- gerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Git- teratomen abgebremst werden und so nachfolgend wirk- samer absorbiert werden können					
Masse ges.	Bis zu 1,2 to	E-Mo- dul	1,15 GPa [82]	Schmelz punkt	130- 145 °C
Dichte	0,95 Kg/dm ³ Bei 20 °C [82]	Wärme -leitfä- higkeit	0,42 W/m K	Ausdeh- nungs- koeffi- zient	100 - 200 *10 ⁻⁶ K ⁻¹
0,2 % Dehngrenze RT	27 MPa				
Kompressions-modul	7,9-10 GPa (berechnet)	Schub- modul	0,32- 0,41 GPa (berechnet)	Poisson- zahl	0,46 [83]
Graphit	-				
Verwendet für:	Abschirmplatte	e, Alternati	ive zu PE		
Werkstoff- beschreibung	Graphit ist eine nischen Eigens lität eines Lage ähnlich wie Pol nenstrahlung.	e Modifikat chaften de erbehälters yethylen,	tion des Kohle es Graphits tra s bei. Graphit gut zur Absch	nstoffs. Die agen nicht z eignet sich irmung von	e mecha- cur Stabi- jedoch, Neutro-
Masse ges.	wenige kg bis ca. 2,9 to	E-Mo- dul	4,8 GPa [85, S. 1]	Sublima- tions- Tempe- ratur	3370 ° C [85, S. 1]
Dichte	2,267 kg/dm ³ [85, S. 1]	Wärme -leitfä- higkeit	155 W/m* K [85, S. 1]	Ausdeh- nungs- koeffi- zient	2*10- 6 1/K [85, S. 1]
0,2 % Dehngrenze RT	14-34 MPa [86, S. 16]				
Kompressions-modul	33 GPa [85, S. 1]	Schub- modul	1,62 GPa (berechnet)	Poisson- zahl	0,48 [85, S. 1]

ENCON-S

Kurzdossier

Der ENCON-S wurde als generischer Behälter zur Einlagerung Wärme entwickelnder Reststoffe für Tiefenlagerkonzepte im Salz bzw. Salzstein entwickelt.

Als Einlagerungsvariante für den ENCON-S soll die Streckenlagerung Anwendung finden. Die den Lagerbehälter umgebenden Bereiche der Einlagerungsstrecken werden mit Salzgrus verfüllt. Salz / Salzstein kann thermisch sehr hoch belastet werden. Die Limitierung der Behälterbeladung ergibt sich u.a. aus der Wärmebeständigkeit des zur Abschirmung erforderlichen Polyethylens im Behälter sowie der Forderung nach der Einhaltung der zulässigen Maximaltemperaturen auf der Monitoringsohle. Hieraus resultiert eine zulässige Wärmeleistung der einzulagernden Reststoffe von 3 kW pro Behälter [17].

Im Inneren verfügt der ENCON-S über eine dicht verschlossene Tragstruktur zur Aufnahme der aus den Brennelementen entnommenen Brennstäbe. In der alternativen Variante ENCON-K/HAW besitzt der Behälter im Inneren einen Schacht zur Aufnahme von drei Kokillen mit Wärme entwickelnden Wiederaufarbeitungsabfällen.

Der selbstabschirmend ausgelegte Lagerbehälter besitzt einen zweischaligen Aufbau aus einem dicht verschweißten inneren Behälter aus niedrig legiertem Stahl sowie dicht verschraubten inneren einen Außenbehälter aus Gusseisen mit Kugelgraphit.

Zur Abschirmung der ionisierenden Strahlung sind im Außenbehälter zusätzlich Abschirmmaterialien aus Polyethylen und Graphit in der Gestalt von Stäben bzw. Abschirmplatten vorgesehen.

Aufbau des Behälters

Der ENCON-S besitzt einen zylindrischen Aufbau mit einem Durchmesser von 1,26 m und einer Länge von 5,6 m. Beladen wiegt er etwa 43,2 Tonnen. Er besitzt an beiden Enden Tragringe, welche in die Behälterstruktur integriert sind. An diesen kann zur Handhabung ein Transportgestell mit Tragzapfen angeschlagen werden, wodurch der Behälter sowohl waagerecht als auch senkrecht transportiert werden kann.

	Material	Beschrei	bung		
Tragstruktur	Edelstahl oder Zirkalloy	Der ENCON-S besitzt einen zylindrischen, inneren Tragbehälter mit einem Durchmes- ser von 0,532 m und einer Wandstärke von 1 cm. Dieser besitzt in seinem Inneren eine Tragstruktur zur Aufnahme der gezogenen Brennstäbe. Die Tragstruktur ermöglicht Falle einer Rückholung die sichere Ent- nahme des Inventars zur Nachkonditionie-			
Innenbehälter	niedrig-legier- ter Stahl 160 mm	Der Inner schluss d raum vo mittels ei dicht vers gut schw verwende trockenen bergwerke tial zu erv insbesond lokaler Ko	behälter dient d er Radionuklide n mindestens nes verschweißt schlossen. Als W eißbarer, niedrig t. Unter den rec Bedingungen d es ist kein hohes varten, wichtig is ere, dass der W rrosion neigt.	em sicheren Ein- über einen Zeit- Jahren. Er wird en Deckels gas- erkstoff wird ein g legierter Stahl luzierenden, sehr les Einlagerungs- Korrosionspoten- it an dieser Stelle /erkstoff nicht zu	
Außenbehälter	Gusseisen mit Kugelgraphit 265 mm	Der Außenbehälter des ENCON-S dient der Stabilität des Behälters und der Abschir- mung der ionisierenden Strahlung. Das ver- wendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gam- mastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehälter Moderatorstäbe und Ab- schirmplatten aus Polyethylen eingelassen. Der Behälter wird mit einem verschraubten			
	In	ventar			
Beschreibung	Das Inventar ei Brennstäben me hälters ist aus g etwa 6,3 to beg Brennstoffe min entspricht dies Druckwasserreal nen drei Kokillen werden.	tar eines ENCON-S besteht aus den vereinzelten en mehrerer Brennelemente. Das Inventar des Be- aus geometrischen und thermischen Gründen auf to begrenzt. Unter der Voraussetzung, dass die e mindestens 75 Jahre zwischengelagert wurden, dies etwa 10 zerlegten Brennelementen eines serreaktors. In der alternativen HAW-Version kön- okillen mit Wiederaufarbeitungsabfällen eingelagert			
Wärmeleistung	3 kW bei Einlage	erung	Aktivität	Max. 28,5 *10 ¹⁵ Bq	

Allgemeines

Der ENCON-S besteht aus einem koaxialen Aufbau mit insgesamt drei funktionalen Ebenen. Die innere Tragstruktur dient der Herstellung einer sicheren Handhabbarkeit des Inventars im Rahmen von Konditionierungsvorgängen. Der Innenbehälter dient dem dichten Einschluss der Radionuklide, während der Außenbehälter überwiegend der Erfüllung radiologischer Anforderungen, wie der Abschirmung der ionisierenden Strahlung, dient.

Tragstruktur

Material	nicht rostender Stahl	Länge	4560 mm
Verschluss	aufgeschweißter Deckel	Durchmesser	532 mm
Tragstruktur	Die Tragstruktur verfügt, analog zu	Wandstärke	ca. 10 mm
	den HAW-Kokillen über einen Tragpilz		
	zur Manipulation	Gewicht	ca.530 kg

Beschreibung

Die innere Tragstruktur des ENCON-S dient der Aufnahme sowie der dauerhaften Gewährleistung einer unterkritischen Anordnung des Inventars. Das generische Inventar besteht hierbei aus den gezogenen Brennstäben von bis zu zehn Druckwasserreaktor-Brennelementen. Zusätzlich dient die Tragstruktur der sicheren Handhabbarkeit und dem Einschluss des Inventars im Rahmen der Konditionierung des Inventars in die Lagerbehälter sowie gegebenenfalls im Rahmen einer Rekonditionierung des Inventars nach einer Rückholung / Bergung der Behälter aus dem Tiefenlager. Hieraus ergeben sich bei der Konzeption der Tragstruktur hohe Anforderungen an den Korrosionswiderstand der Tragstruktur unter atmosphärischen Bedingungen sowie an die Dekontaminierbarkeit. Um den Platz- und Materialbedarf der Lagerbehälter gering zu halten, wurden die Baugröße der Tragstruktur und somit auch die Wandstärke dabei so gering wie möglich gehalten.

Geometrisch ist die Tragstruktur als metallischer Zylinder ausgeführt und ist am Kopfund Boden mit einem Deckel verschlossen. Gegebenenfalls kann sie durch Einsätze in mehrere Kammern unterteilt werden um das Einladen des Inventars in einer geometrisch bestimmten Anordnung zu erleichtern. Im Rahmen der Konditionierung muss die Zwischenlagerung bereits beladener Tragstrukturen in einem Nasslager möglich sein. Somit muss der Werkstoff aus der die Tragstruktur gefertigt wird einen hohen Korrosionswiderstand unter oxidierenden Bedingungen besitzen. Zusätzlich ist das Material der Tragstruktur während der gesamten Lagerdauer einer hohen radiologischen Belastung ausgesetzt. Die zu erwartende Strahlendosis liegt allerdings weit unter der welche beispielsweise metallische Reaktorbauteile aus Zirkonium oder nicht rostenden Stählen während ihrer üblichen Lebensdauer erhalten. Mit einer Versprödung des Materials, welches die Handhabbarkeit gefährdet, ist demnach nicht zu rechnen. Somit eignen sich sowohl Zirkonium als auch nicht rostende Stähle als Werkstoff für den Tragbehälter. Im Rahmen der Konzeptionierung der generischen Behälterkonzepte musste demnach eine Festlegung erfolgen. Diese erfolgte auf der Grundlage, dass bei den ENCON-Behältern für die Einlagerung verglaster Abfälle, die aus nicht rostendem Stahl gefertigte, HAW-Kokille die Funktion des inneren Tragbehälters übernimmt. Die Fertigung der Tragstruktur für die ENCON zur Einlagerung bestrahlter Brennstäbe aus demselben, nicht rostenden Stahl (1.4833) führt zu einer Reduktion der Variantenvielfalt und erleichtert somit die Führung der zur Einlagerung erforderlichen Nachweise [1].

Die Auswahl der Verschlussvariante für den Deckel der Tragstruktur sowie die Gestaltung der Lastanschlagpunkte erfolgt unter der besonderen Berücksichtigung der erforderlichen Korrosionsfestigkeit sowie der leichten Dekontaminierbarkeit. Aus diesem Grund wurden ein artgleicher Verschluss mittels einer Schweißnaht und die Verwendung eines gut zugänglichen Tragpilzes im Deckelbereich gewählt.

ENCON-S					
	Gestaltungsdetails				
Innenbehälte	er				
Material	Niedrig legierter Stahl	Länge	5250 mm		
	Eingelegter, artgleich verschweißter	Durchmes-			
Verschluss	Deckel	ser	852 mm		
Tragstruktur	Der Innenbehälter verfügt über eine	Wandstärke	160 mm		
_	umlaufende Tragmulde am Behälter-				
	körper.	Gewicht	14,9 to		
Beschreibun	a				

Der Innenbehälter des ENCON-S Behälters übernimmt mehrere Funktionen. Er dient der Abschirmung der vom Inventar ausgehenden ionisierenden Strahlung. Zusätzlich leistet der Innenbehälter auch einen Beitrag zur Gewährleistung der mechanischen Stabilität des gesamten Lagerbehälters. Der Innenbehälter wird vom Aussenbehälter umschlossen und muss daher keine erhöhten Anforderungen an die Korrosionssicherheit erfüllen.

Strukturen und Bauteile mit Wandstärken von über 200 mm, wie der Abschirmbehälter, können wirtschaftlich und prozesssicher nur mittels Urformender Verfahren, wie dem Gießen, gefertigt werden. Somit muss für den Behälter ein Werkstoff zum Einsatz kommen, der neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, eine gute Gießeignung aufweist. Das Material des Innenbehälters muss zusätzlich über gute Zerspanungseigenschaften verfügen, um den Behälter nach dem Guss durch spanende Verfahren auf Fertigmaß bringen zu können. Auch die Einbringung der über 4 m langen Aufnahmebohrungen für die Abschirmstäbe aus Polyethylen erfordert eine gute Zerspanbarkeit des Behälterwerkstoffes. Aufgrund des bereits vorhandenen Erfahrungsschatzes in der Verarbeitung dieses Werkstoffes wurde Gusseisen mit Kugelgraphit (EN-GJS-400) als Werkstoff gewählt. Dieser Werkstoff findet bereits bei den CASTOR®-Behältern Anwendung und wird auch von der SKB für den Innenbehälter des KBS-3V Behälters vorgesehen [12], [32], [36], [37].

Im Rahmen der Konditionierung des Inventars in den Behälter sowie des Behälterzusammenbaus muss der Innenbehälter des ENCON sicher manipuliert werden. Hierfür ist eine in den verlängerten Behälterkörper eingelassene Tragmulde im nach oben verlängerten Behälterkörper vorgesehen an der der Behälter mit einem Greifer manipuliert werden kann. Diese Konstruktion wurde gewählt, da die zur der Manipulation der Behälter erforderlichen Kräfte nicht sicher über einen Tragzapfen am verschraubten Deckel übertragen werden könnten. Zusätzlich ermöglicht diese Gestaltung, dass oberhalb des Behälterdeckels eine Abschirmplatte aus Polyethylen eingelegt werden, welche von dem umlaufenden Behälterrand vor mechanischen und thermischen Einwirkungen geschützt wird. Hierdurch ergibt sich eine erhebliche Reduktion der vom Behälter in axialer Richtung ausgehenden Dosisleistung. Hierdurch werden die nachfolgenden Arbeitsschritte der Konditionierung, insbesondere der schweißtechnische Verschluss des Behälters erleichtert.

Außenbehälter					
	Gusseisen mit Kugelgraphit – EN-				
Material	GJS 400-18	Länge	5600 mm		
	verschraubter Deckel mit Vollmetall-	Durchmesser	1380 mm		
Verschluss	dichtungen		(1580 mm)		
Tragstruktur	Der Außenbehälter verfügt über ei-	Wandstärke	150 mm		
	terboden, zusätzlich besitzt er zwei				
	umlaufende Tragringe am Behälter-				
	körper	Gewicht	25,0 to		
Der Abschirmbehälter verfügt über einen umlaufenden Tragring am Behälterkörper.					

Der Außenbehälter dient beim ENCON-S hauptsächlich der Abschirmung der vom Inventar ausgehenden ionisierenden Strahlung. Zusätzlich muss er die Stabilität des Behälters sowie seine Handhabbarkeit auch im Rahmen einer Rückholung / Bergung sicherstellen. Der Außenbehälter steht nach der Verfüllung des Tiefenlagers zwar in direktem Kontakt mit der geotechnischen Barriere, auf Grund des geringen Korrosionspotentials im Salz muss er nur geringen Anforderungen an die Korrosionsbeständigkeit gerecht werden. Es ist ein Werkstoff zu wählen, der über ausreichende mechanische Kennwerte, wie Festigkeit und Duktilität, sowie einen hohen Widerstand gegen lokale Korrosionsangriffe unter anaeroben Bedingungen verfügt. Gusseisen mit Kugelgraphit erfüllt diese Anforderungen vollumfänglich.

Dadurch, dass beim ENCON-S der Innenbehälter den langfristigen Einschluss der Radionuklide gewährleistet, werden keine Anforderungen an die dauerhafte Dichtheit des Außenbehälters gestellt. Der Verschluss des Behälters kann demnach mit einem verschraubten, eingelegten Deckel erfolgen.

Im Rahmen des Transports der Einlagerung, aber auch der potentiellen Rückholung, der Behälter muss der Außenbehälter des ENCON-S sicher manipuliert und gegriffen werden können. Aus der Konstruktion des Deckelverschlusses ergibt sich allerdings, dass die äußeren Lastanschlagpunkte beim ENCON-S nicht als Tragpilze im Deckelbereich der Behälter ausgelegt werden können. Die urformende Fertigung des Au-Benbehälters ermöglicht es allerdings, den Behälterkörper mit umlaufenden Tragringe zu versehen, welche von der Funktion her einem klassischen Tragpilz entspricht und demnach dieselben Vorteile bezüglich der Handhabung besitzt. Auch Tragringe bieten eine gute Zugänglichkeit beim Lastanschlag. Sie können sehr massiv ausgelegt werden, so dass fortschreitende Korrosion die Tragfähigkeit nur geringfügig reduziert. Durch die gute Zugänglichkeit ist es zudem im Rahmen der Bergung möglich, die Funktionsfähigkeit auch nach mehreren Jahrhunderten durch den Abtrag oberflächlicher Korrosionsschichten, wieder herzustellen.

ENCON-S / HAW

Kurzdossier

Der ENCON-S/HAW wurde als generischer Behälter zur Einlagerung Wärme entwickelnder Reststoffe für Tiefenlagerkonzepte im kristallinen Hartgestein entwickelt.

Als Einlagerungsvariante für den ENCON-S soll die Streckenlagerung Anwendung finden. Die den Lagerbehälter umgebenden Bereiche der Einlagerungsstrecken werden mit Salzgrus verfüllt. Salz / Salzstein kann thermisch sehr hoch belastet werden. Die Limitierung der Behälterbeladung ergibt sich u.a. aus der Wärmebeständigkeit des zur Abschirmung erforderlichen Polyethylens im Behälter sowie der Forderung nach der Einhaltung der zulässigen Maximaltemperaturen auf der Monitoringsohle. Hieraus resultiert eine zulässige Wärmeleistung der einzulagernden Reststoffe von 3 kW pro Behälter [17].

Die Funktion der inneren Tragstruktur wird beim ENCON-S/HAW von den bereits dicht verschweißten Kokillen mit den Wiederaufarbeitungsabfällen übernommen, welche in den Behälterschacht eingestellt werden. Um dieses Inventar sicher aufnehmen zu können unterscheidet sich die HAW Variante in ihren Abmaßen leicht von der Variante zur Einlagerung von Brennstäben deren Gestaltungsmerkmale sie jedoch grundsätzlich übernimmt.

Der selbstabschirmend ausgelegte Lagerbehälter besitzt einen zweischaligen Aufbau aus einem dicht verschraubten inneren Behälter aus Gusseisen mit Kugelgraphit sowie einen dicht verschweißten Außenbehälter aus sauerstofffreiem (OFC) Kupfer.

Zur Abschirmung der ionisierenden Strahlung sind im Innenbehälter zusätzlich Abschirmmaterialien aus Polyethylen und Graphit in der Gestalt von Stäben bzw. Abschirmplatten vorgesehen

Aufbau des Behälters Der ENCON-S/HAW besitzt einen zylindrischen Aufbau mit einem Durchmesser von 1,28 m und einer Länge von 4,95 m. Beladen wiegt er etwa 35,2 Tonnen. Er besitzt an beiden Enden Tragringe, welche in die Behälterstruktur integriert sind. An diesen kann zur Handhabung ein Transportgestell mit Tragzapfen angeschlagen werden, wodurch der Behälter sowohl waagerecht als auch senkrecht transportiert werden kann.

Tragstruktur/ KokillenEdelstahlDer ENCON-T/HAW besitzt einen zylindrischen Schacht mit einem Durchmesser von 0,43 m. In diesen werden drei dicht verschweißte Edelstahl- kokillen mit den Wiederaufarbeitungsabfällen ein- gestellt die beim ENCON-S/HAW die Funktion der Tragstruktur übernehmen. Da der Boden der Ko- küllen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3,9 m. [67]Innenbehälterniedrig-legier- ter Stahl 160 mmDer Innenbehälter dient dem sicheren Einschluss der Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter sund der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wind mit ei- nem verschraubten Deckel dicht verschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des EINCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Beh		Material	Beschreibung						
KokillenSchacht mit einem Durchmesser von 0,43 m. In diesen werden drei dicht verschweißte Edelstahl- kokillen mit den Wiederaufarbeitungsabfällen ein- gestellt die beim ENCON-S/HAW die Funktion der Tragstruktur übernehmen. Da der Boden der Ko- killen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3,9 m. [67]Innenbehälterniedrig-legier- ter Stahl 160 mmDer Innenbehälter dient dem sicheren Einschluss der Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit Ität des Behälter und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem werschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlössen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltiosungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des EINCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung	Tragstruktur/	Edelstahl	Der ENCON-T/	HAW besitzt eir	nen zylindrischen				
diesen werden drei dicht verschweißte Edelstahl- kokillen mit den Wiederaufarbeitungsabfällen ein- gestellt die beim ENCON-S/HAW die Funktion der Tragstruktur übernehmen. Da der Boden der Ko- killen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3,9 m. [67]Innenbehälterniedrig-legier- ter Stahl 160 mmDer Innenbehälter diem sicheren Einschluss der Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmMer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 ±	Kokillen		Schacht mit eir	nem Durchmesse	er von 0,43 m. In				
kokillen mit den Wiederaufarbeitungsabfällen ein- gestellt die beim ENCON-S/HAW die Funktion der Tragstruktur übernehmen. Da der Boden der Ko- killen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3,9 m. [67]Innenbehälterniedrig-legier- ter Stahl 160 mmDer Innenbehälter dient dem sicheren Einschluss der Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen. InventarBeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Ho			diesen werden drei dicht verschweißte Edelstahl-						
gestellt die beim ENCON-S/HAW die Funktion der Tragstruktur übernehmen. Da der Boden der Kokillen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3,9 m. [67] Innenbehälter niedrig-legierter Stahl 160 mm Der Innenbehälter dient dem sicheren Einschluss der Radionuklide über einen Zeitraum von mindestens Jahren. Er wird mittels eines verschweißten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl 160 mm destens Jahren. Er wird mittels eines verschweißten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl 160 mm destens Jahren. Er wird mittels eines verschweißten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl 160 mm destens Jahren. Er wird mittels eines verschweißten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl 160 mm destens Jahren. Er wird mittels eines verschweißten ohes Korrosionspotential zu erwarten, wichtig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt. Außenbehälter Gusseisen mit Kugelgraphit 265 mm Der Außenbehälter des ENCON-S dient der Stabilität des Behälters und der Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschirmung zusätzlich zu erhöhen, sind im Außenbehälter mung zusätzlich zu erhöhen, sind im Außenbehälter wird mit ei- nem verschraubten Deckel dicht verschlossen. Inventar Beschreibung Das Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlo			kokillen mit den Wiederaufarbeitungsabfällen ein-						
InnenbehälterTragstruktur übernehmen. Da der Boden der Ko- killen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3,9 m. [67]Innenbehälterniedrig-legier- ter StahlDer Innenbehälter dient dem sicheren Einschluss der Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Um die Neutronen- und Gammastrahlung. Um die Neutronenbaschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen. Die Wärmeleistung von Kokillen mit verglasten Spatitösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter aus unterschiedlichen Chargen eine Homogenisierung der Behälter aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 * 10 ¹⁵ Bo			gestellt die beir	n ENCON-S/HAW	/ die Funktion der				
killen gewölbt ist, ergibt sich eine Gesamthöhe des Schachtes von etwa 3,9 m. [67]Innenbehälterniedrig-legier- ter Stahl 160 mmDer Innenbehälter dient dem sicheren Einschluss der Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Xugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spatlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälter inventare anzustreben.Max. 28.5 * 10 ¹⁵ Bo			Tragstruktur üb	ernehmen. Da d	er Boden der Ko-				
Innenbehälterniedrig-legier- ter Stahl 160 mmDer Innenbehälter dient dem sicheren Einschluss der Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter eingibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Wärmeleis- tune3 kW bei EinlagerungAktivitätMax. 28 5 *10 ¹⁵ Bo			killen gewölbt	ist, ergibt sich (eine Gesamthöhe				
Innenbehälterniedrig-legier- ter StahlDer Innenbehälter diemt dem sicheren Einschluss der Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmwing der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 *10 ¹⁵ Bo			des Schachtes v	von etwa 3,9 m.	[67]				
ter Stahl 160 mmder Radionuklide über einen Zeitraum von min- destens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 *10 ¹⁵ Bo	Innenbehälter	niedrig-legier-	Der Innenbehäl	ter dient dem si	cheren Einschluss				
160 mmdestens Jahren. Er wird mittels eines verschweiß- ten Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufsrbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 * 1015 Bg		ter Stahl	der Radionuklid	le über einen Ze	eitraum von min-				
Ker Deckels gasdicht verschlossen. Als Werkstoff wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälter inventare anzustreben.Max. 28.5 * 1015 Bg		160 mm	destens Jahren.	Er wird mittels	eines verschweiß-				
Wird ein gut schweißbarer, niedrig legierter Stahl verwendet. Unter den reduzierenden, sehr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.AktivitätMax. 28 5 *101 ¹⁵ Brd			ten Deckels gas	sdicht verschloss	en. Als Werkstoff				
Verwendet. Unter den reduzierenden, senr trocke- nen Bedingungen des Einlagerungsbergwerkes ist kein hohes Korrosionspotential zu erwarten, wich- tig ist an dieser Stelle insbesondere, dass der Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 *101 ¹⁵ Br			wird ein gut sch	nweißbarer, nied	rig legierter Stahl				
AußenbehälterGusseisen mit KugelgraphitDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über S00 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Märmeleis- ter Max. 28 5 ±1015 Bra			verwendet. Unte	er den reduzierer	iden, senr trocke-				
AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch mit Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Märmeleis- tas 5 ±1015 BrgWärmeleist- tung3 kW bei EinlagerungAktivitätMax. 28 5 ±1015 Brg			Kein behas Karr	en des cinagerui					
AußenbehälterGusseisen mit Werkstoff nicht zu lokaler Korrosion neigt.AußenbehälterGusseisen mit Kugelgraphit 265 mmDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 *101 ¹⁵ Brg			tig ict on diog	osionspotential z	u erwarten, wich-				
AußenbehälterGusseisen mit KugelgraphitDer Außenbehälter des ENCON-S dient der Stabi- lität des Behälters und der Abschirmung der ioni- sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 *1015 Brg.			Workstoff nicht	zu lokalor Korro	sion noiat				
KubenberkiterObssetsen mit KugelgraphitDie Hubenberkiter use Inter of dien Stabil Die Hubenberkiter use die Abschirmung der John sierenden Strahlung. Das verwendete Gusseisen besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Max. 28.5 *1015 Brg	Außenhehälter	Gusseisen mit	Der Außenhehä	Iter des ENCON-	S dient der Stahi-				
NagergraphicIndicates of an activity of the intervence of the section of the intervence of the section of the intervence of the int	Aubenbenaitei	Kugelgraphit	lität des Behälte	ers und der Abso	hirmung der joni-				
Besitzt eine gute Abschirmwirkung für Neutronen- und Gammastrahlung. Um die Neutronenabschir- mung zusätzlich zu erhöhen, sind im Außenbehäl- ter Moderatorstäbe und Abschirmplatten aus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Wärmeleis- tung3 kW bei EinlagerungAktivitätMax. 28 5 *1015 Bra		265 mm	sierenden Strak	nlung. Das verw	endete Gusseisen				
Wärmeleis- tung3 kW bei EinlagerungAktivitätMax. 28.5 *1015 Brg		200	besitzt eine aut	e Abschirmwirku	na für Neutronen-				
Wärmeleis- tung3 kW bei EinlagerungAktivitätMax. 28.5 *1015 Brg			und Gammastra	ahluna. Um die N	leutronenabschir-				
terModeratorstäbeundAbschirmplattenaus Polyethylen eingelassen. Der Behälter wird mit ei- nem verschraubten Deckel dicht verschlossen.InventarInventarBeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Wärmeleis- tung3 kW bei EinlagerungAktivitätMax. 28 5 *1015 Brd			mung zusätzlich	n zu erhöhen, sin	d im Außenbehäl-				
Polyethylen eingelassen. Der Behälter wird mit einem verschraubten Deckel dicht verschlossen. Inventar Beschreibung Das Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben. Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Brg			ter Moderators	stäbe und Abso	chirmplatten aus				
Inem verschraubten Deckel dicht verschlossen. Inventar Beschreibung Das Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben. Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Brg			Polyethylen eine	gelassen. Der Be	hälter wird mit ei-				
Inventar Beschreibung Das Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben. Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Brg			nem verschraut	oten Deckel dicht	verschlossen.				
BeschreibungDas Inventar eines ENCON-S/HAW besteht aus drei Edelstahl-Ko- killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben.Wärmeleis- tung3 kW bei EinlagerungAktivität Max. 28 5 *1015 Brd		-	Inventar						
killen in denen Wiederaufarbeitungsabfällen eingeschlossen sind. Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben. Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Br.	Beschreibung	Das Inventar ei	ines ENCON-S/H/	AW besteht aus	drei Edelstahl-Ko-				
Die Wärmeleistung von Kokillen mit verglasten Spaltlösungen von Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben. Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Br.		killen in denen	Wiederaufarbeit	ungsabfällen ein	geschlossen sind.				
Mischoxidbrennelementen liegt bei einer Beladung nach 75 Jahren Abklinglagerung zum Teil noch über 500 W / Kokille [67]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben. Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Brd		Die Wärmeleist	ung von Kokillen	mit verglasten S	Spaltlösungen von				
Abklinglagerung zum Teil noch über 500 W / Kokille [6/]. Eine Überschreitung der zulässigen Wärmeleistung und Aktivität pro Behälter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge- gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit Kokillen aus unterschiedlichen Chargen eine Homogenisierung der Behälterinventare anzustreben. Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Brd		Mischoxidbrenn	elementen liegt l	bei einer Beladur	ig nach 75 Jahren				
Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Bg		Abklinglagerung	g zum Teil noch	über 500 W / H	Kokille [67]. Eine				
Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Bg		Uberschreitung	Uberschreitung der zulässigen Wärmeleistung und Aktivität pro						
Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Bg		Behalter ergibt sich hierdurch im Salzstein nicht, dennoch ist ge-							
Wärmeleis- tung 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Bg		gebenentalis du	gebenenfalls durch eine gezielte Beladung des ENCON-S/HAW mit						
Wärmeleis- 3 kW bei Einlagerung Aktivität Max. 28 5 *10 ¹⁵ Bg		Robältorinventa		nargen eine Hon	logenisierung der				
tuna $3 \times 10^{15} \text{ Ba}$	Wärmeleis-	3 kW boi Finlag		A ktivität	Мах				
	tuna	5 KW DEI LIIIlay	erung	ARLIVILAL	28 5 *10 ¹⁵ Bo				

Allgemeines

Der ENCON-S/HAW besitzt aus einem koaxialen Aufbau mit insgesamt drei funktionalen Ebenen, wobei die Edelstahlkokillen die Funktion der inneren Tragstruktur übernehmen. Sie dienen der Herstellung einer sicheren Handhabbarkeit des Inventars im Rahmen von Konditionierungsvorgängen. Der Innenbehälter dient dem dichten Einschluss der Radionuklide, während der Außenbehälter überwiegend der Erfüllung radiologischer Anforderungen, wie der Abschirmung der ionisierenden Strahlung, dient. **Tragstruktur / Edelstahlkokillen**

			3 ×
Material	nicht rostender Stahl	Länge	1335 mm
		Durchmes-	
Verschluss	aufgeschweißter Deckel	ser	430 mm
Tragstruktur	Die HAW-Kokillen verfügen über einen	Wandstärke	ca. 10 mm
	Tragpilz zur Manipulation	Gewicht	Je ca.
			500 kg incl.
			Inventar

Beschreibung

Die in den Behälterschacht eingestellten Edelstahlkokillen übernehmen beim ENCON-S/HAW die Funktion der Tragstruktur und gewährleisten den dichten Einschluss sowie die dauerhaft unterkritische Anordnung des Inventars. Zusätzlich stellen die Kokillen die Handhabbarkeit und dem Einschluss des Inventars im Rahmen der Konditionierung des Inventars in die Lagerbehälter sowie gegebenenfalls im Rahmen einer Rekonditionierung des Inventars nach einer Rückholung / Bergung der Behälter aus dem Tiefenlager sicher. Sie müssen demnach hohen Anforderungen an den Korrosionswiderstand unter atmosphärischen Bedingungen sowie an die Dekontaminierbarkeit gerecht werden. Da die verschweißten Edelstahlkokillen diesen Anforderungen bereits gerecht werden, wurde um den Platz- und Materialbedarf der Lagerbehälter gering zu halten, bei den ENCON-S/HLW Behältern auf eine Umhüllung der Kokillen mit einem weiteren Tragbehälter verzichtet.

In Ihrer Gestaltung entsprechen die Kokillen der Tragstruktur des ENCON-S Behälters für die Einlagerung von Brennelementen. Sie sind als ein metallischer Zylinder ausgeführt und am Kopf- und Boden mit einem Deckel verschlossen. Das Material der Tragstruktur ist während der gesamten Lagerdauer einer hohen radiologischen Belastung ausgesetzt. Die zu erwartende Strahlendosis liegt allerdings weit unter der welche beispielsweise metallische Reaktorbauteile aus nicht rostenden Stählen während ihrer üblichen Lebensdauer erhalten. Mit einer Versprödung des Materials, welches die Handhabbarkeit gefährdet, ist demnach nicht zu rechnen.

Die der Konzeption der Kokillen zugrundeliegenden Anforderungen an die Materialeigenschaften (Schweißbarkeit, Beständigkeit gegen Korrosion unter atmosphärischen Bedingungen sowie bei der Nasslagerung, hoher Widerstand gegen Strahlenschädigung) entsprechen den Anforderungen an die Tragstruktur. Auch die Gestaltung des Deckelverschlusses der Kokillen sowie ihrer Lastanschlagpunkte erfolgten, wie bei der Tragstruktur, unter der besonderen Berücksichtigung der erforderlichen Korrosionsfestigkeit sowie der leichten Dekontaminierbarkeit. Aus diesem Grund wurden diese nach ihrer Befüllung mit den verglasten Abfällen mittels einer Schweißnaht verschlossen und weisen, wie die Tragstruktur des ENCON-S für Brennelemente, einen gut zugänglichen Tragpilz im Deckelbereich auf. Somit ist davon auszugehen, dass die aus dem nicht rostenden Stahl (1.4833) gefertigten Kokillen auch unter den Bedingungen, welche sich nach der Konditionierung in den umgebenden Tiefenlagerbehälter einstellen, eine ausreichende Dauerhaftigkeit erzielen und sich dies auch im Rahmen eines zu einem später Zeitpunkt für einen konkreten Standort zu führenden Sicherheitsnachweises bestätigen lässt [1], [67].

ENCON-S / HAW								
Gestaltungsdetails								
Innenbehälter								
Material	Niedrig legierter Stahl	Länge	4605 mm					
	Eingelegter, artgleich verschweißter	Durchmes-						
Verschluss	Deckel	ser	750 mm					
Tragstruktur	Der Innenbehälter verfügt über eine	Wandstärke	160 mm					
_	umlaufende Tragmulde am Behälter-							
	körper.	Gewicht	11,1 to					
Beschreibung								

Der Innenbehälter des ENCON-S/HAW Behälters übernimmt mehrere Funktionen. Er dient der Abschirmung der vom Inventar ausgehenden ionisierenden Strahlung. Zusätzlich leistet der Innenbehälter auch einen Beitrag zur Gewährleistung der mechanischen Stabilität des gesamten Lagerbehälters. Der Innenbehälter wird vom Aussenbehälter umschlossen und muss daher keine erhöhten Anforderungen an die Korrosionssicherheit erfüllen.

Strukturen und Bauteile mit Wandstärken von über 200 mm, wie der Abschirmbehälter, können wirtschaftlich und prozesssicher nur mittels Urformender Verfahren, wie dem Gießen, gefertigt werden. Somit muss für den Behälter ein Werkstoff zum Einsatz kommen, der neben ausreichenden mechanischen Kennwerten, wie Festigkeit und Duktilität, eine gute Gießeignung aufweist. Das Material des Innenbehälters muss zusätzlich über gute Zerspanungseigenschaften verfügen, um den Behälter nach dem Guss durch spanende Verfahren auf Fertigmaß bringen zu können. Auch die Einbringung der über 4 m langen Aufnahmebohrungen für die Abschirmstäbe aus Polyethylen erfordert eine gute Zerspanbarkeit des Behälterwerkstoffes. Aufgrund des bereits vorhandenen Erfahrungsschatzes in der Verarbeitung dieses Werkstoffes wurde Gusseisen mit Kugelgraphit (EN-GJS-400) als Werkstoff gewählt. Dieser Werkstoff findet bereits bei den CASTOR®-Behältern Anwendung und wird auch von der SKB für den Innenbehälter des KBS-3V Behälters vorgesehen [12], [32], [36], [37].

Im Rahmen der Konditionierung des Inventars in den Behälter sowie des Behälterzusammenbaus muss der Innenbehälter des ENCON sicher manipuliert werden. Hierfür ist eine in den verlängerten Behälterkörper eingelassene Tragmulde im nach oben verlängerten Behälterkörper vorgesehen an der der Behälter mit einem Greifer manipuliert werden kann. Diese Konstruktion wurde gewählt, da die zur der Manipulation der Behälter erforderlichen Kräfte nicht sicher über einen Tragzapfen am verschraubten Deckel übertragen werden könnten. Zusätzlich ermöglicht diese Gestaltung, dass oberhalb des Behälterdeckels eine Abschirmplatte aus Polyethylen eingelegt werden, welche von dem umlaufenden Behälterrand vor mechanischen und thermischen Einwirkungen geschützt wird. Hierdurch ergibt sich eine erhebliche Reduktion der vom Behälter in axialer Richtung ausgehenden Dosisleistung. Hierdurch werden die nachfolgenden Arbeitsschritte der Konditionierung, insbesondere der schweißtechnische Verschluss des Behälters erleichtert.

Außenbehälter							
	Gusseisen mit Kugelgraphit – EN-						
Material	GJS 400-18	Länge	4955 mm				
	verschraubter Deckel mit Vollmetall-	Durchmesser	1280 mm				
Verschluss	dichtungen		(1480 mm)				
Tragstruktur	Der Außenbehälter verfügt über ei-	Wandstärke	265 mm				
	nen massiven Tragpilz am Behäl-						
	umlaufende Tragringe am Behälter-						
	körper	Gewicht	21,2 t				
Der Abschirmbehälter verfügt über einen umlaufenden Tragring am Behälterkörper.							
Beschreibung							

Der Außenbehälter dient beim ENCON-S/HAW hauptsächlich der Abschirmung der vom Inventar ausgehenden ionisierenden Strahlung. Zusätzlich muss er die Stabilität des Behälters sowie seine Handhabbarkeit auch im Rahmen einer Rückholung / Bergung sicherstellen. Der Außenbehälter steht nach der Verfüllung des Tiefenlagers zwar in direktem Kontakt mit der geotechnischen Barriere, auf Grund des geringen Korrosionspotentials im Salz muss er nur geringen Anforderungen an die Korrosionsbeständigkeit gerecht werden. Es ist ein Werkstoff zu wählen, der über ausreichende mechanische Kennwerte, wie Festigkeit und Duktilität, sowie einen hohen Widerstand gegen lokale Korrosionsangriffe unter anaeroben Bedingungen verfügt. Gusseisen mit Kugelgraphit erfüllt diese Anforderungen vollumfänglich.

Dadurch, dass beim ENCON-S der Innenbehälter den langfristigen Einschluss der Radionuklide gewährleistet, werden keine Anforderungen an die dauerhafte Dichtheit des Außenbehälters gestellt. Der Verschluss des Behälters kann demnach mit einem verschraubten, eingelegten Deckel erfolgen.

Im Rahmen des Transports der Einlagerung, aber auch der potentiellen Rückholung, der Behälter muss der Außenbehälter des ENCON-S sicher manipuliert und gegriffen werden können. Aus der Konstruktion des Deckelverschlusses ergibt sich allerdings, dass die äußeren Lastanschlagpunkte beim ENCON-S nicht als Tragpilze im Deckelbereich der Behälter ausgelegt werden können. Die urformende Fertigung des Au-Benbehälters ermöglicht es allerdings, den Behälterkörper mit umlaufenden Tragringe zu versehen, welche von der Funktion her einem klassischen Tragpilz entspricht und demnach dieselben Vorteile bezüglich der Handhabung besitzt. Auch Tragringe bieten eine gute Zugänglichkeit beim Lastanschlag. Sie können sehr massiv ausgelegt werden, so dass fortschreitende Korrosion die Tragfähigkeit nur geringfügig reduziert. Durch die gute Zugänglichkeit ist es zudem im Rahmen der Bergung möglich, die Funktionsfähigkeit auch nach mehreren Jahrhunderten durch den Abtrag oberflächlicher Korrosionsschichten, wieder herzustellen.

ENCON-S / ENCON-S/HAW										
		٨	1ate	eria	alie	n				
Niedrig legierter S	tahl (exen	npl	ariscl	۱P2	235 G	H / 1.03	45)	[78]-[8	[0]	
Anmerkung		Be fü To ge de	Beispielwerkstoff verwendet als Behältermaterial für den Außenbehälter im Konzept der ANDRA für Ton [67], seine Eigenschaften entsprechen weitest- gehend dem für den Innenbehälter des Pollux von der GPS vorgeschlagenem 1.6210 [34]						terial RA für weitest- ux von	
Verwendet für		In	nenbe	häl	ter EN	ICON-S +	ENG	CON S/H	AW	
Werkstoff-beschreibt	ıng	G fr	ute Sc aßkorr	hwe osio	eißbari on[67,	<i>keit, gerir</i> , S. 128ff	nge .]	Anfälligk	eit fi	ir Loch-
Masse ges.		ca. E-1 14,9 / du 11,1 t		Mo- I	210 GP a	Schmelzpunkt 1420- 1460 C [80]		1420- 1460 ° C [80]		
Dichte	7,85 Kg/d m ³ Bei 20 °C	Į	Wärn -leitfa higke	ne ä- eit	57 W	I/m K		Aus- deh- nungs -koef- fizient	12, 1	5*10 ⁻⁶ K ⁻
0,2 % Dehngrenze RT	218 MPa [79] (abh. von der Mater alstärke)	i-	0,2 % Dehn grenz 150 %	% i- ze PC	190 (abh Mate	MPa [79] . von der rialstärke	:)	0,2 % Dehn- grenz e 250 ° C	160 [79 (ab der alst	MPa] h. von Materi- ärke)
Kompressions-mo- dul	ca. 175,5 GPa (berechne	a et)	Schu modu	d- וו	ca. 8 (bere	1 GPa echnet)		Pois- son- zahl	ca.	0,3
Legierungselemente	in % [79]									
C ≤ 0,16	Si ≤ 0,35		Mn ≤ 1,20		P ≤ (0,025		S ≤ 0,015	AI ≥	2 0,020
Cu+Cr+Mo+Ni ≤ 0,70										

Gusseisen mit Kugelgraphit GGG40 (0.7040 oder EN-GJS-400-15)								
Anmerkung	Werkstoffwah GNS und SKE	nl orientiert 3[34], [54]	<i>sich an den ,</i> , [67]	Konzepten voi	n ANDRA,			
Verwendet für:	Äußerer Abso	chirmbehält	er des ENCO	N-S				
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss han- delt es sich um einen Gusswerkstoff mit einem Kohlenstoff- gehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die aus- geschiedenen Graphitphasen in Form kugeliger Ausscheidun- gen aus und es entsteht ein überwiegend ferritisches Gefüge welches dem Werkstoff seine duktilen, stahlähnlichen Eigen- schaften verleiht							
Masse ges.	25,8 / 21,3 t	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 ℃ [35, S. 96]			
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärme- leitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffizient	11,2- 13,4*10 ⁻ ⁶ /K [35, S. 65]			
0,2 % Dehngrenze RT	250 MPa [13, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 150°C	210 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 250 °C	180 MPa [35, S. 57] (abh. von der Ma- terial- stärke)			
Kompressions-modul	125,2 GPa (berechnet)	Schub- modul	66,3 GPa (berech- net)	Poissonzahl	0,275 [33, S. 32]			
Legierungselemente in	n %: [33]							
C = 2,9 - 3,7	Si = 1,7 - 4,1	Mn ≤ 0,2	CU = 0,15- 0,75					

Nicht ros	Nicht rostender Stahl 1.4833 (Z 15 CN 24.13) [53], [81]								
Anmerku	Anmerkung Werkstoffwahl orientiert sich am Material der HAW-Kokillen								
Verwende	et für:	In	nere Tra	gstruk	ktur				
Werkstof	f- oung	Be	i dem be sten, kor	eschrie rosior	ebene Isbest	n Sta ändig	ahl handel gen Stahl	lt es sich um mit guter Scl	einen warm- nweißeignung
Masse	ca. 600	kg	E-Modu	I			196 GP	Schmelz-	ca. 1500-
ges.							a [53]	punkt	1538°C
Dichte	20°C		Wärme	leitfäh	igkeit		15	Ausdeh-	600°C
	7,9 К [53]	g/dm³					W/m K [53]	nungs- koeffizient	18,8+10 ⁻ ⁶ /°C [53]
0,2 % grenze RT	Dehn-	210 M (abh. Materi stärke	Pa [53] von der al-)	0,2 Dehr gren 150°	% n- ze °C	128 [53 (ab der alst	MPa] h. von Materi- ärke)	0,2 % Dehn- grenze 250°C	108 MPa [53] (abh. von der Ma- terialstärke)
Kompressions-modul		192 G (bered net)	192 GPa Schu (berech- mod net)		b- Il	75 GPa [81]	Poisson- zahl	0,33 [81]	
Legierung	Legierungselemente in % [53]								
C < 0,15			Si < 1	,0	N 0,08	=	Mn < 2,0	Cr = 0,22 0,24	- Ni=12 - 14

ENCON-S / ENCON-S/HAW								
Materialien								
Polyethylen (Lupolen,	Gur, Hostalen	, PE-HD)	[82]-[84]					
Verwendet für	Moderatorstäbe, Abschirmplatten							
Werkstoff-beschrei- bung	Moderatorstabe, Abschirmplatten Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißli- ches, halbdurchsichtiges Thermoplast. Es weist, verglichen mit Polyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemischen Substanzen höhere Temperatur- festigkeit auf. Die mechanischen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei La- gerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Git- teratomen abgebremst werden und so nachfolgend wirk- samer absorbiert werden können.							
Masse ges.	Bis zu 1,8 to	E-Mo- dul	1,15 GPa [82]]	Schmelz punkt	130- 145 °C			
Dichte	0,95 Kg/dm ³ Bei 20 °C [82]	Wärme -leitfä- higkeit	0,42 W/m K	Ausdeh- nungs- koeffi- zient	100 - 200 *10 ⁻⁶ K ⁻¹			
0,2 % Dehngrenze RT	27 MPa							
Kompressions-modul	7,9-10 GPa (berechnet)	Schub- modul	0,32- 0,41 GPa (berechnet)	Poisson- zahl	0,46 [83]			
Graphit	-							
Verwendet für:	Abschirmplatte	e, Alternati	ve zu PE					
Werkstoff- beschreibung	Graphit ist eine nischen Eigens lität eines Lage ähnlich wie Pol nenstrahlung.	e Modifikat chaften de erbehälters yethylen,	tion des Kohle es Graphits tra s bei. Graphit gut zur Absch	nstoffs. Die agen nicht z eignet sich irmung von	e mecha- cur Stabi- jedoch, Neutro-			
Masse ges.	Bis 4,3 to	E-Mo- dul	4,8 GPa [85, S. 1]	Sublima- tions- Tempe- ratur	3370 ° C [85, S. 1]			
Dichte	2,267 kg/dm 3 [85, S. 1]	Wärme -leitfä- higkeit	155 W/m* K [85, S. 1]	Ausdeh- nungs- koeffi- zient	2*10- 6 1/K [85, S. 1]			
0,2 % Dehngrenze RT	14-34 MPa [86, S. 16]							
Kompressions-modul	33 GPa [85, S. 1]	Schub- modul	1,62 GPa (berechnet)	Poisson- zahl	0,48 [85, S. 1]			

ENCON-TLB

Kurzdossier

Beim ENCON-TLB handelt es sich um den generischen, selbstabschirmenden ENCON Transportund Lagerbehälter (TLB) für die langfristige Zwischenlagerung (LZZL) der Wärmeentwickelnden Abfälle aus der Nutzung der Kernenergie. Er besitzt einen monolithischen, einschaligen Aufbau und zum langfristigen Verschluss des Behälters ein Doppeldeckelsystem. Bezüglich der eingesetzten Materialien orientiert er sich weitestgehend an den bereits heute kommerziell verfügbaren und im Einsatz befindlichen TLB für die Zwischenlagerung.

Im grundlegenden Aufbau unterscheiden sich die ENCON-TLB-Varianten für unterschiedliche Reststoffe nicht. Einzig die Länge und gegebenenfalls der Durchmesser des Innenschachtes und somit des Behälters wird beladungsabhängig angepasst. Im Inneren besitzt der ENCON-TLB eine Tragstruktur zur Aufnahme des Inventars. Hierbei kann es sich entweder um vollständige Brennelemente, um eingeschlossene, vereinzelte Brennstäbe oder um Kokillen mit Wiederaufarbeitungsabfällen handeln. Maximal kann der Behälter die Brennstäbe aus bis zu 19 DWR-BE beziehungsweise der entsprechenden Mengen Schwermetall aus Siedewasser- bzw. WWER- Reaktoren aufnehmen.

Abweichend von den heute bereits Anwendung findenden Transport- und Lagerbehältern (z.B. dem CASTOR[®]) besitzt der Behälterkörper des ENCON-TLB in der Standardkonfiguration keine behälterintegrierten Kühlrippen. Diese sind aufgrund der zum Zeitpunkt der Umkonditionierung der Abfälle in den ENCON-TLB bereits stark gefallenen Wärmeleistung in der Regel nicht mehr erforderlich.

Bei Behältern mit erhöhter thermischer Belastung können gegebenenfalls temporär zusätzliche Kühlrippen, beispielsweise in der Gestalt einer verspannten Manschette, an dem Behälterkörper montiert werden.

Aufbau des Behälters

Der Behälterkörper des ENCON-TLB besitzt einen monolithischen, zylindrischen Aufbau mit einem Durchmesser von etwa 2,45 m und einer Länge von knapp 6 m. Beladen wiegt er etwa 110 Tonnen. Er besitzt an beiden Enden des Behälterkörpers Tragringe, die in die Behälterstruktur integriert sind. An diesen kann zur Handhabung ein Transportgestell mit Tragzapfen angeschlagen werden, wodurch der Behälter sowohl waagerecht als auch senkrecht transportiert werden kann.

ENCON-TLB schematisch

Wirtsgestein	oberirdisch
Einlagerung	LZZL
Masse	ca. 120 t
Länge	ca. 5,95 m
Durchmes-	ca. 2,45 m
ser	
Anzahl ge-	ca. 3.240
samt	[1]

	Material	Beschrei	bung					
Tragstruktur	Edelstahl	Die innere Tragstruktur im Schacht des ENCON-TLB dient der sicheren Aufnahme des Inventars. Sie be- steht überwiegend aus verschweißten Edelstahlble- chen mit einer Materialstärke von etwa 10 mm. Hierdurch entstehen mehrere einzelne Schächte die in ihren Dimensionen dem Inventar angepasst wer- den können						
Behälter	Gusseisen mit Kugelgraphit ca. 480 mm	Der monolithische Behälterkörper des ENCON-TLB dient dem längerfristig dichten Einschluss der Radi- onuklide, dem mechanischen Schutz des Inventares sowie der Abschirmung der ionisierenden Strahlung. Er besitzt, vergleichbar dem CASTOR [®] -Behälter, Bohrungen in denen Polyethylen zur Neutronenab- schirmung eingebracht wird.						
Verschluss- system	Primär- und Sekundärde- ckel aus Edel- stahl, Gesamtdicke etwa 350 mm	Der Primär- und Sekundärdeckel schließen die Ra- dionuklide sicher im Behälter ein. Sie werden jeweils mit dem Behälterkörper verschraubt und mit Voll- metalldichtungen abgedichtet. Im Bereich zwischen den Deckeln kann ein Drucküberwachungs-System zur Kontrolle der Dichtheit integriert werden. Zu- sätzlich kann zwischen den beiden Deckeln eine wei- tere Dichtfläche für die Montage eines						
		Inve	ntar					
Beschreib- ung	Das Referenz-Inventar eines ENCON-TLB besteht aus den vereinzel- ten Brennstäben mehrerer Brennelemente. Bei der Einlagerung von Brennstäben ist das Inventar aus geometrischen und thermischen Gründen begrenzt. Prinzipiell ist es auch möglich Abfälle in den EN- CON TLB einzulagern, welche erst kürzer als 75 Jahre zwischengela- gert wurden. Für solche Behälter ist durch eine spezifische thermische Auslegung der Nachweis zu erbringen, dass die Tempe- raturgrenzwerte unter den vorgesehenen Bedingungen der Lagerung sicher eingehalten werden und aus der Beladung keine unzulässig hohe Strahlendosis an der Behälteroberfläche resultiert							
Wärmeleis- tung	Max. 6,5 kW		Aktivität	Max. 50 *10 ¹⁵ Bq				

Um das Gewicht der Tragstruktur zu begrenzen wird diese, analog zum CASTOR[®], aus verschweißten Blechen gefertigt und weist eine zylindrische Außengeometrie auf. Ihre Innenstruktur wird an die Abmessungen der einzulagernden Abfälle angepasst,

so dass Varianten zur Aufnahme von Brennelementen, von Wiederaufarbeitungsabfällen sowie auch von bereits vereinzelten Brennstäben entstehen. Zur Optimierung der Wärmeleitung und der Kritikalitätssicherheit können Teile der Tragstruktur auch aus boriertem Blechen oder Kupfer gefertigt werden. Um die sichere Entnahme auch bereits vorgeschädigten Inventars nach mehreren Jahrzehnten zu gewährleisten, kann dieses bevor es in die Tragstruktur eingebracht wird in gasdicht verschweißten Konditionierungsbehältern, welche in ihren Abmaßen etwa einem Brennelement entsprechen, eingeschlossen werden.

Als Material für die Tragstruktur eignen sich, auf Grund ihres vergleichsweise hohen Korrosionswiderstandes und ihrer ausreichenden Schweißeignung, insbesondere nicht rostende Stähle. Im Rahmen der Konzeptionierung der generischen Behälterkonzepte wurde auch die Eignung von Zirkonium für den Tragbehälter untersucht. Dieser Werkstoff besitzt sehr gute Korrosionseigenschaften, stellt auf Grund seiner geringeren Abschirmeigenschaften allerdings höhere Anforderungen an die radiologische Auslegung der Behälter. Der Hauptgrund für den Ausschluss dieses Materials liegt allerdings darin begründet, dass der Tragbehälter des ENCON-TLB, verglichen mit den Tragbehältern der ENCON-Tiefenlagerbehälter, eine sehr hohe Komplexität besitzt. Die Fertigung dieser komplexen Strukturen aus Zirkonium unter Schutzgasatmosphäre stellt nach dem heutigen Stand der Technik eine große Herausforderung dar.

ENCON-TLB								
Gestaltungsdetails								
Außenbehält	Außenbehälter							
Material	Gusseisen mit Kugelgraphit – EN-GJS 400-18	Länge	5790 mm					
Verschluss	verschraubtes Doppeldeckelsystem mit Vollmetalldichtungen	Durchmes- ser	2440 mm					
Tragstruktur	Der Außenbehälter verfügt zwei umlau-	Wandstärke	480 mm					
	fende Tragringe am Behälterkörper	Gewicht	98 t					
Beschreibun	0							

Beim ENCON-TLB übernimmt der Außenbehälter die Funktionen des langfristig dichten Einschlusses der Radionuklide, der Abschirmung der ionisierenden Strahlung und der Gewährleistung der mechanischen Integrität. Aus der Lagerung der Behälter in oberflächennahen Langzeitzwischenlagerbauwerken sowie der Forderung nach der Eignung der Behälter zum Transport ergeben sich die Randbedingungen der Behälterkonzeption.

Unter den zu erwartenden, vergleichsweise wenig aggressiven Lagerbedingungen sowie unter der Prämisse, dass eine Wartung oder Ertüchtigung einzelner Behälter möglich ist, kann die angestrebte Lebensdauer der Behälter von wenigen Jahrhunderten auch mit Werkstoffen erreicht werden, die nur einen begrenzten Korrosionswiderstand besitzen.

Andere Anforderungen besitzen auf die Auswahl eines geeigneten Werkstoffes für den ENCON-TLB Behälterkörper einen höheren Einfluss. Die potentiellen mechanischen Einwirkungen auf den Behälter im Rahmen von Transport und Lagerung sind bei der oberflächennahen Lagerung nicht in dem Maße definiert wie bei der Tiefenlagerung. Demnach müssen die TLB einen möglichst hohen Widerstand gegen mechanische Einwirkungen besitzen. Zusätzlich ist im Rahmen des Transports damit zu rechnen, dass sich auch Zivilpersonen in der Nähe des Behälters aufhalten, so dass der ENCON-TLB höheren Ansprüchen an die Abschirmung gerecht werden muss. Hieraus ergeben sich für den Behälterkörper zum einen sehr hohe Materialstärken von über 400 mm. Zusätzlich muss es möglich sein, Abschirmmaterialien wie Polvethylen in geeigneter Form in den Behälter einzubringen. Für die Fertigung des ENCON-TLB eignen sich somit nur Materialien aus denen sich solch dickwandige Strukturen Qualitätsgesichert fertigen lassen und die sich zusätzlich gut spanend bearbeiten lassen.

Der gewählte Werkstoff, Gusseisen mit Kugelgraphit, erfüllt diese Anforderungen vollumfänglich. Er eignet sich zur urformenden Fertigung auch großer Bauteile und ermöglicht, durch seine guten Zerspanungseigenschaften, die maßhaltige Fertigung auch komplexer oder sehr schlanker Strukturen. Die letztgenannte Eigenschaft ist für die Fertigung der für die Abschirmelemente erforderlichen Bohrungen elementar. Hinzu kommt, dass dieser Werkstoff eine vergleichsweise gute Abschirmwirkung für ionisierende Strahlung besitzt. Um den Korrosionsschutz des Behälters zu optimieren, können die Oberflächen des Behälters mit zusätzlichen Oberflächenbeschichtungen versehen werden. Sinnvoll erschein hier, analog zu den bereits heute Anwendung findenden TLB, eine Beschichtung der Außenseite des Behälters mit einem widerstandsfähigen Lacksystem. Für die Innenseite des Behälters sowie den Schraubflansch der Deckel ist, auf Grund der dort auftretenden mechanischen Belastungen eine hochbelastbare, metallische Oberflächenbeschichtung wie beispielsweise eine z. B. chemisch abgeschiedene Nickelschicht vorgesehen.

Der dauerhaft dichte Verschluss der Behälter kann beim ENCON-TLB auf Grund der Forderung nach der leichten Rekonditionierbarkeit des eingeschlossenen Inventars nicht mittels eines Schweißdeckels erfolgen. Stattdessen verfügt der Behälter über zwei einzelne, eingelegte und mit dem Behälterkörper verschraubte Deckel. Diese verfügen über eine langfristig haltbare Vollmetalldichtung. Auf Grund der Vielzahl der mechanisch hochbelasteten Funktionsflächen der Deckel, wie Beispielsweise Dichtungssitz und Schraubenauflagen, ist es erforderliche diese aus einem unter atmosphärischen Bedingungen hoch korrosionsfesten Werkstoff zu fertigen. Gewählt wurde ein korrosionsbeständiger Stahl. Da es beim verschraubten Deckelverschluss über einen langen Zeitraum vereinzelt zu Defekten kommen kann, wurde die Konstruktionsvariante mit dem Doppeldeckel gewählt, da sie es ermöglicht den Bereich zwischen den Deckeln unter einen definierten Überdruck zu setzen und durch die Überwachung dieses Überdrucks die Dichtheit des Deckelverschlusses zu überwachen.

Um eine sichere Handhabung der Behälter zu ermöglichen, besitzen diese massive Lastanschlagpunkte in Form von umlaufenden Tragringen. Für die Handhabung kann an diesen ein Traggestell mit Tragzapfen angeschlagen werden, um auch eine Manipulation des Behälters in horizontaler (liegender) Position zu ermöglichen. Bei den Behälterdeckeln sind als Lastanschlagpunkte hinterschnittene Durchgangsbohrungen für die Schrauben vorgesehen. Diese Gestaltung der Lastanschlagpunkte ermöglicht zum einen die sichere Manipulation der Deckel bei der Konditionierung / Beladung der Behälter, zum anderen sind diese Lastanschlagpunkte nach dem Verschluss des Deckels nicht mehr zugänglich. Hierdurch wird eine Nutzung dieser Punkte zur Manipulation der Behälter und somit eine Überlastung der Deckelverschraubung sicher verhindert.

ENCON-TLB								
Materialien								
Gusseisen mit Kug	elgraphit GG	G40 (0.70	40 oder EN-	GJS-400-15)				
Anmerkung	Werkstoffwa GNS und SK	hl orientier B[34], [54]	<i>t sich an den</i>], [67]	Konzepten voi	n ANDRA,			
Verwendet für:	Äußerer Abs	chirmbehäl	ter des ENCO	N-S				
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammenset- zung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die ausgeschiedenen Graphitphasen in Form kugeliger Ausscheidungen aus und es entsteht ein über- wiegend ferritisches Gefüge welches dem Werkstoff seine duktlien stahlähnlichen Einenschaften verleiht							
Masse ges.	ca.98 to	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]			
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärme- leitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffizient	11,2- 13,4*10 ⁻ ⁶ /K [35, S. 65]			
0,2 % Dehngrenze RT	250 MPa [13, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 150°C	210 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 250 °C	180 MPa [35, S. 57] (abh. von der Mate- rialstärke)			
Kompressionsmodul	125,2 GPa (berech- net)	Schub- modul	66,3 GPa (berechnet)	Poissonzahl	0,275 [33, S. 32]			
Legierungselemente	in %: [33]							
C = 2,9 - 3,7	Si = 1,7 - 4,1	Mn ≤ 0,2	Cu = 0,15- 0,75					

Nicht rostender Stahl 1.4833 (Z 15 CN 24.13) [53], [81]													
Anmerkung		Werkstoffwahl orientiert sich am Material der HAW-Kokillen											
Verwendet für:		Innere Tragstruktur des ENCON-TLB, Deckel des Behälter-											
		körpers											
Werkstoff-		Bei dem beschriebenen Stahl handelt es sich um einen											
beschreibung		warmfesten, korrosionsbeständigen Stahl mit guter											
	Schweißeignung												
Masse ges.	ca.	10 to	E-Modul	196 GPa	Schmelz	ca. 1500-							
				[53]	punkt	1538°C							
Dichte 20°		C	Wärmeleit-	15 W/m K	Ausdeh-	600°C							
7,9			fähigkeit	[53]	nungs-	18,8+10 ⁻⁶ /°C							
Kg/ [53]		dm³			koeffi-	[53]							
					zient								
0,2 % Dehngrenze	210	MPa	0,2 %	128 MPa	0,2 %	108 MPa [53]							
RT	[53]		Dehngrenze	[53]	Dehn-	(abh. von der							
	(abł	n. von	150°C	(abh. von	grenze	Material-							
	der	Mate-		der Mate-	250°C	stärke)							
	rials	tärke)		rialstärke)									
Kompressions-	192	GPa	Schubmodul	75 GPa	Pois-	0,33 [81]							
modul (be		ech-		[81]	sonzahl								
	net)												
Legierungselemente in % [53]													
C < 0,15	Si <	1,0	N = 0,08	Mn < 2,0	Cr = 0,22	2 Ni = 12 - 14							
					- 0,24								

ENCON-TLB												
Materialien												
Polyethylen (Lupolen, Gur, Hostalen, PE-HD) [82]-[84]												
Verwendet für	Moderatorstäbe Alternative zum Graphit bei der Ab-											
		schirmplatte										
Werkstoff-beschreibun	g	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um										
	-	ein halbkristallines (normalerweise zu 70 %-80 %), weiß-										
		liches, halbdurchsichtiges Thermoplast. Es weist, vergli-										
		chen mit Polyethylen geringerer Dichte, eine gute										
		Beständigkeit gegenüber chemischen Substanzen höhere										
		Temperaturfestigkeit auf. Die mechanischen Eigenschaf-										
		ten von PE sind verglichen mit anderen Werkstoffen, wel-										
		che bei Lagerbehaltern zum Einsatz kommen,										
		vergieichsweise schlecht [34]. PE desitzt jedoch die El-										
		Stöße an den Gitteratomen abgebremst werden und so										
nachfolgend wirksamer absorbiert werden können								n.				
Masse ges.		Bis zu 3,5 to		E-Modul		1.15 GPa	Schmelz	130-				
						[82]]	punkt	145 °C				
Dichte		0,95 Kg/dm ³		Wärme-		0,42 W/m	Ausdeh-	100 -				
		Bei 20 °C		leitfähig-		К	nungs-	200				
		[82]		keit			koeffi-	*10 ⁻⁶ K ⁻¹				
							zient					
0,2 % Dehngrenze RT		27 MPa					-					
Kompressions-modul		7,9-10 GPa		Schub-		0,32-	Poisson-	0,46				
		(berechnet)		modul		0,41 GPa	zahl	[83]				
						(berech-						
Granhit												
Verwendet für:	A	bschirmplatte										
Werkstoff-	Granhit ist eine Modifikation des Kohlenstoffs. Die mechani-											
beschreibung	schen Eigenschaften des Graphits tragen nicht zur Sta							Stabilität				
-	eines Lagerbehälters bei. Graphit eignet sich jedoch, ähnlich											
	wie Polyethylen, gut zur Abschirmung von Neutronenstrah-											
	lung.											
Masse ges.				E-Modul			Sublima-	3370 °C				
ca		a. 0,6 to		4, [8		8 GPa	tions-	[85, S.				
						35, S. 1]	lempe-	1]				
Dichto				Närma			ratur	2*10				
Dichte 2, [8		2,267 kg/dm³ [85, S. 1]		Warme- leitfä- 15 bigkoit [8		55 W/m*V	Ausaen-	2™10- 6 1/k				
						25 C 11	hungs-	01/K [85 S				
				пукец	[C	5, 5. 1]	zient	[05, 5. 1]				
0.2 %	14	4-34 MPa						<u> </u>				
Dehngrenze RT	[8	[86, S. 16]										
Kompressions-modul	2.	2 CD2		Schub-	1	62 CD2	Poisson-	0,48				
		33 GPa [85, S. 1]		modul		oz Gra	zahl	[85, S.				
						erechnet)		1]				

ENCON - Dossiers

Allgemeine Anmerkungen zu den ENCON-Behälterkonzepten

Die generischen ENCON-Behälterkonzepte wurden als Arbeitsgrundlage des ENTRIA-Verbundprojektes in Zusammenarbeit der Bearbeiter der einzelnen Arbeitspakete erstellt.

Als Datenbasis dienten hierbei insbesondere Berichte zur Endlagerforschung aus Deutschland (insbesondere vorläufige Sicherheitsanalyse Gorleben), Schweden (SKB, KBS-3V Konzept), Frankreich (ANDRA) und der Schweiz (NAGRA).

Die einzelnen Aspekte des generischen ENCON-Konzepts, wie beispielsweise die Materialauswahl, das maximale Inventar der Behälter etc. wurden von den Bearbeitern auf der Grundlage der Ergebnisse der einzelnen Forschungsvorhaben intensiv diskutiert und im Anschluss in einem gemeinsamen Workshop abgestimmt.

Die im Rahmen der Entscheidungsfindung betrachteten Alternativen sowie die Entscheidungsgrundlagen werden im Bericht zu den generischen ENCON-Konzepten detaillierter dargestellt.
Literatur zum ENCON-Behälterkonzept

- [1] F. Peiffer, B. McStocker und D. Gründler, "Abfallspezifikation und Mengengerüst, Basis Ausstieg aus der Kernenergienutzung (Juli 2011), Vorläufige Sicherheitsanalyse Gorleben, Bericht zum Arbeitspaket 3", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-278, ISBN 978-3-939355-54-2, Sep. 2011.
- [2] Kommission Lagerung hoch radioaktiver Abfallstoffe, "Bericht der Kommission, Leitbild B - Bilanz der Wiederaufarbeitung, Ergänzung Kapitel 2.2.3", Kommission Lagerung hoch radioaktiver Abfallstoffe, K-Drs./Ag 4-24, März 2016.
- [3] Bürgerinitiative Umweltschutz Lüchow-Dannenberg e.V., "Stellungnahme zum Entwurf eines Gesetzes zur Fortentwicklung des Gesetzes zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle und anderer Gesetze", Ausschussdrucksache 18(16)526-D, März 2017.
- [4] Deutscher Bundestag, "13. Novelle des AtG", BGBl. I S. 1704, Juli 2011.
- [5] Deutscher Bundestag, "Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle (Standortauswahlgesetz - StandAG)", BGBI. I S. 2553, zuletzt geändert durch Art. 4 des Gesetzes vom 27. Januar 2017 (BGBI. I S. 114), Juli 2013.
- [6] Kommission; Lagerung hoch radioaktiver Abfallstoffe, "Abschlussbericht der Kommission Lagerung hoch radioaktiver Abfälle", DRS-268, Juli 2016.
- [7] J. Stahlmann, R. P. Leon Vargas und V. Mintzlaff, "ENTRIA-Arbeitsbericht-03: Generische Tiefenlagermodelle mit Option zur Rückholung der radioaktiven Reststoffe: Geologische und Geotechnische Aspekte für die Auslegung." Braunschweig-2015.
- [8] Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), "Sicherheitsanforderungen an die Endlagerung wärmeentwickelnder radioaktiver Abfälle", Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Sep. 2010.
- [9] J. C. L. Meeussen und E. Rosca-Bocancea, "Determination of the inventory: part B matrix composition", Centrale Organisatie Voor Radioactief Afval (COVRA NV), OPERA-PU-NRG112B, 2014.
- [10] E. Verhoef, E. Neeft, J. Grupa und A. Poley, "Projectplan "Onderzoeks Programma Berging van Radioactief Afval"", Centrale Organisatie Voor Radioactief Afval (COVRA NV), OPERA-PG-COV008, Nov. 2014.
- [11] International Atomic Energy Agency, "Fundamental safety principles: safety fundamentals", IAEA, Wien, IAEA SF-1, ISBN 978-92-0-110706-0, 2006.
- [12] L. Boerjesson, D. Gunnarsson, L.-E. Johannesson und E. Jonsson, "Design, production and initial state of the canister", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-14, ISSN 1404-0344, Dez. 2010.
- [13] H. Raiko, R. Sandstroem, H. Ryden und M. Johansson, "Design analysis report for the canister", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-28, ISSN 1404-0344, Apr. 2010.
- [14] W. Bollingfehr, W. Filbert und C. Lerch, "Endlagerkonzepte: Bericht zum Arbeitspaket 5; vorläufige Sicherheitsanalyse für den Standort Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, GRS-272, Juli 2011.
- [15] W. Bollingerfehr, W. Filbert und S. Dörr, "Endlagerauslegung und -optimierung: Bericht zum Arbeitspaket 6; vorläufige Sicherheitsanalyse für den Standort Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, GRS-281, ISBN 978-3-939355-57-1, Juni 2012.

- [16] C. Walter und M. Riemann, "Wie viel Strahlendosis für wen? Lange Lagerung, Offenhaltung und ein langer Entsorgungsprozess bedeuten zusätzliche Dosis für Beschäftigte", GAiA-Ökologische Perspektiven für Wissenschaft und Gesellschaft 26/2 (2017) S.106-109, DOI: 10.14512/gaia.26.2.11.
- [17] R. León-Vargas und J. Stahlmann, "Thermal impact in the geometrical settings in deep geological repositories for HLW with retrievability", Phoenix AZ, USA, Proceedings of the 42th Waste Management Symposia, WMS 2016, März 2016.
- [18] DBEtec, "Gutachten: Flächenbedarf für ein Endlager für wärmeentwickelnde hoch radioaktive Abfälle", DBE TECHNOLOGY GmbH, Kommission Lagerung hoch radioaktiver Abfälle K-MAT 58 (TEC-09-216-G).
- [19] Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, "Programm für eine verantwortungsvolle und sichere Entsorgung bestrahlter Brennelemente und radioaktiver Abfälle (Nationales Entsorgungsprogramm)", Aug. 2015.
- [20] Agence nationale pour la gestion des déchets radioactifs, "Stockage réversible profond- Options de sûreté du stockage en formation géologique profonde", ANDRA, C.NT.ASSN.09.0029.B, 2009.
- [21] SKB, "Long-term safety for the final repository for spent nuclear fuel at Forsmark - Main report of the SR-Site project", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR-11-01 Vol. 1-3, ISSN 1404-0344, Dez. 2012.
- [22] A. Rübel und A. Meleshyn, "Methodik und Anwendungsbezug eines Sicherheits- und Nachweiskonzeptes für ein HAW-Endlager im Tonstein: Sicherheitskonzept und Nachweisstrategie", Ges. für Anlagen- und Reaktorsicherheit (GRS), Köln, GRS-338, ISBN 978-3-944161-18-1, Aug. 2014.
- [23] D. Köhnke, M. Reichardt und F. Semper, Hrsg., Zwischenlagerung hoch radioaktiver Abfälle. Wiesbaden: Springer Fachmedien, 2017.
- [24] Strahlenschutzkommission des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, "Strahlenschutz und Strahlenbelastung im Zusammenhang mit Polizeieinsätzen anläßlich von CASTOR-Transporten", SSK, SSK 1998-5, 1998.
- [25] E. Pönitz, C. Walter und T. Hassel, "Calculations of Dose Rates at the Surface of Storage Containers for High-Level Radioactive Waste", 14th International Congress of the International Radiation Protection Association (IRPA), Kapstadt, Südafrika, 2016.
- [26] Gesellschaft für Nuklear-Service mbH, "Patent: Brennstabköcher", GNS, Essen, EP 2 824 669 A1, Juli 2013.
- [27] K. Lintner und E. Schmid, "Werkstoffe des Reaktorbaues mit besonderer Berücksichtigung der Metalle", Springer, Berlin, Heidelberg, ISBN 978-3-662-13421-4 978-3-662-13420-7, 1962.
- [28] J. Stahlmann, R. L. Vargas und V. Mintzlaff, "Geotechnische und geologische Aspekte für Tiefenlagerkonzepte mit der Option der Rückholung der radioaktiven Reststoffe", *Bautechnik*, Bd. 93, Nr. 3, S. 141–150, 2016.
- [29] L. H. Johnson und F. King, "Canister options for the disposal of spent fuel", National Cooperative for the Disposal of Radioactive Waste (NAGRA), NTB-02-11, ISSN 1015-2636, Apr. 2003.
- [30] Nuclear Waste Management Commission, "Requirements for packages for the disposal of heat generating radioactive waste", ESK, Jan. 2017.
- [31] Gesellschaft für Nuklear-Service mbH, "CASTOR[®] V/19 Transport- und Lagerbehälter für Brennelemente (DWR)^{*}, GNS, Essen, Apr. 2014.
- [32] R. Graf, K.-J. Brammer und W. Filbert, "Direkte Endlagerung von Transportund Lagerbehältern – ein umsetzbares technisches Konzept -", GNS Gesellschaft für Nuklear-Service mbH, DBE TECHNOLOGY GmbH, Jahrestagung Kerntechnik, 2012.
- [33] DIN EN 1563:201, "Gusseisen mit Kugelgraphit". März-2012.
- [34] J. Wolf, J. Behlau und T. Beuth, "FEP-Katalog für die VSG Dokumentation Bericht zum Arbeitspaket 7; vorläufige Sicherheitsanalyse für den Standort

Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-283-7, Juni 2012.

- [35] C. Bartels, R. Gerhards und H. Hanselka, "BDGuss Gusseisen mit Kugelgraphit", Bundesverband der Deutschen Gießerei-Industrie (BDG), Juni 2010.
- [36] L. Nolvi, "Manufacture of disposal canisters", Posiva Oy, Olkiluoto, Posiva 2009-03, ISBN 978-951-652-171-1, Dez. 2009.
- [37] H. Raïko, "Disposal canister for spent nuclear fuel design report", Posiva Oy, Olkiuoto, Posiva 2005-02, ISBN 978-951-652-134-6, Juli 2005.
- [38] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix C: Container Fabrication", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [39] L. Moren, "Design and production of the KBS-3 repository", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-12, ISSN 1404-0344, Dez. 2010.
- [40] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-B1-Corrosion-of-Copper", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [41] SKB, "Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses - TR-09-22", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR 09-22, ISSN 1404-0344, Nov. 2009.
- [42] J. Heinrich und C. Gomes, "Einführung in die Technologie der Keramik", TU Clausthal, Clausthal, 2010.
- [43] Steinzeug-Keramo GmbH, "Rohrsysteme aus Steinzeug", Steinzeug-Keramo GmbH, Frechen, 2014.
- [44] S. Eberhart, "Keramik, ein vielseitiger Werkstoff", Hochschule Rapperswil, 2003.
- [45] P. Poskas, V. Simonis und A. Smaizys, "Main Characteristics for CASTOR[®] and Constor casks loaded with spent RBMK-1500 nuclear fuel", Lithuan Energy Institute, Nuclear Engineering Laboratory, Kaunas, Lithuania, IAEA CN 102 33.
- [46] Gesellschaft f
 ür Nuklear-Service mbH, "Datenblatt: Constor", GNS, Essen, Dez. 2014.
- [47] DIN EN ISO 8044:2015, "Korrosion von Metallen und Legierungen".
- [48] H. J. Fahrenwaldt, V. Schuler und J. Twrdek, "Praxiswissen Schweißtechnik", Springer Fachmedien, Wiesbaden, ISBN: 978-3-658-03141-1, 2014.
- [49] DIN 10027-1:2016, "Bezeichnungssysteme für Stähle".
- [50] DIN 10027-2:2011, "Bezeichnungssysteme für Stähle Teil 2: Nummernsystem".
- [51] Raul B. Rebak, "Materials in Nuclear Waste Disposition", Journal of Materials (JOM), Ausgabe 3, Band 66, ISSN: 1047-4838, DOI: 10.1007/s11837-014-0878-2, Feb. 2014.
- [52] H. Berns und W. Theisen, "Eisenwerkstoffe Stahl und Gusseisen", Springer Berlin Heidelberg, ISBN: 978-3-540-32319-5, 2006.
- [53] M. Tholen, "Forschungsvorhaben Chemisch-toxische Stoffe in einem Endlager für hochradioaktive Abfälle, APII – Inventar chemotoxischer Stoffe", DBE TECHNOLOGY GmbH, Peine, Aug. 2009.
- [54] C.-G. Andersson, "Development of fabrication technology for copper canisters with cast inserts", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-02-07, Apr. 2002.
- [55] K. Hachenberg, H. Kowalke, J. M. Motz, K. Roehrig, W. Siefer, H. P. Staudinger, P. Toelke, H. Werning und D. B. Wolters, "Gusseisen mit Kugelgraphit", VDI-Verlag, 1988.
- [56] E. Roos und K. Maile, "Werkstoffkunde für Ingenieure: Grundlagen, Anwendung, Prüfung, 5. Auflage", Springer Vieweg, Berlin, ISBN: 978-3-642-54988-5, 2015.

- [57] F. King, "Copper corrosion under expected conditions in a deep geologic repository", Posiva, Helsinki, ISBN: 978-951-652-108-7, 2002.
- [58] L. Werme, P. Sellin und N. Kjellbert, "Copper canisters for nuclear high level waste disposal. Corrosion aspects", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR-92-26, Okt. 1992.
- [59] W. H. Bowyer und H.-P. Hermansson, "Comments on SKB RD and D-Programme 98 - Focused on canister integrity and corrosion", Swedish Nuclear Power Inspectorate, 1999.
- [60] T. E. Eriksen, P. Ndalamba und I. Grenthe, "On the corrosion of copper in pure water", Corros. Sci., Bd. 29, Nr. 10, S. 1241–1250, Jan. 1989.
- [61] T. Hernandez-Selva, D. L. Engelberg, F. Scenini, D. Fox und A. McClusky, "Manufacturing technology for implementing geological disposal: electroforming of copper canisters", *Mineral. Mag.*, Bd. 79, Nr. 06, S. 1521–1528, Nov. 2015.
- [62] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-B5-Corrosion-of-Titanium-Alloys", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [63] G. Lütjering und J. Williams, "Titanium 2nd edition", Springer-Verlag, Berlin Heidelberg, ISBN: 978-3-540-71379-5, Berlin Heidelberg.
- [64] J. L. Tisom, "Update on French Deep Geological program for High Level Waste", Agence nationale pour la gestion des déchets radioactifs (ANDRA), Bommersvik, CEG Workshop, Feb. 2009.
- [65] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-A -mechanical-processes", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [66] S. R. Holdsworth, T. Graule und E. Mazza, "Arbeitsbericht Feasibility evaluation study of candidate canister solutions for the disposal of spent nuclear Fuel and high level waste", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen, NAB 14-90, Sep. 2014.
- [67] ANDRA, "Dossier 2005 Argile Architecture and management of a geological repository", Agence nationale pour la gestion des déchets radioactifs, ANDRA-286VA, ISBN 2-9510108-7-70108-8-5, Dez. 2006.
- [68] S. Schubert, U. Probst und H.-P. Winkler, "Behaviour of metallic seals in CAS-TOR casks under normal and accident conditions of transport: qualification requirements", *Packag. Transp. Storage Secur. Radioact. Mater.*, Bd. 20, Nr. 4, S. 179–182, Dez. 2009.
- [69] E.On Kernkraft, "Kurzbeschreibung des Brennelementbehälterlagers Isar KKI BELLA", E.ON Kernkraft GmbH, Essen, Hannover, Feb. 2001.
- [70] G. Köhler, H. Rögnitz und B. Künne, "Maschinenteile. 1, 10. überarb. und aktualisierte Auflage", Teubner, Wiesbaden, ISBN: 978-3-8351-0093-0, 2007.
- [71] A. Maissen, "Festkörperreibung: Reibungszahlen verschiedener Werkstoffe", Schweizer Ingenieur und Architekt, Band 111, Heft 3, DOI: 10.5169/seals-78120, Jan. 1993.
- [72] Eichinger GmbH, "Greifer und Hebezeuge für Kran und Kranhaken". [Online]. Verfügbar unter: https://www.eichinger.de/wp-content/uploads/2017/02/1086_2web.jpg. [Zugegriffen: 04-Juli-2018].
- [73] H. Roloff und W. Matek, "Maschinenelemente", Vieweg+Teubner Verlag, Wiesbaden, DOI: 10.1007/978-3-322-85908-2, 1974.
- [74] DIN 15002, "Lastaufnahmeeinrichtungen". Apr-1980.
- [75] Wikipedia, "Twistlock Container Verriegelung". [Online]. Verfügbar unter: https://de.wikipedia.org/wiki/Twistlock#/media/File:Container_Verriegelung_2.jpg. [Zugegriffen: 04-Juli-2018].
- [76] "CASTOR[®] Demonstrator der GNS eigene Aufnahme", Sep. 2015.
- [77] D. Féron, D. Crusset und J.-M. Gras, "Corrosion issues in nuclear waste disposal", J. Nucl. Mater., Bd. 379, Nr. 1–3, S. 16–23, Sep. 2008.

- [78] Salzgitter Flachstahl, "Datenblatt Flachstahl P235GH Warmfeste Druckbehälterstähle", Sep-2011. [Online]. Verfügbar unter: http:// www.salzgitter-flachstahl.de. [Zugegriffen: 07-Mai-2015].
- [79] ThyssenKrupp, "Datenblatt P235GH Unlegierter warmfester Stahl", Mai-2006. [Online]. Verfügbar unter: http://www.thyssenkrupp.at/files/rohre/Werkstoffdatenblaetter/P235GH.pdf. [Zugegriffen: 23-Okt-2014].
- [80] MakeItFrom, "Datenblatt EN 1.0345 (P235GH) Non-Alloy Steel". [Online]. Verfügbar unter: https://www.makeitfrom.com/material-properties/EN-1.0345-P235GH-Non-Alloy-Steel. [Zugegriffen: 15-Aug-2018].
- [81] Industeel, "Datenblatt SIRIUS 309 23% Cr 13% Ni Heat Resistant Stainless Steel". [Online]. Verfügbar unter: http://www.matweb.com/search/datasheet.aspx?matguid=b69b7838f76f47239c72ffbad8a9a003&ckck=1. [Zugegriffen: 16-Aug-2018].
- [82] GEHR Plastics, "Datenblatt Polyethylene HD-PE", GEHR, 2014-1996. [Online]. Verfügbar unter: http://www.matweb.com/search/datasheettext.aspx?matguid=422462a3944043019f269e31616235d1. [Zugegriffen: 03-Juli-2014].
- [83] Goodfellow, "Datenblatt Polyethylen hoher Dichte online Katalog". [Online]. Verfügbar unter: http://www.goodfellow.com/G/Polyethylen-hoher-Dichte.html. [Zugegriffen: 24-Nov-2016].
- [84] A. Meyer, "Fakten über Polyethylen". [Online]. Verfügbar unter: www.faktenuber.de/polyethylen. [Zugegriffen: 03-Juli-2014].
- [85] Periodensystem online, "Physikalische Eigenschaften Kohlenstoff", Physikalische Eigenschaften Kohlenstoff - Das Periodensystem online. [Online]. Verfügbar unter: http://www.periodensystem-online.de/index.php?el=6&id=modify. [Zugegriffen: 27-Juni-2014].
- [86] Graphit Entegris, "Properties an Characteristics of Graphite". Mai-2013.
- [87] Azom, "Datenblatt Oxygen Free Copper UNS C10100". [Online]. Verfügbar unter: http://www.azom.com/article.aspx?ArticleID=6314. [Zugegriffen: 08-Juni-2015].
- [88] Swissprofile, "Datenblatt 2.0040 Cu OF". [Online]. Verfügbar unter: http://www.swissprofile.com/data/documents/fiches-techniques/EN/CU_OF.pdf. [Zugegriffen: 04-Juni-2015].

Anhang B:

Behälterdossiers

Dossiers der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungssystem und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde Leibniz Universität Hannover

Version 2.1 / Juni 2018

Behälterdossiers der ENTRIA Arbeitspakete 6.5 und 6.6

Inhaltsverzeichnis

ANHANG B: BEHÄLTERDOSSIERS 214
VORWORT ZU DEN BEHÄLTERDOSSIERS DER ARBEITSPAKETE 6.5 UND 6.6
BEHÄLTERDOSSIER POLLUX 10 221
BEHÄLTERDOSSIER POLLUX 9 234
BEHÄLTERDOSSIER POLLUX 3 247
BEHÄLTERDOSSIER CASTOR [®] THTR/AVR
BEHÄLTERDOSSIER CASTOR [®] V/19269
BEHÄLTERDOSSIER CASTOR [®] V/52
BEHÄLTERDOSSIER CASTOR [®] 440/84 290
BEHÄLTERDOSSIER CASTOR [®] HAW 28
BEHÄLTERDOSSIER BSK 3
BEHÄLTERDOSSIER BSK 3-R 320
BEHÄLTERDOSSIER C-OVERPACK
BEHÄLTERDOSSIER CU1-BEHÄLTER

BEHÄLTERDOSSIER	CU2-BEHÄLTER	354
BEHÄLTERDOSSIER	KBS-3V	366
BEHÄLTERDOSSIER	BE-EL-BEHÄLTER	375
QUELLENVERZEICHN	NIS	384

Vorwort zu den Behälterdossiers der Arbeitspakete 6.5 und 6.6

Seit 2013 befasst sich die Forschungsplattform ENTRIA mit Bewertungsgrundlagen für den Vergleich unterschiedlicher Optionen zum Umgang mit den in Deutschland angefallenen, wärmeentwickelnden Reststoffen aus der friedlichen Nutzung der Kernenergie. Der Fokus der Arbeitspakete des Instituts für Werkstoffkunde (IW) lag hierbei auf der erforderlichen Handhabung der Lagerbehälter sowie dem Monitoring dieser Behälter, insbesondere im Kontext der Option Tiefenlagerung mit der Option der Rückholbarkeit.

Aus dem recht neuen Wunsch nach einer planbaren Rückholbarkeit der Behälter ergeben sich neue Forderungen und Randbedingungen für die Konzeptionierung der Lagerbehälter als Kernkomponente der technischen Barriere. International wurde bereits eine Vielzahl an unterschiedlichen Behälterkonzepten entwickelt. Diesen internationalen Konzepten liegen unterschiedliche Lagerkonzepte sowie teilweise sehr unterschiedlichen Randbedingungen und Forderungen bei der Konzeption der technischen Barriere im Rahmen der Planung der jeweiligen Lagerkonzepte zu Grunde. Hieraus resultieren sehr unterschiedliche Lösungsansätze zur praktischen Umsetzung dieser Anforderungen bei der Gestaltung der technischen Barriere. Auch wenn diese unterschiedlichen internationalen Konzepte nicht direkt auf die in Deutschland gültigen Randbedingungen angewandt werden können, so stellen sie doch eine wichtige Datenbasis für die Gestaltung eines für die in Deutschland geltenden Randbedingungen optimierten Lagerbehälters dar.

Die international, zumeist im Kontext der jeweiligen nationalen Option zum Umgang mit den radioaktiven Reststoffen, publizierten Konzepte zur Gestaltung von Lagerbehältern stellen somit einen wichtigen Bestandteil der für die Bearbeitung der beiden Arbeitsprojekte des IW erforderlichen Daten-Die unterschiedlichen basis dar. internationalen Lagerkonzepte wurden während der letzten Jahrzehnte kontinuierlich weiterentwickelt. Der Fokus der Konzepte liegt aber zumeist auf der geologischen sowie geotechnischen Barriere. Die Lagerbehälter nehmen oft nur eine Nebenrolle ein, ihre Eigenschaften werden meist am gegebenen geologischen Kontext definiert. Nicht nur der Detaillierungsgrad der unterschiedlichen Behälterkonzepte unterscheidet sich daher stark, auch der Dokumentationsgrad der Behälterkonzepte ist in großem Maße von der Bedeutung der technischen Barriere in dem jeweiligen Behälterkonzept abhängig. Als Beispiel hierfür kann das für die Lagerung im kristallinen Hartgestein in Schweden entwickelte KBS-3 Lagerkonzept genannt werden. In diesem besitzt die technische Barriere einen erheblichen Einfluss auf die dauerhafte Funktion des Lagerkonzepts. Demnach sind die Eigenschaften der Behälter in diesem Konzept sehr detailliert ausgearbeitet und die Daten in mehreren Berichten, welche fast ausschließlich die technische Barriere behandeln, dokumentiert worden. Dem gegenüber stehen beispielsweise Lagerkonzepte in Tiefenlagern im Salzstein, wie sie beispielsweise in Deutschland entwickelt worden sind. Auf die langfristige Funktion des Tiefenlagers besitzen die Behälter hier nur einen untergeordneten Einfluss. Dennoch besitzen einige dieser Konzepte, wie Beispielsweise das deutsche Pollux-Behälterkonzept, aufgrund ihrer langjährigen Entwicklungsgeschichte einen hohen Detailierungsgrad. Detailliertere Informationen zu diesen Konzepten sind hier allerdings in der Regel nicht in spezifischen Berichten zur technischen Barriere zusammengefasst, sondern auf eine Vielzahl von Berichten, beispielsweise zur chemischen Wechselwirkung der Behälter mit der Lagerumgebung, verteilt veröffentlicht.

Aus der Auswertung einer Vielzahl der internationalen Lagerkonzepte auf die spezifischen Gestaltungsdetails der darin vorgesehenen Behälter resultiert eine umfangreiche Datenbasis. Der Dokumentationsstand dieser Daten in den jeweiligen Lagerkonzepten erschwert allerdings den interdisziplinären Austausch innerhalb des ENTRIA-Verbundes, beispielsweise über unterschiedliche Gestaltungsmerkmale der Behälterkonzepte sowie die sich hieraus ergebenden Unterschiede, mit den Kollegen aus den technischen aber insbesondere auch aus den geisteswissenschaftlichen Disziplinen, erheblich. Spätestens um den Diskurs mit der Interessierten Öffentlichkeit zu ermöglichen, war es erforderlich die zusammengetragenen grundlegenden Informationen zu den einzelnen Behälterkonzepten, welche als Grundlage der weiteren Arbeiten dienten, in einer übersichtlichen, nachvollziehbaren Form zusammenzustellen.

Herausforderungen hierbei ergaben sich bei der Dokumentation der unterschiedlichen Behälterkonzepte zum einen aus der Vielzahl der unterschiedlichen Daten, welche über die unterschiedlichen Behälter zusammengetragen worden waren, zum anderen aus dem unterschiedlichen Background sowie dem sehr heterogenen Informationsbedürfnis der unterschiedlichen Disziplinen. Um diesen Herausforderung gerecht werden zu können wurde beschlossen, die grundlegenden Daten der unterschiedlichen Behälterkonzepte in Form von Behälterdossiers zusammenzustellen. Die zusammengetragenen Informationen werden zusätzlich mit den betreffenden Textquellen hinterlegt.

Durch einen zweiteiligen Aufbau der Behälterdossiers wird es möglich, dem unterschiedlichen Informationsbedürfnis der Nutzer der Dossiers gerecht zu werden. Im ersten Teil jedes Dossiers sind die elementaren Eigenschaften der einzelnen Behälter zusammengefasst. Hier werden beispielsweise ihr grundsätzlicher Aufbau und das Inventar beschrieben. Des Weiteren wird das zugrundeliegende Lagerkonzept sowie bei Tiefenlagerbehältern auch das zugehörige Wirtsgestein benannt. Dieser erste Teil ermöglicht es, beispielsweise der interessierten Öffentlichkeit, sich einen schnellen Überblick über die unterschiedlichen Lagerbehälter zu verschaffen. Im anschließenden Teil der Dossiers wird der Aufbau der Behälter detaillierter beschrieben. Da insbesondere die Eigenschaften der Behälterwerkstoffe einen großen Einfluss auf die Wechselwirkung der Behälter mit dem Lagerumfeld besitzen, stellt die Beschreibung der Eigenschaften der vorgesehenen Behälterwerkstoffe einen elementaren Bestandteil der Behälterdossiers dar. Die Dossiers ermöglichen somit einen schnelle Überblick und auch bereits einen Vergleich einzelner Aspekte unterschiedlicher Behälterkonzepte.

Die Dossiers fassen die wichtigsten Gestaltungsmerkmale der Behälter sowie gegebenenfalls einige herausragende Gestaltungsdetails der unterschiedlichen Behälter zusammen. Durch den limitierten Umfang der Dossiers ist es allerdings nicht möglich und mit dem Ziel der Übersichtlichkeit und der Vergleichbarkeit unterschiedlicher Behälter auch nicht sinnvoll, alle gestalterischen Details einzelner besonders detailliert ausgearbeiteter Behälterkonzepte in den Dossiers darzustellen. Durch die an die Dossiers angebundene Quellensammlung wird dem interessierten Nutzer der Einstieg in die weiterführende Recherche erleichtert. Hierdurch kann die Diskrepanz zwischen der möglichen Informationsdichte der Dossiers und dem Informationsbedürfnis der Nutzer teilweise aufgelöst werden.

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier Pollux 10

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

222 – Anhang B

	Aufbau d	es Behälters				
Der Pollux-Beh	Der Pollux-Behälter besitzt einen zylindrischen Aufbau mit einem Durchmesser von					
etwa 1,6 m und des Behälters b	des Behälters besitzt er angeschraubte Tragzanfen aus Edelstabl [14] [15]					
des Denaiters D	Material Beschreibung					
Tragkorb	Edelstahl	Der Tragkorb bes nahme von Bren Blech beplankt u schichtet.	sitzt 5 Büchsen zur Auf- nstäben. Er ist mit Bor- ind z.T. mit Kupfer be-			
Innenbehäl- ter	Feinkornstahl 160 mm	Der Innenbehälte schluss der Radio verschraubten Pr schweißten Sekun	r dient dem dichten Ein- nuklide. Er ist mit einem rimär- und einem ver- därdeckel verschlossen.			
Abschirmbe- hälter	Gusseisen mit Kugel- graphit 270 mm	Der Abschirmbeh mung von Neutro lung, hierzu sind in Polyethylen einge er mit einem vers	älter dient der Abschir- onen- und Gammastrah- n ihm Moderatorstäbe aus elassen. Verschlossen ist chraubten Deckel.			
Besonder- heiten	Besonder- Die hohe thermische Belastbarkeit des Steinsalzes und seine gute Wärmeleitfähigkeit ermöglichen eine hohe Behälterbeladung.					
	Inv	ventar				
Beschrei-	Das Inventar eines Pollu	ix 10 besteht aus d	en vereinzelten Brenn-			
bung	zehn Brennelementen ei Insgesamt beträgt das I	ines Druckwasserre nventar bis zu 5,2	eaktors. TSM [14, S. 47]			
max. Wärmeleis- tung	18,2 KW [1, S. 16] (MOX, 40 a Abklinglage- rung)	max. Aktivität	83,2 *10 ¹⁵ Bq [1, S. 16] (MOX, 40 a Abklingla- gerung)			
	Konz	eptstand				
Konzeptstand Der Pollux 10 ist der Einlagerungsbehälter welcher für das deutsche Referenzkon- zept entwickelt wurde. Von den Behältern wurden bereits einige Prototypen gebaut. Auch die Einlagerungsmaschine zum Transport und zum Ablegen der Behälter auf der Sohle der Einlagerungsstrecke wurde bereits konstruiert, gebaut und in einem Mock-Up die prinzipielle Eignung der Einlagerungsvariante demonstriert. In diversen Studien wurde bereits die Entwicklung des Behälters im Endlagersystem untersucht. Einige Aspekte, wie beispielsweise die Möglichkeit einer Lochfraßkorrosion an dem Behälter unter Endlagerbedingungen können jedoch auf Basis der derzeitigen Da- tenlage noch nicht abschließend bewertet werden.						

Pollux 10 Aufbau Pollux

Der prinzipielle Aufbau des Pollux-Behälters kann der nachfolgenden Zeichnung entnommen werden.

Der Pollux 10 ist der Referenzbehälter der Pollux-Behälterfamilie. Er besitzt einen Tragkorb zur Aufnahme der vereinzelten Brennstäbe von 10 DWR-Brennelementen. Es sollen weitere Varianten mit modifiziertem Tragkorb abgeleitet werden, die Brennstäbe von 30 SWR-Brennelementen oder 25 WWER-Brennelementen aufnehmen können. Insgesamt wird im Pollux-Konzept von einer Gesamtzahl von 2120 Behältern ausgegangen welche sich wie folgt aufteilen:

DWR: 1398 Behälter; SWR: 520 Behälter; WWER 202 Behälter [34, S. 170]

Länge	5517 mm	Gebindevo-	10,55 m³	Innenvolu-	ca. 1,75 m ³
	[34,	lumen	[34,	men	[53]
	S. 208]		S. 208]		
Durch-	1560 mm	Gebinde-	65 t	Masse In-	5,17 t
messer	[34,	masse	[34,	ventar	[14,
	S. 2081		S. 2081		S. 471

	Material	Masse	Anmerkung
Tragkorb	Edelstahl 1.4541, mit Bor-Blech beplankt, z.T. Cu beschichtet [34, S. 170]	2.100 kg davon 1% Bor [34, S. 170]	
Innenbehälter	Stahl 15MnNi6.3 (1.6210) 160 mm Wandstärke [34, S. 170], [53, S. 15]	20.620 kg [34, S. 170]	
- Primärdeckel	Stahl 15MnNi6.3 (1.6210) [34, S. 170], [53, S. 4] ca.250 mm Wandstärke		verschraubt
- Sekundärde- ckel	Stahl 15MnNi6.3 (1.6210) [34, S. 170], [53, S. 4] ca. 75 mm Wandstärke		verschweißt
-Moderator Primärdeckel	Graphit, mit Edelstahlblech um- mantelt	250 kg [34, S. 189], [53, S. 15]	
Abschirmbehäl- ter	GGG40 (0.7040 oder EN-GJS-400-15U) 270 mm Wandstärke [53, S. 15]	ca. 35.000 kg [34, S. 170, 208]	
Primärdeckel	GGG40 (0.7040 oder EN-GJS-400-15U) 150 mm Wandstärke [34, S. 208], [53, S. 15]		verschraubt
Abschirmung	Polyethylen (Lupolen, Gur, Hostalen) ca. 90 mm [34, S. 181ff], [53, S. 11]	1.540 kg [34, S. 181ff]	
Tragzapfen	Edelstahl (X5CrNi13.4, 1.4313) [34, S. 171]		
Kühlrippen	Aluminium EN AW6060 [34, S. 170,208]		
Dämpfungsele- mente	Aluminium [34, S. 170]		

	Po	ollux 10			
	Inventa	r der Behälte	er		
HAW-Inventar					
Brennelementtyp	Anzahl	Masse SM		Anmerkung	
Druckwasserreak- tor	10 [34, S. 207]	10 X 0,517 t = 5,17 t [14, S. 47]		Wärmeleistung und Aktivität in	
Siedewasserreak- tor	30 [34, S. 207]	30 x 0,173 t = 5,19 t [14, S. 47]		Abhängigkeit vom Abbrand können	
Wasser-Wasser Energie-Reaktor	25 [34, S. 207]	25 x 0,1736 t = 2,875 [14, S. 47]	t	der Tabelle im An- hang entnommen werden	
weiteres Inventar					
Wasserinventar im Behälter	Wasserinventar im Behälter (extrem konservative Abschätzung, keine Konditionierung de- fekter Brennstäbe), realistische Abschätzung 0,06 kg pro Behälter[34, S. 190]				
Werkstoffe Behälte	rumfeld				
Einlagerungs- variante	Die Behälter w abgelegt. Im Anschluss v zurückgebaut nem Salzgrus cken erfolgt m [15], [53]	verden auf der Sohle der werden die Gleise der Ei und der Hohlraum um d verfüllt. Der Verschluss ittels Abdichtbauwerken	Einla nlage ie Be der E aus	agerungsstrecken erungsmaschine hälter mit trocke- inlagerungsstre- Salzbeton. [14],	
	Material		Ann	nerkung	
Verfüllung	naturtrockener ca. 0,02% Res Anfangsporosi [14], [15], [53	r Salzgrus ttfeuchte, tät 30-40 % 3]	Dur Resi geb wirc sion fügt beg [14]	ch die geringe tfeuchte des ein- rachten Versatzes d die für die Korro- n der Behälter ver- pare Wassermenge renzt.], [15], [53]	

Sonstige Informationen	
Gesamtinventar	10.448 t, insgesamt 2.120 BE-Pollux Behälter (alle Bauarten), hinzu kommen ca. 900 Pollux 9 sowie 511 CASTOR [®] Behälter mit BE aus Versuchsreaktoren [1, S. 69], [15, S. 16]
Behälterstandzeit nach Ausle- gung	>500 Jahre (Handhabbarkeit bei Bergung) [8], [34, S. 16]
Standzeit (bei Flächenkorro- sion)	>1000 Jahre (Lösungsabhängig, sehr geringe Restfeuchte im Versatz) [34, S. 211,224,234]
Standzeit (bei Lochfraßkorro- sion)	Noch nicht untersucht [34, S. 212,224]
Wasserstoffversprödung	Bei der Auslegung berücksichtigt, bisher für La- gerung in Salz nicht untersucht. Behältermate- rialien und Hüllrohre könnten betroffen sein [34, S. 234,526]
Sicherheit gegen Handha- bungsunfälle	Auslegung gemäß Verkehrsrecht. Zulassung gegen Absturz, Handhabung nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Do- sisleistung nicht relevant. [34, S. 605]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gas- bildung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungs- defizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 2 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach >500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behälter	Keine nennenswerte Verlagerung infolge nur geringer Dichteunterschiede 2m / 1 Millionen Jahre [34, S. 837ff], [89]

Pollux 10						
Werkstoffkennwerte						
Stahl 15MnNi6.	3 (1.6210)					
Verwendet für:	Innenbehä	ilter und zugehö	örige Decke	I		
Werkstoff- beschreibung	Bei dem Sta Stahl mit ei	ahl 1.6210 hande ner guten Schwei	lt es sich um ißeignung.	einen niedrig	legierten	
Masse ges.	20.620 kg [34, S. 170]	E-Modul	210 GPa [90, S. 8]	Schmelz- punkt	- °C	
Dichte	7,85 kg/dm ³ [90, S. 8]	Wärme- leitfähigkeit	39,6 W/m*K [91, S. 232]	Ausdeh- nungs- koeffi- zient	11,5*10 ⁻ ⁶ /K [91, S. 232]	
0,2 % Dehngrenze RT	300 MPa [90, S. 8]					
Kompressi- onsmodul	175 GPa (berech- net)	Schubmodul	80,8 GPa (berech- net)	Poisson- zahl	0,3 [90, S. 8]	
Legierungselen	nente in %:	[91, S. 232]				
Kohlenstoff C	0,155	Silicium Si	0,29	Mangan Mn	1,44	
Phosphor P	0,008	Schwefel S	0,004	Alumi- nium Al	0,036	
Chrom Cr	0,06	Kupfer Cu	0,06	Molybdän Mo	0,04	
Nickel Ni	0,73	Vanadium V	0,003			

Gusseisen mit I	Kugelgraphit	: GGG40 (0.704	0 oder EN-0	GJS-400-15)			
Verwendet für:	Außenbehä	Außenbehälter und zugehöriger Deckel [34, S. 208]					
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bil- den sich die ausgeschiedenen Graphitphasen in Form kugeliger Ausscheidungen aus und es entsteht ein überwiegend ferritisches Gefüge welches dem Werkstoff seine duktilen, stahlähnlichen Ei- genschaften verleiht.						
Masse ges.	ca. 35.000 kg [34, S. 170]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]		
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärmeleitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2- 13,4* 10 ⁻⁶ /K [35, S. 65]		
0,2 % Dehngrenze RT	250 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehngrenze 150°C	210 MPa [35, S. 57] (abh. von der Mate- rialstärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Mate- rialstärke)		
Kompressi- onsmodul	125,2 GPa (berech- net)	Schubmodul	66,3 GPa (berech- net)	Poisson- zahl	0,275 [33, S. 32]		
Legierungselen	nente in %:	[33]					
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2		
Kupfer Cu	0,15-0,75						

	Pollux 10						
	Werkstoffkennwerte						
Edelstahl 1.4541	Edelstahl 1.4541						
Verwendet für:	Tragkorb						
Werkstoff- beschreibung	Beim 1.4541 handelt es sich um einen Rost- und säurebestän- digen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für einen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit.						
Masse ges.	2.100 kg [34, S. 170]	E-Modul	200 GPa [92]	Schmelz- punkt	> 1400 °C [92]		
Dichte	7,9 kg/dm ³ [92]	Wärmeleitfä- higkeit	15 W/m*K [92]	Ausdeh- nungs- koeffizient	17*10 ⁻ ⁶ /K [92]		
0,2 % Dehngrenze RT	200 MPa [93]	0,2 % Dehngrenze 150°C	167 MPa [93]	0,2 % Dehn- grenze 250°C	147 MPa [93]		
Kompressions- modul	166,7 GPa (berech- net)	Schubmodul	76,9 GPa (berech- net)	Poisson- zahl	0,3 [92]		
Legierungselemente in %: [92], [93]							
Kohlenstoff C	<= 0,08	Silicium Si	<= 1,00	Mangan Mn	<= 2		
Phosphor P	<=0,045	Chrom Cr	17-19	Molybdän Mo	4,0- 5,0		
Titan Ti	<=1	Schwefel S	<=0,015	Nickel Ni	9,0- 12,0		

Edelstahl (X5CrNi13.4, 1.4313)						
Verwendet für:	Tragzapfe	Tragzapfen				
Werkstoff- beschreibung	Bei dem E gehend ko genschafte	Bei dem Edelstahl 1.4313 handelt es sich um einen weitest- gehend korrosionsresistenten Stahl der gute mechanische Ei- genschaften aufweist.				
Masse ges.	ca. 150 kg (berech- net)	E-Modul	206 GPa [94]	Schmelz- punkt	-	
Dichte	7,7 kg/dm³ [94]	Wärmeleit- fähigkeit	26 W/m*K [94]	Ausdeh- nungs- koeffizient	11* 10 ⁻⁶ /K [94]	
0,2 % Dehngrenze RT	560 MPa [94]					
Kompressions- modul	162 GPa (berech- net)	Schubmo- dul	80 GPa (berechnet)	Poisson- zahl	0,288 [94]	
Legierungselemente in %: [94]						
Kohlenstoff C	0,04	Chrom Cr	13	Molybdän Mo	0,5	
Nickel Ni	4	Phosphor P	0,02	Silicium Si	0,4	
Schwefel S	0,001					

		Pollux 1	.0			
	Werks	stoffken	nwerte			
Aluminium EN AW6060						
Verwendet für:	Kühlrippen					
Werkstoff- beschrei- bung	Beim EN AW6060 handelt es sich um eine aushärtbare Aluminium- legierung mit guter Wärmeleitfähigkeit, welche sich gut für Schweißkonstruktionen und zum Strangpressen eignet. Ihre Haupt- Legierungselemente sind Magnesium und Silizium.					
Masse ges.	nicht veröffent- licht	E-Modul	69,5 GPa [95, S. 6]	Schmelz- punkt	655 ℃ [95, S. 6]	
Dichte	2,7 kg/dm ³ [95, S. 6]	Wärme- leitfähig- keit	209 W/m*K [95, S. 6]	Ausdeh- nungs- koeffi- zient	23,4* 10 ⁻⁶ /K [95, S. 6]	
0,2 % Dehngrenze RT	65-160 MPa [95, S. 6]					
Kompressi- onsmodul	68,13 GPa (berechnet)	Schubmo- dul	26,13 GPa (berechnet)	Poisson- zahl	0,33 [95, S. 6]	
Legierungsele	emente in %: [95	, S. 6]	•			
Silizium Si	0,3-0,6	Eisen Fe	0,1-0,3	Kupfer Cu	0,1	
Mangan Mn	0,1	Magne- sium Mg	0,35-0,6	Chrom Cr	0,05	
Zinn Zn	0,15	Titan Ti	0,1			
Polyethylen (Lupolen, Gur, Ho	stalen, PE-HI	D)			
Verwendet für:	Moderatorstäbe	, Abschirmpl	atte			
Werkstoff- beschrei- bung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halb- kristallines (normalerweise zu 70 %-80 %), weißliches, halbdurch- sichtiges Thermoplast. Es weist, verglichen mit Polyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemischen Substanzen höhere Temperaturfestigkeit auf. Die mechanischen Ei- genschaften von PE sind verglichen mit anderen Werkstoffen, wel- che bei Lagerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Gitteratomen abgebremst werden und so nachfolgend wirksamer absorbiert werden können.					
Masse ges.	1.540 kg [34, S. 181ff]	E-Modul	1,15 GPa [82]	Schmelz- punkt	130- 145 °C	

Dichte	0,95 kg/dm ³ Bei 20 °C	Wärme- leitfähig-	0,42 W/m K	Ausdeh- nungs-	100 - 200 *10 ⁻⁶ K ⁻¹		
	[82]	keit	[82]	koeffizient	[82]		
Dehngrenze RT	27 MPa [82]						
Kompres- sions-modul	7,9-10 GPa (berechnet)	Schub- modul	0,32- 0,41 GPa (berech- net)	Poisson- zahl	0,46 [83]		
Graphit							
Verwendet für:	Abschirmplatte	Primärbehä	ilter				
Werkstoff- beschrei- bung	Graphit ist eine Modifikation des Kohlenstoffs. Die mechanischen Ei- genschaften des Graphits tragen nicht nennenswert zur Stabilität eines Lagerbehälters bei, jedoch eignet sich Graphit, ähnlich wie Polyethylen, gut zur Abschirmung von Neutronenstrahlung.						
Masse ges.	250 kg [34, S. 189ff], [53, S. 15]	E-Modul	4,8 GPa [85, S. 1]	Sublimati- onstempe- ratur	3370 °C [85, S. 1]		
Dichte	2,267 kg/dm ³ [85, S. 1]	Wärme- leitfähig- keit	155 W/m*K [85, S. 1]	Ausdeh- nungs- koeffizient	2*10 ⁻⁶ 1/K [85, S. 1]		
0,2 % Dehngrenze RT	14-34 MPa [86, S. 16]						
Kompressi- onsmodul	33 GPa [85, S. 1]	Schub- modul	1,62 GPa (berech- net)	Poisson- zahl	0,48 [85, S. 1]		

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier Pollux 9

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungssystem und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

	Au	fbau des l	Behälters				
Der Pollux-Behält	er besitzt einen	zylindrisch	nen Aufbau r	nit einem Durchmesser von			
etwa 1,6 m und ei	ner Länge von 5	5,5 m. Bela	den wiegt er	etwa 65 t. Zur Handhabung			
des Behälters bes	itzt er angeschr	, aubte Traq	zapfen aus E	delstahl. [14], [15]			
	Material	Beschrei	bung				
Tragkorb	Edelstahl	Analog z	um Pollux 1	0 besitzt der Tragkorb 3			
5		Schächte	zur Aufnahm	ne von je drei HAW Kokillen.			
		Er kann g	gf. mit Bor-E	Blech beplankt und mit Kup-			
		fer beschi	chtet werder	1.			
Innenbehälter	Feinkornstahl	Der Inner	nbehälter die	ent dem dichten Einschluss			
	160 mm	der Radio	nuklide. Er i	st mit einem verschraubten			
		Primär- u	nd einem ver	schweißten Sekundärdeckel			
		verschloss	sen.				
Abschirmbe-	Gusseisen	Der Absch	nirmbehälter	dient der Abschirmung von			
hälter	mit Kugel-	Neutrone	n- und Gami	mastrahlung, hierzu sind in			
	graphit	ihm Moderatorstäbe aus Polyethylen eingelassen.					
	270 mm	Verschlossen ist er mit einem verschraubten De-					
		ckel.					
Besonderhei-	Die hohe thermische Belastbarkeit des Steinsalzes und seine gute						
ten Warmeleitfahigkeit ermöglichen eine hohe Behalterbeladung.							
Inventar							
	Das Inventar e	eines Pollux	9 besteht a	us neun mit verglasten WA-			
Decelorations	Abrallen beruilt	ten Des Casa		u Kalillan hatui at atuus			
Beschreibung	2 600 kg high	Das Gesal	nigewicht de	A ka auf dia yarglastan Ab			
			en etwa 2.90	o ky auf die verglasten AD-			
may	raile. [07, 3. 9	<u>1 II.]</u>	may	ca 45*10 ¹⁵ Bo			
Wärmeleistung		1 ff]	Aktivität	$[67 \ S \ 91 \ ff \]$			
Warmereistung	$(40 = \Delta hkling)$	lagerung)	ARtivitat	(40 a Abklinglagerung)			
	(40 d Abking	Konzent	stand	(40 a Abkinglagerang)			
Der Pollux 9 ist de	er Finlagerungsh	ehälter we	lcher für das	deutsche Referenzkonzent			
entwickelt wurde	Von den Behält	ern wurde	n hereits eini	ae Prototypen gebaut Auch			
die Einlagerungsm	aschine zum Tr	ansport un	d zum Ablea	en der Behälter auf der			
Sohle der Einlager	runasstrecke wu	rde bereits	konstruiert.	gebaut und in einem			
Mock-Up die prinz	ipielle Eignung	der Einlage	rungsvariant	e demonstriert. In diversen			
Studien wurde bei	reits die Entwick	klung des E	sehälters im l	Endlagersystem untersucht.			
Einige Aspekte, w	ie beispielsweise	e die Möglie	chkeit einer l	ochfraßkorrosion an dem			
Behälter unter En	dlagerbedingung	gen könner	n jedoch auf	Basis der derzeitigen Da-			
tenlage noch nicht	t abschließend b	pewertet w	erden.				
-							

Pollux 9

Aufbau Pollux

Der prinzipielle Aufbau des Pollux-Behälters kann der nachfolgenden Zeichnung entnommen werden.

Der Pollux 9 ist die Modifikation des Referenzbehälters Pollux 10 der Pollux-Behälterfamilie. Er besitzt bei vergleichbaren Abmessungen zum Pollux 10 einen Tragkorb zur Aufnahme von 9 HAW-Kokillen. Insgesamt wird im Pollux-Konzept von einer Gesamtzahl von etwa 915 Behältern ausgegangen welche sich wie folgt aufteilen: CSD-V: 420 Behälter; CSD-B: 35 Behälter; CSD-C 460 Behälter. [1, S. 27ff], [34, S. 170]

Länge	5517	Gebindevolu-	10,55	Innenvolu-	ca. 1,75 m³
	mm	men	m ³	men	[53]
	[34,		[34,		
	S. 208]		S. 208]		
Durchmes-	1560	Gebinde-	65 t	Masse In-	5,17 t
ser	mm	masse	[34,	ventar	[14, S. 47]
	[34,		S. 208]		
	S. 2081		-		

	Werkstoffe Behälter							
	Material	Masse	Anmerk- ung					
Tragkorb	Edelstahl 1.4541, mit Bor-Blech be- plankt, z.T. Cu beschichtet [34, S. 170]	2.100 kg da- von 1% Bor [34, S. 170]						
Innenbehälter	Stahl 15MnNi6.3 (1.6210) 160 mm Wandstärke [34, S. 170], [53, S. 15]	20.620 kg [34, S. 170]						
- Primärdeckel	Stahl 15MnNi6.3 (1.6210) [34, S. 170], [53, S. 4] ca. 250 mm Wandstärke		verschraubt					
- Sekundär- deckel	Stahl 15MnNi6.3 (1.6210) [34, S. 170], [53, S. 4] ca. 75 mm Wandstärke		verschweißt					
- Moderator Primärdeckel	Graphit, mit Edelstahlblech ummantelt	250 kg [34, S. 189], [53, S. 15]						
Abschirmbe- hälter	GGG40 (0.7040 oder EN-GJS-400-15U) 270 mm Wandstärke [53, S. 15]	ca. 35.000 kg [34, S. 170,						
- Primärdeckel	GGG40 (0.7040 oder EN-GJS-400-15U) 150 mm Wandstärke [34, S. 208], [53, S. 15]	208]	verschraubt					
Abschirmung	Polyethylen (Lupolen, Gur, Hostalen) ca. 90 mm [34, S. 181ff], [53, S. 11]	1.540 kg [34, S. 181ff]						
Tragzapfen	Edelstahl (X5CrNi13.4, 1.4313) [34, S. 171]							
Kühlrippen	Aluminium EN AW6060 [34, S. 170,208]							
Dämpfungs- elemente	Aluminium [34, S. 170]							

Pollux 9								
Inventar der Behälter								
HAW-Inventar								
Abfalltyp	Anzahl	Masse SM	Anmerkung					
HAW-Kokillen	9 [34, S. 207]	9 X 0,32 t = 2,88 t [14, S. 47]						
weiteres Inver	ntar							
Wasserinven- tar im Behälter	18 kg (extrem konservative Abschätzung, keine Konditionierung defekter Brennstäbe), realistische Abschätzung 0,06 kg pro Behälter [34, S. 190]							
Werkstoffe Bel	hälterumfeld							
Einlage- rungs- variante	Die Behälter werden auf der Sohle der Einlagerungsstrecken abge- legt. Im Anschluss werden die Gleise der Einlagerungsmaschine zurück- gebaut und der Hohlraum um die Behälter mit trockenem Salzgrus verfüllt. Der Verschluss der Einlagerungsstrecken erfolgt mittels Abdichthauwerken aus Salzbeton [14] [15]							
	Material		Anmerkung					
Verfüllung	naturtrockene ca. 0,02 % R Anfangsporos [14], [15], [5	er Salzgrus estfeuchte, ität 30-40 % i3]	Durch die geringe Restfeuchte des eingebrachten Versatzes wird die für die Korrosion der Behälter verfügbare Wasser- menge begrenzt. [14], [15], [53]					

Sonstige Informationen	
Gesamtinventar	10.448 t, insgesamt 2.120 BE-Pollux Behälter (alle Bauarten), hinzu kommen ca. 900 Pollux 9 sowie 511 CASTOR [®] Behälter mit BE aus Versuchsreaktoren [1, S. 69], [15, S. 16]
Behälterstandzeit nach Aus- legung	>500 Jahre (Handhabbarkeit bei Bergung) [8], [34, S. 16]
Standzeit (bei Flächenkorrosion)	>1000 Jahre (Lösungsabhängig, sehr geringe Restfeuchte im Versatz) [34, S. 211,224,234]
Standzeit (bei Lochfraßkorrosion)	Noch nicht untersucht [34, S. 212,224]
Wasserstoffversprödung	Bei der Auslegung berücksichtigt, bisher für Lage- rung in Salz nicht untersucht. Behältermaterialien und Hüllrohre könnten betroffen sein [34, S. 234,526]
Sicherheit gegen Handhabungsunfälle	Auslegung gemäß Verkehrsrecht. Zulassung ge- gen Absturz, Handhabung nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Do- sisleistung nicht relevant. [34, S. 605]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 2 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach >500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behälter	Keine nennenswerte Verlagerung infolge nur ge- ringer Dichteunterschiede 2m / 1 Millionen Jahre [34, S. 837ff], [89]

Pollux 9									
	Wei	rkstoffke	nnwer	te					
Stahl 15MnNi6.	3 (1.6210)								
Verwendet für:	Innenbehä	Innenbehälter und zugehörige Deckel							
Werkstoff- beschreibung	Bei dem Sta Stahl mit ei	ahl 1.6210 hande ner guten Schwei	lt es sich um ißeignung.	n einen niedrig	legierten				
Masse ges.	20.620 kg [34, S. 170]	E-Modul	210 GPa [90, S. 8]	Schmelz- punkt	-				
Dichte	7,85 kg/dm³ [90, S. 8]	Wärme-leit- fähigkeit	39,6 W/m*K [91, S. 232]	Ausdeh- nungs- koeffizient	11,5*10 ⁻⁶ /K [91, S. 232]				
0,2 % Dehngrenze RT	300 MPa [90, S. 8]								
Kompressi- onsmodul	175 GPa (berech- net)	Schubmodul	80,8 GPa (berech- net)	Poisson- zahl	0,3 [90, S. 8]				
Legierungselen	nente in %:	[91, S. 232]							
Kohlenstoff C	0,155	Silicium Si	0,29	Mangan Mn	1,44				
Phosphor P	0,008	Schwefel S	0,004	Aluminium Al	0,036				
Chrom Cr	0,06	Kupfer Cu	0,06	Molybdän Mo	0,04				
Nickel Ni	0,73	Vanadium V	0,003						

Gusseisen mit Kugelgraphit GGG40 (0.7040 oder EN-GJS-400-15)								
Verwendet für:	Außenbehälter und zugehöriger Deckel [34, S. 208]							
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bil- den sich die ausgeschiedenen Graphitphasen in Form kugeliger Ausscheidungen aus und es entsteht ein überwiegend ferritisches Gefüge welches dem Werkstoff seine duktilen, stahlähnlichen Ei- genschaften verleiht.							
Masse ges.	ca. 35.000 kg [34, S. 170]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]			
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärmeleitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2- 13,4*10 ⁻ ⁶ /K [35, S. 65]			
0,2 % Dehngrenze RT	250 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehngrenze 150°C	210 MPa [35, S. 57] (abh. von der Mate- rialstärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Mate- rialstärke)			
Kompressi- onsmodul	125,2 GPa (berech- net) Schubmodul 66,3 GPa (berech- net) net) Notestary 10,275 (berech- net) S. 32]							
Legierungselen	nente in %:	[33]						
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2			
Kupfer Cu	0,15-0,75							

Pollux 9								
Werkstoffkennwerte								
Edelstahl 1.4541								
Verwendet für:	Tragkorb							
Werkstoff- beschrei- bung	Beim 1.4541 handelt es sich um einen Rost- und säurebeständi- gen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für ei- nen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit.							
Masse ges.	2.100 kg [34, S. 170]	kg E-Modul 200 Schmelz- >14 GPa punkt [92]				>14 [92]	00 °C	
Dichte	7,9 kg/dm³ [92]	Wa kei	armeleitfähig- it	15 W/m*K [92]	Ausdeh- nungs- koeffizient		17*10 ⁻⁶ /K [92]	
0,2 % Dehngrenze RT	200 MPa [93]	MPa 0,2 % 167 0,2 % 147 N Dehngrenze 150°C [93] [93] 0,2 % (93] 0,2 % (93] 0,2 % (93] 0,2 % (93] 0,2 % (93] 0,2 % (93] 0,				MPa		
Kompressi- onsmodul	166,7 GP (berechne	a et)	Schubmodul	76,9 GPa (berechn	a iet)	Poissoi zahl	1-	0,3 [92]
Legierungselemente in %: [92], [93]								
Kohlenstoff C	<= 0,08		Silicium Si	<= 1,00		Manga Mn	n	<=2
Phosphor P	<=0,045		Chrom Cr	17-19		Molybd Mo	än	4,0- 5,0
Titan Ti	<=1		Schwefel S	<=0,015	5	Nickel	Ni	9,0- 12,0

Edelstahl (X5CrNi13.4, 1.4313)						
Verwendet für:	Tragzapf	en				
Werkstoff- beschreibung	Bei dem E hend korr schaften a	delstahl 1.4313 osionsresistent aufweist.	3 handelt es si en Stahl der g	ch um einen w ute mechanisc	veitestge- he Eigen-	
Masse ges.	ca. 150 kg (berech- net)	E-Modul	206 GPa [94]	Schmelz- punkt	- °C	
Dichte	7,7 kg/dm ³ [94]	Wärmeleit- fähigkeit	26 W/m*K [94]	Ausdeh- nungs- koeffizient	11*10 ⁻⁶ /K [94]	
0,2 % Dehngrenze RT	560 MPa [94]					
Kompressions- modul	162 GPa (berech- net)	Schubmo- dul	80 GPa (berechnet)	Poisson- zahl	0,288 [94]	
Legierungselemente in %: [94]						
Kohlenstoff C	0,04	Chrom Cr	13	Molybdän Mo	0,5	
Nickel Ni	4	Phosphor P	0,02	Silicium Si	0,4	
Schwefel S	0,001					
	Pollux 9					
----------------------------	--	---	--	--	---	
	Werl	kstoffken	nwert	е		
Aluminium EN A	W6060					
Verwendet für:	Kühlrippen					
Werkstoff- beschreibung	Beim EN AW umlegierung Schweißkons Haupt-Legier	6060 handelt es s mit guter Wärme struktionen und zu rungselemente sir	sich um eine eleitfähigkei um Strangp nd Magnesiu	e aushärtbare t, welche sich ressen eignet. ım und Siliziur	Alumini- gut für Ihre n.	
Masse ges.	nicht ver- öffentlicht	E-Modul	69,5 GPa [95, S. 6]	Schmelz- punkt	655 ℃ [95, S. 6]	
Dichte	2,7 kg/dm³ [95, S. 6]	Wärmeleitfä- higkeit	209 W/m*K [95, S. 6]	Ausdeh- nungs- koeffizient	23,4*10 ⁻⁶ /K [95, S. 6]	
0,2 % Dehngrenze RT	65-160 MPa [95, S. 6]		26.42		0.00	
Kompressions- modul	68,13 GPa (berech- net)	Schubmodul	GPa (berech- net)	Poisson- zahl	0,33 [95, S. 6]	
Legierungselem	ente in %: [95, S. 6]				
Silizium Si	0,3-0,6	Eisen Fe	0,1-0,3	Kupfer Cu	0,1	
Mangan Mn	0,1	Magnesium Mg	0,35-0,6	Chrom Cr	0,05	
Zinn Zn	0,15	Titan Ti	0,1			
Polyethylen (Lu	polen, Gur, H	lostalen, PE-HD)			
Verwendet für:	Moderators	täbe, Abschirm	platte			
Werkstoff- beschreibung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halb- durchsichtiges Thermoplast. Es weist, verglichen mit Polyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemi- schen Substanzen höhere Temperaturfestigkeit auf. Die mechani- schen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei Lagerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Gitterato- men abgebremst werden und so nachfolgend wirksamer absor- biert werden können.					

Masse ges.	1.540 kg [34, S. 181ff]	E-Modul	1,15 GPa [82]	Schmelz- punkt	130- 145 °C	
Dichte	0,95 Kg/dm ³ Bei 20 °C [82]	Wärme-leit- fähigkeit	0,42 W/m K [82]	Ausdeh- nungs- koeffizient	100 - 200 *10 ⁻⁶ K ⁻¹ [82]	
Dehngrenze RT	27 MPa [82]					
Kompressi- onsmodul	7,9-10 GPa (berechnet)	Schubmodul	0,32- 0,41 GPa (berech- net)	Poisson- zahl	0,46 [83]	
Graphit						
Verwendet für:	Abschirmplatte Primärbehälter					
Werkstoff- beschrei- bung	Graphit ist eine Eigenschaften o eines Lagerbeh Polyethylen, gu	Graphit ist eine Modifikation des Kohlenstoffs. Die mechanischen Eigenschaften des Graphits tragen nicht nennenswert zur Stabilität eines Lagerbehälters bei, jedoch eignet sich Graphit, ähnlich wie Polyethylen, gut zur Abschirmung von Neutronenstrahlung.				
Masse ges.	250 kg [34, S. 189ff], [53, S. 15]	E-Modul	4,8 GPa [85, S. 1]	Sublimati- onstempe- ratur	3370 °C [85, S. 1]	
Dichte	2,267 kg/dm ³ [85, S. 1]	Wärmeleit- fähigkeit	155 W/m*K [85, S. 1]	Ausdeh- nungs- koeffizient	2*10 ⁻⁶ 1/K [85, S. 1]	
0,2 % Dehngrenze RT	14-34 MPa [86, S. 16]					
Kompressi- onsmodul	33 GPa [85, S. 1]	Schubmodul	1,62 GPa (berech- net)	Poisson- zahl	0,48 [85, S. 1]	

Behälterdossier Pollux 3

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Deutschland

GNS / DBE

Tonstein

Strecke

ca. 40 to

5,46 m

1,2 m ca. 7.070

Behälter

Pollux

BFS

Aufbau des Behälters

Der Pollux-Behälter besitzt einen zylindrischen Aufbau mit einem Durchmesser von etwa 1,2 m und einer Länge von 5,5 m. Beladen wiegt er etwa 40 t. Zur Handhabung des Behälters besitzt er angeschraubte Tragzapfen aus Edelstahl. [14], [15], [53], [96]

	Material Beschreibung				
Tragkorb	Edelstahl	Der Tragkorb besi nahme von Brenns	tzt Büchsen zur Auf- stäben. Er ist mit Bor-		
		Blech beplankt und z.T. mit Kupfer be- schichtet.			
Innenbehälter	Feinkornstahl	Der Innenbehälter dient dem dichten Ein- schluss der Radionuklide. Er ist mit einem verschraubten Primär- und einem ver- schweißten Sekundärdeckel verschlossen.			
Abschirmbehälter	Gusseisen mit Kugelgraphit	Der Abschirmbehälter dient der Abschir- mung von Neutronen- und Gammastrah- lung, hierzu sind in ihm Moderatorstäbe aus Polyethylen eingelassen. Verschlossen ist er mit einem verschraubten Deckel.			
Besonderheiten	Beim Pollux 3 handelt es sich um einen generischen Behäl- ter, eine detaillierte Auslegung der POLLUX-Behälter ist bis- her nicht erfolgt. [53]. [96]				
Inventar					
Beschreibung	Das Inventar eine Brennstäben von wasserreaktors. Insgesamt beträg	s Pollux 3 besteht a bis zu drei Brennele t das Inventar bis z	aus den vereinzelten ementen eines Druck- zu 1,6 TSM [14, S. 47]		
max. Wärmeleistung	5,46 KW [1, S. 16] max. (MOX, 40 a Aktivität Abklinglagerung) Aktivität		24,96 *10 ¹⁵ Bq [1, S. 16] (MOX, 40 a Abklinglagerung)		
Konzeptstand					
Der Pollux 3 ist ein generischer Einlagerungsbehälter der eine Modifikation der Pol- lux-Behälter für die Einlagerung im Tonstein darstellt. Eine detaillierte Auslegung der Behälter ist bisher nicht erfolgt so dass anhand der derzeitigen Datenlage viele Aspekte, wie beispielsweise die Möglichkeit einer Lochfraßkorrosion an dem Behälter unter Endlagerbedingungen, noch nicht abschließend bewertet werden können [53], [96]					

Pollux 3

Aufbau Pollux

Der prinzipielle Aufbau von Pollux-Behältern kann der nachfolgenden Zeichnung entnommen werden.

Der Pollux 3 ist vom Pollux 10, dem Referenzbehälter der Pollux-Behälterfamilie abgeleitet. Er besitzt einen Tragkorb zur Aufnahme der vereinzelten Brennstäbe von 3 DWR-Brennelementen. Es sollen weitere Varianten mit modifiziertem Tragkorb abgeleitet werden, die Brennstäbe von 30 SWR-Brennelementen oder 25 WWER-Brennelementen aufnehmen können. Insgesamt wird im Pollux-Konzept von einer Gesamtzahl von 2120 Behältern ausgegangen welche sich wie folgt aufteilen:

DWR: 4660 Behälter; SWR: 1734 Behälter; WWER: 674 Behälter

[34, S. 170]

Länge	5460 mm [53, S. 5]	Gebinde- volumen	ca. 6,2 m³ [abgeschätzt]	Innenvolu- men	ca. 0,6 m³ [abgeschätzt]
Durch-	1200	Gebinde-	40 t	Masse In-	1,6 t
messer	mm	masse	[abgeschätzt]	ventar	[abgeschätzt]
	[53,				
	S. 5]				
Abmaße des	s Pollux-3	[53, S. 5]			

	Material	Massen (abgeschätzt)	Anmerkung
Tragkorb	Edelstahl 1.4541, mit Bor- Blech beplankt, z.T. Cu be- schichtet [34, S. 170]	ca. 1,5 t davon 1% Bor [34, S. 170]	
Innenbehäl- ter	Stahl 15MnNi6.3 (1.6210) 160 mm Wandstärke [34, S. 170], [53, S. 15]	ca. 15 t [34, S. 170]	
- Primärde- ckel	Stahl 15MnNi6.3 (1.6210) [34, S. 170], [53, S. 4] ca.250 mm Wandstärke		verschraubt
- Sekundär- deckel	Stahl 15MnNi6.3 (1.6210) [34, S. 170], [53, S. 4] ca. 75 mm Wandstärke		verschweißt
-Moderator Primärdeckel	Graphit, mit Edelstahlblech ummantelt	200 kg [34, S. 189], [53, S. 15]	
Abschirmbe- hälter	GGG40 (0.7040 oder EN-GJS- 400-15U) 270 mm Wandstärke [53, S. 15]	ca. 18 to [34, S. 170, 208]	
- Primärde- ckel	GGG40 (0.7040 oder EN-GJS- 400-15U) 150 mm Wandstärke [34, S. 208], [53, S. 15]		verschraubt
Abschirmung	Polyethylen (Lupolen, Gur, Hostalen) ca. 90 mm [34, S. 181ff], [53, S. 11]	ca. 1 t [34, S. 181ff]	
Tragzapfen	Edelstahl (X5CrNi13.4, 1.4313) [34, S. 171]		
Kühlrippen	Aluminium EN AW6060 [34, S. 170,208]		
Dämpfungs- elemente	Aluminium [34, S. 170]		

	Pol	lux 3			
I	nventar o	der Behält	ter		
HAW-Inventar					
Brennelementtyp	Anzahl	Masse SM	Anmerkung		
Druckwasserreak- tor	3 [34, S. 207]	3 x 0,517 t = 1,551 t [14, S. 47]	Wärmeleistung und Ak- tivität in Abhängigkeit vom Abbrand können		
Siedewasserreak- tor	9 [34, S. 207]	9 x 0,173 t = 1,557 t [14, S. 47]	der Tabelle im Anhang entnommen werden		
Wasser-Wasser Energie-Reaktor	7,5 [34, S. 207]	7,5 x 0,1736 t = 1,302 t [14, S. 47]			
weiteres Inventar					
Wasserinventar im Behälter	5,4 kg (extrem konservative Abschätzung, keine Konditionierung defekter Brennstäbe), realistische Abschätzung 0,06 kg pro Behälter[34, S. 190]				
Werkstoffe Behälter	rumfeld				
Einlagerungs- variante	Die Behälter werden auf der Sohle der Einlagerungsstre- cken oder einem vorbereiteten Sockel in der Einlagerungs- strecke abgelegt. Im Anschluss werden die Gleise der Einlagerungsmaschine zurückgebaut und der Hohlraum um die Behälter mit Ben- tonit verfüllt. Der Verschluss der Einlagerungsstrecken er- folgt mittels Abdichtbauwerken aus Beton. [14], [15],				
	Material		Anmerkung		
Verfüllung	Bentonit / Bento	nitgranulat [97]	Das Bentonit begrenzt die Bildung von Auflo- ckerungszonen und verzögert die Migration von Fluiden und Radio- nukliden [97]		

Sonstige Informationen	
Gesamtinventar	10.448 t, insgesamt 7.070 BE-Pollux Behälter (alle Bauarten), hinzu kommen weitere Pollux Behälter mit verglasten WA-Abfällen sowie 511 CASTOR [®] Behälter mit BE aus Versuchsreaktoren [1, S. 69], [15, S. 16]
Behälterstandzeit nach Auslegung	>500 Jahre (Handhabbarkeit bei Bergung) [8], [34, S. 16]
Standzeit (bei Flächenkorrosion)	Durch den limitierten Zufluss und die sich einstellen- den anaeroben Bedingungen im Tiefenlager sind Standzeiten von über 10.000 Jahren zu erwarten [67, S. 138]
Standzeit (bei Lochfraßkorro- sion)	bei niedrig legierten Stählen ist der Einfluss von Was- serstoffversprödung und Lochfraßkorrosion unterge- ordnet [67, S. 131]
Sicherheit gegen Handhabungsunfälle	Auslegung gemäß Verkehrsrecht. Zulassung gegen Absturz, Handhabung nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neut- ronen- und Gamma-Strahlung. Auf Grund der gerin- gen Dosisleistung nicht relevant. [34, S. 605]
Gasbildung durch Radiolyse	Zwei bis drei Größenordnungen kleiner als Gasbildung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	Maximal 0,1 % der Behälter = ca. 2 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach > 500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behälter	Im Ton/Tonstein nicht relevant

	Pollux 3					
	Werks	toffken	nwert	е		
Stahl 15MnNi6.3 (1.6210)					
Verwendet für:	Innenbehäl	ter und zuge	hörige Dec	kel		
Werkstoff- beschreibung	Bei dem Stal ten Stahl mit	nl 1.6210 hand t einer guten S	delt es sich i Schweißeign	um einen nied ung.	triglegier-	
Masse ges.	ca. 15 t (abge- schätzt) [34, S. 170]	E-Modul	210 GPa [90, S. 8]	Schmelz- punkt	-	
Dichte	7,85 kg/dm³ [90, S. 8]	Wärme- leitfähig- keit	39,6 W/m*K [91, S. 232]	Ausdeh- nungs- koeffi- zient	11,5* 10 ⁻⁶ /K [91, S. 232]	
0,2 % Dehngrenze RT	300 MPa [90, S. 8]					
Kompressions- modul	175 GPa (berechnet)	Schub- modul	80,8 GPa (berech- net)	Poisson- zahl	0,3 [90, S. 8]	
Legierungselemen	te in %: [91,	S. 232]				
Kohlenstoff C	0,155	Silicium Si	0,29	Mangan Mn	1,44	
Phosphor P	0,008	Schwefel S	0,004	Alumi- nium Al	0,036	
Chrom Cr	0,06	Kupfer Cu	0,06	Molybdän Mo	0,04	
Nickel Ni	0,73	Vanadium V	0,003			

Gusseisen mit Kugelgraphit GGG40 (0.7040 oder EN-GJS-400-15)					
Verwendet für:	Außenbehä	lter und zug	ehöriger Decl	(el [34, S. 20	08]
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die ausgeschiedenen Graphitphasen in Form kugeli- ger Ausscheidungen aus und es entsteht ein überwiegend ferriti- sches Gefüge welches dem Werkstoff seine duktilen, stahlähnlichen Eigenschaften verleiht.				
Masse ges.	ca. 18 t (abge- schätzt) [34, S. 170]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärme- leitfähig- keit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2- 13,4* 10 ⁻⁶ /K [35, S. 65]
0,2 % Dehngrenze RT	250 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 150°C	210 MPa [35, S. 57] (abh. von der Material- stärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Mate- rial- stärke)
Kompressi- onsmodul	125,2 GPa (berech- net)	Schubmo- dul	66,3 GPa (berechnet)	Poisson- zahl	0,275 [33, S. 32]
Legierungselei	mente in %:	[33]			
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2
Kupfer Cu	0,15-0,75				

Pollux 3					
	Werk	stoffke	nnwert		
Edelstahl 1.454	1			<u> </u>	
Verwendet für:	Tragkorb				
Werkstoff- beschreibung	Beim 1.4541 handelt es sich um einen Rost- und säurebestän- digen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für einen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit				
Masse ges.	ca. 1,5 t (abge- schätzt) [34, S. 170]	E-Modul	200 GPa [92]	Schmelz punkt	> 1400 °C [92]
Dichte	7,9 kg/dm ³ [92]	Wärme- leitfähig- keit	15 W/m*K [92]	Ausdeh- nungs- koeffi- zient	17*10 ⁻⁶ /K [92]
0,2 % Dehngrenze RT	200 MPa [93]	0,2 % Dehn- grenze 150°C	167 MPa [93]	0,2 % Dehn- grenze 250°C	147 MPa [93]
Kompressi- onsmodul	166,7 GPa (berechnet)	Schubmo- dul	76,9 GPa (berechnet)	Poisson- zahl	0,3 [92]
Legierungselemente in %: [92], [93]					
Kohlenstoff C	<= 0,08	Silicium Si	<= 1,00	Mangan Mn	<= 2
Phosphor P	<=0,045	Chrom Cr	17-19	Molyb- dän Mo	4,0-5,0
Titan Ti	<=1	Schwefel S	<=0,015	Nickel Ni	9,0-12,0

Edelstahl (X5CrNi13.4, 1.4313)					
Verwendet für:	Tragzapfen				
Werkstoff- beschreibung	Bei dem Edel hend korrosio schaften aufv	lstahl 1.4313 h onsresistenten weist.	andelt es si Stahl der g	ch um einen w ute mechanisc	eitestge- he Eigen-
Masse ges.	ca. 150 kg (berechnet)	E-Modul	206 GPa [94]	Schmelz- punkt	-
Dichte	7,7 kg/dm ³ [94]	Wärme- leitfähig- keit	26 W/m*K [94]	Ausdeh- nungs- koeffizient	11*10 ⁻⁶ /K [94]
0,2 % Dehngrenze RT	560 MPa [94]				
Kompressi- onsmodul	162 GPa (berechnet)	Schubmo- dul	80 GPa (berech- net)	Poisson- zahl	0,288 [94]
Legierungselen	nente in %: [[94]			
Kohlenstoff C	0,04	Chrom Cr	13	Molybdän Mo	0,5
Nickel Ni	4	Phosphor P	0,02	Silicium Si	0,4
Schwefel S	0,001				

Pollux 3						
Werkstoffkennwerte						
Aluminium EN A	W6060					
Verwendet für:	Kühlrippen	Kühlrippen				
Werkstoff- beschreibung	Beim EN AW6060 handelt es sich um eine aushärtbare Alumini- umlegierung mit guter Wärmeleitfähigkeit, welche sich gut für Schweißkonstruktionen und zum Strangpressen eignet. Ihre Haupt-Legierungselemente sind Magnesium und Silizium.					
Masse ges.	nicht veröf- fentlicht	E-Modul	69,5 GPa [95, S. 6]	Schmelz- punkt	655 °C [95, S. 6]	
Dichte	2,7 kg/dm ³ [95, S. 6]	Wärme- leitfähig- keit	209 W/m*K [95, S. 6]	Ausdeh- nungs- koeffi- zient	23,4* 10 ⁻⁶ /K [95, S. 6]	
0,2 % Dehngrenze RT	65-160 MPa [95, S. 6]					
Kompressions- modul	68,13 GPa (berechnet)	Schub- modul	26,13 GPa (berech- net)	Poisson- zahl	0,33 [95, S. 6]	
Legierungselem	ente in %: [95	, S. 6]				
Silizium Si	0,3-0,6	Eisen Fe	0,1-0,3	Kupfer Cu	0,1	
Mangan Mn	0,1	Magne- sium Mg	0,35-0,6	Chrom Cr	0,05	
Zinn Zn	0,15	Titan Ti	0,1			

Polyethylen (Lupolen, Gur, Hostalen, PE-HD)					
Verwendet für:	Moderatorst	äbe, Abschir	mplatte		
Werkstoff- beschreibung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halb- durchsichtiges Thermoplast. Es weist, verglichen mit Polyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemischen Substanzen höhere Temperaturfestigkeit auf. Die mechanischen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei Lagerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Gitteratomen abge- bremst werden und so nachfolgend wirksamer absorbiert werden				
Masse ges.	1.540 kg [34,S. 181ff]	E-Modul	1,15 GPa [82]	Schmelz- punkt	130- 145 °C
Dichte	0,95 kg/dm ³ Bei 20 °C [82]	Wärme- leitfähig- keit	0,42 W/m K [82]	Ausdeh- nungs- koeffi- zient	100-200 *10 ⁻⁶ K ⁻¹ [82]
Dehngrenze RT	27 MPa [82]				
Kompressi- onsmodul	7,9-10 GPa (berechnet)	Schubmo- dul	0,32- 0,41 GPa (berechnet)	Poisson- zahl	0,46 [83]
Graphit					
Verwendet für:	Abschirmpla	tte Primärbe	hälter		
Werkstoff- beschreibung	Graphit ist eine Modifikation des Kohlenstoffs. Die mechanischen Eigenschaften des Graphits tragen nicht nennenswert zur Stabili- tät eines Lagerbehälters bei, jedoch eignet sich Graphit, ähnlich wie Polyethylen, gut zur Abschirmung von Neutronenstrahlung.				
Masse ges.	200 kg (abge- schätzt) [34,S. 189ff], [53, S. 15]	E-Modul	4,8 GPa [85, S. 1]	Subli- mati- onstemp eratur	3370 °C [85, S. 1]
Dichte	2,267 kg/d m ³ [85, S. 1]	Wärme- leitfähig- keit	155 W/m*K [85, S. 1]	Ausdeh- nungs- koeffi- zient	2* 10 ⁻⁶ 1/K [85, S. 1]
0,2 % Dehngrenze RT	14-34 MPa [86, S. 16]				
Kompressi- onsmodul	33 GPa [85, S. 1]	Schubmo- dul	1,62 GPa (berechnet)	Poisson- zahl	0,48 [85, S.1]

Behälterdossier CASTOR[®] THTR/AVR

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungssystem und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Aufbau des Behälters Der CASTOR[®]-Behälter besitzt einen zylindrischen Aufbau mit einem Durchmesser von etwa 1,4 m und einer Länge von 2,75 m. Beladen wiegt er etwa 26 t. Zur Handhabung des Behälters besitzt er angeschraubte Tragzapfen aus Edelstahl [14], [15]

	Material		Beschrei	bung	
Stahlkanne	Stahl		In der bzv	v. den in den	Behälter einge-
			stellten St	tahikannen w	erden bis zu
			2100 kug	elformige Bre	nnelemente ein-
			geschloss	en	
Primärdeckel &	Gusselsen og	ler	Primar- u	nd Sekundar	deckel schließen
Sekundardeckei	uniegierter			nukilde sichel	r im Benaiter ein.
	Baustani		Sie werde	n mit dem Be	enalterkorper
			Verschrau	DT.	
			Bei der Ve	erwendung de	
			chulagert.	dom Robältor	
					Zu verschwei-
			orfordarli	nes zu gewai	
			nem ande	ron Workstof	f neu zu fertigen
Behälterkörner &	Gusseisen m	it	Der Behä	terkörner die	nt der Abschir-
Kühlrinnen	Kugelgranhit		mund von	Neutronen-	und Gamma-
Kumppen	Rugeigiupine		strahlung	hierzu sind	in ihm
			Moderato	rstäbe aus Po	lvethylen einge-
			lassen. Di	e Kühlrippen	dienen der Wär-
			meabfuhr		
Besonderheiten	Die Behälter wurden ursprünglich als TLB entwickelt. Die				
	hohe thermis	sche	Belastbark	eit des Stein	salzes und seine
	gute Wärmeleitfähigkeit ermöglichen eine hohe Behälter-				
	beladung.				
		Inve	entar		
		Das	: Inventar e	eines CASTO	R [®] THTR/AVR be-
		stel	nt aus 2100) kugelförmig	en Brennele-
		mer	nten eines	Kugelhaufeni	eaktors.
Beschreibung		Inse	gesamt bet	rägt das Inve	entar bis zu 23 kg
		SM	[14]		2 14 ¥1014 D
max.		18,	/ W [1,	max.	2,14 *10 ¹⁴ Bq
warmeieistung		5.4	14] 	AKTIVITAT	[1, S. 44]
		(Na	cn 40a		(Nach 40a Ab-
		Lag	erung)		klinglagerung)
	Ко	nzep	otstand		
Der CASTOR [®] THTR/AVR ist als Transport- und Lagerbehälter entwickelt und ge-					

Der CASTOR[®] THTR/AVR ist als Transport- und Lagerbehälter entwickelt und gebaut worden. Im deutschen Alternativkonzept wurde seine prinzipielle Eignung als Endlagerbehälter untersucht. Von den Behältern wurden bereits mehrere Hundert gebaut. Die Gesamtzahl ähnlicher CASTOR[®]behälter unterschiedlicher Größe beläuft sich auf über 1800 Behälter. Technologien zur Einlagerung und zum Transport der Behälter in den horizontalen Kammern wurde bereits entwickelt, eine praktische Erprobung unter Endlagerbedingungen ist jedoch noch nicht erfolgt. Auf Grund der zum Pollux ähnlichen Gestaltung und Materialien der Behälter kann ein Großteil der Kenntnisse über dessen Langzeitstabilität auf den CASTOR[®] übertragen werden. Der Nachweis der Langzeitsicherheit steht jedoch für beide Behäl-

CASTOR[®] THTR/AVR Aufbau CASTOR[®]

Der prinzipielle Aufbau des CASTOR[®]-Behälters kann der nachfolgenden Zeichnung entnommen werden.

Er besitzt einen Tragkorb aus Aluminium und Edelstahl zur Aufnahme von bis zu 2100 kugelförmigen Brennelementen. Dieser wird von einem Behälterkörper aus Gusseisen mit Kugelgraphit umschlossen und mittels eines verschraubten Doppeldeckelsystems verschlossen.

Um den CASTOR[®] an die Anforderungen der Tiefenlagerung anzupassen sollen die Hohlräume im Inneren mit Magnetit verfüllt und die beiden Deckel mit dem Behälterkörper gasdicht verschweißt werden.

Es existieren weitere Varianten der CASTOR[®] Familie zur Aufnahme von SWR-BE, WWER-BE oder verglasten WA-Abfällen sowie von Brennelementen aus Forschungs- und Versuchsreaktoren [14], [34], [53].

Werkstoffe Behälter					
	Material	Masse	Anmerkung		
Tragkanne	unlegierter Stahl [34, S. 170ff]				
Behälterkör- per	Sphäroguss (EN-GJS-400-15U) ca.360 mm Wand- stärke [14], [34, S. 171]	22.450 kg [34, S. 170ff]			
Primärdeckel & Sekundär- deckel	unlegierter Stahl (Werkstoff St 52-3) [34, S. 170ff] ca. 30 mm Wand- stärke [14] (andere Werkstoffe denkbar)	ca. 1.600 kg [14]	Bei der Verwendung als TLB verschraubt, soll durch ein verschweißtes Deckelsystem ersetzt werden		
Tragzapfen	Edelstahl (X5CrNi13.4, 1.4313) [34, S. 170ff]	Nicht be- kannt	Wird vor Einlagerung ent- fernt		

	CASTOR [®] THTR/AVR				
]	Inventar d	er Behälter			
HAW-Inventar					
Brennelementtyp	Anzahl	Masse SM	Anmerkung		
Kugelhaufenreak- tor	2100 [14, S. 17]	ca. 0,023 t SM [14, S. 13]			
weiteres Inventar					
Wasserinventar im Behälter	Wasserinventar Unbekannt im Behälter Aufgrund der Trocknung der Kugeln wird von wenigen Gramm ausgegangen Gramm ausgegangen				
Werkstoffe Behälter	umfeld				
Einlagerungs- variante	Die Behälter werden mittels eines Einlagerungsgerätes, wel- ches auf Luftkissentechnik basiert, in horizontalen Einlage- rungsbohrlöchern eingeschoben und dort abgelegt. Im Anschluss werden die Gleise der Einlagerungsmaschine zurückgebaut und der Hohlraum um die Behälter mit tro- ckenem Salzgrus verfüllt. Der Verschluss der Einlagerungs- strecken erfolgt mittels Abdichtbauwerken aus Salzbeton				
	Material		Anmerkung		
Verfüllung	naturtrockener Salzgrus Durch die ger ca. 0,02% Restfeuchte, Restfeuchte, Anfangsporosität 30-40 % gebrachten V [14], [15], [53] zes wird die f Korrosion der hälter verfügl Wassermenge grenzt [14], [15], [5], [5] [14], [15], [5]		Durch die geringe Restfeuchte des ein- gebrachten Versat- zes wird die für die Korrosion der Be- hälter verfügbare Wassermenge be- grenzt [14], [15], [53]		

Sonstige Informationen	
Gesamtinventar	10.448 tSM, ca.1900 CASTOR [®] Behälter insgesamt (alle Bauarten), die sich zusammensetzen aus 736 CASTOR [®] V/19, 300 CASTOR [®] V/52 und 61 CAS- TOR [®] 440/84; hinzu kommen ca. 260 CASTOR [®] en mit Wiederaufbereitungsabfällen sowie 511 CAS- TOR [®] Behälter mit BE aus Versuchsreaktoren. [1, S. 69], [15, S. 17]
Behälterstandzeit nach Auslegung	>500 Jahre (Handhabbarkeit bei Bergung; Materia- lien nahezu identisch zu Pollux) [34, S. 211,224]
Standzeit (bei Flächenkorrosion)	>1000 Jahre (Lösungsabhängig, sehr geringe Rest- feuchte im Versatz; Materialien nahezu identisch zu Pollux). [34, S. 211, 224, 234]
Standzeit (bei Lochfraßkorrosion)	Noch nicht untersucht [34, S. 212,224]
Wasserstoffversprödung	Bei der Auslegung berücksichtigt, bisher für Lage- rung in Salz nicht untersucht. Behältermaterialien und Hüllrohre könnten betroffen sein [34, S. 234,526]
Sicherheit gegen Handhabungsunfälle	Auslegung gemäß Verkehrsrecht. Zulassung gegen Absturz, Handhabung nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Dosisleistung nicht relevant. [34, S. 605]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung. [34, S. 605]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 2 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach >500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen. [34, S. 234]
Absinken der Behälter	Keine nennenswerte Verlagerung infolge nur gerin- ger Dichteunterschiede 2 m / 1 Millionen Jahre. [34, S. 837ff], [89]

	CASTOR [®] THTR/AVR				
Werkstoffkenn	werte				
Gusseisen mit	Kugelgraph	it GGG40 (0.704	10 oder EN-	GJS-400-15)	
Verwendet für:	Außenbehä	lter und zugehö	öriger Decke	el [34, S. 208]
Werkstoff- beschrei- bung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die ausgeschiedenen Graphitphasen in Form kugeliger Aus- scheidungen aus und es entsteht ein überwiegend ferritisches Ge- füge, welches dem Werkstoff seine duktilen, stahlähnlichen Eigenschaften verleiht.				
Masse ges.	22.450 kg [34, S. 171]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärmeleitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2- 13,4* 10 ⁻⁶ /K [35, S. 65]
0,2 % Dehngrenze RT	250 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehngrenze 150°C	210 MPa [35, S. 57] (abh. von der Mate- rialstärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Mate- rialstärke)
Kompressi- onsmodul	125,2 GPa (berech- net)	Schubmodul	66,3 GPa (berech- net)	Poisson- zahl	0,275 [33, S. 32]
Legierungsele	mente in %:	[33]			
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2
Kupfer Cu	0,15-0,75				

Schmiedestahl S	355 (ST52)					
Verwendet für:	Primär- und	Primär- und Sekundärdeckel				
Werkstoff- beschreibung	Beim S355 ha Er weist eine g auf.	Beim S355 handelt es sich um einen warmgewalzten Baustahl. Er weist eine gute Schweißbarkeit, Verformbarkeit und Festigkeit auf				
Masse ges.	ca. 2.000 kg	E-Modul	210 GPa [99]	Schmelz- punkt	- °C	
Dichte	7,85 kg/dm ³ [99]	Wärmeleitfä- higkeit	54 W/m*K [99]	Ausdeh- nungs- koeffizient	11,1* 10 ⁻⁶ /K [99]	
0,2 % Dehngrenze RT	265 – 355 MPa (dickenab- hängig) [99]					
Kompressions- modul	175 GPa (berechnet)	Schubmodul	80,8 GPa (berech- net)	Poisson- zahl	0,3 [99]	
Legierungselemente in %: [99]						
Kohlenstoff C	0,24	Silicium Si	0,55	Mangan Mn	1,6	
Phosphor P	0,035	Stickstoff N	0,012	Kupfer Cu	0,55	
Schwefel S	0,035					

Behälterdossier CASTOR[®] V/19

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungssystem und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

CASTOR[®] V/19

Beim CASTOR[®] V/19 handelt es sich um einen abgeschirmten Transport- und Lagerbehälter (TLB) für abgebrannte Brennelemente. Im Rahmen der VSG wurde seine Eignung zur Einlagerung in tiefen geologischen Formationen untersucht.

Als Einlagerungsvariante soll hierbei die Einlagerung in kurzen, horizontalen Bohrlöchern Anwendung finden. Die den Lagerbehälter umgebenden Bereiche sowie die Einlagerungsstrecken werden nach der Einlagerung mit trockenem Salzgrus verfüllt.

Der CASTOR[®] V/19, welcher zur Aufnahme von 19 Brennelementen eines Druckwasser-Reaktors bestimmt ist, steht exemplarisch für eine ganze Reihe von Transportund Lagerbehältern. Weitere Modifikationen dieses Behältertyps sollen zur Lagerung von Brennelementen aus anderen Reaktortypen sowie von verglasten Wiederaufbereitungsabfällen zum Einsatz kommen.

Hervorzuheben ist, dass es sich bei der CASTOR[®]-Familie um selbstabschirmende Behälter handelt, welche auch ohne zusätzliche Overpacks transportiert werden können.

Da bei Lagerkonzepten im Salz der langfristige Einschluss der Radionuklide durch das Gebirge erfolgt, beträgt die Mindestlebensdauer der Behälter, in der diese die alleinige Schutzfunktion übernehmen müssen, nur wenige hundert Jahre. Für diesen Zeitrahmen ist die Integrität des Behälters sichergestellt und somit auch eine Bergung möglich [14], [15]

CASTOR [®] V/19	
schematisch nach [31]
Land	Deutschland
Lagerkonzept	CASTOR®
Gesellschaften /	GNS / DBE
Organisationen	BFS
Gestein	Salzdiaphir
Einlagerung	Kurzes, horizon-
	tales Bohrloch
Masse	126 Mg
Länge	5,940 m
Durchmesser	2,44 m
Anzahl gesamt	736 V/19,
	aktuell 273,
	ca. 1900
	CASTOR [®] en
	gesamt [98]

Aufbau des Behälters

Der CASTOR[®]-Behälter besitzt einen zylindrischen Aufbau mit einem Durchmesser von etwa 2,44 m und einer Länge von 5,940 m. Beladen wiegt er etwa 126 t. Zur Handhabung des Behälters besitzt er angeschraubte Tragzapfen aus Edelstahl [14], [15]

	Material	Beschro	eibung		
Tragkorb	Borierter Edel-	Der Trag	gkorb dient der	Arretierung der in	
	stahl/ Alumi-	CASTOR	[®] eingelagerte	n Brennelemente.	
	nium				
Primärdeckel	Edelstahl	Primär-	und Sekundärd	leckel schließen die Radio-	
& Sekundär-	260mm	nuklide	sicher im Behä	lter ein. Sie werden mit	
deckel		dem Bel	hälterkörper ve	rschraubt.	
		Bei der	Verwendung de	es CASTOR [®] s als Endlager-	
		behalter	sind die Decke	el gasdicht mit dem Behal-	
		ter zu ve	erschweißen. U	m dies zu gewahrleisten	
		Railli es	Workstoff pour	zu fortigon	
D - L VIL - L V.	C i	anueren Dau Dala		zu lertigen.	
Benalterkor-	Gusselsen mit	Der Ben	alterkorper die	nt der Abschirmung von	
rinnon	Kugeigraphic	ibm Moc	en- unu Gannin Ioratoretäbo au	astraniung, merzu sinu m	
прреп		Die Kühlrippen dienen der Wärmeabfuhr.			
Besonderhei-	Die Behälter wu	urden ursprünglich als TLB entwickelt. Die hohe			
ten	thermische Bela	stbarkeit	des Steinsalze	s und seine gute Wärme-	
	leitfähigkeit ermöglichen eine hohe Behälterbeladung.				
Inventar					
	Das Inventar eir	ies CAST	OR [®] V/19 best	eht aus 19 Brennelementen	
Beschreibung	eines Druckwas	serreakto	rs. Insgesamt I	betragt das Inventar bis zu	
	9,9 ISM [14, S.	20, 47]		157.2 *1015 0 - [1 0 10]	
max.	34,4 KW [1, 5.	10]	max.	157,2 *10 ¹⁵ Bq [1, 5, 16]	
warmeieis-	(MOX, 40 a	`	AKTIVITAT	(MOX, 40 a	
tung	Abklinglagerung)		Abklinglagerung)	
Konzeptstand	(10 ist als Tassa		La sudu a la Villa a	and a fail and an a barry to a second	
Der CASTOR® V	19 ist als Transp	ort- una	Lagerbenaiter (entwickelt und gebaut wor-	
aen. Im aeutschen Alternativkonzept wurde seine prinzipielle Eignung als Endlager-					
benalter untersucht, von den Benaltern wurden bereits mehrere Hundert gebaut.					
über 1000 Behälter. Technologien zur Einlagerung und zum Transport der Behälter					
in den horizonta	len Kammern wu	rde berei	ts entwickelt, e	ine praktische Erprobung	
unter Endlagerb	edingungen ist ie	doch noc	h nicht erfolat.	Auf Grund der zum Pollux	
ähnlichen Gestal	ltung und Materia	lien der l	Behälter kann e	ein Großteil der Kenntnisse	
über dessen Lan	gzeitstabilität au	f den CAS	STOR [®] übertrad	gen werden. Der Nachweis	
der Langzeitsicherheit steht jedoch für beide Behälter noch aus.					

CASTOR® V/19

Aufbau CASTOR®

Der prinzipielle Aufbau des CASTOR $^{\ensuremath{\mathbb{R}}}$ -Behälters kann der nachfolgenden Zeichnung entnommen werden.

Er besitzt einen Tragkorb aus Aluminium und Edelstahl zur Aufnahme von bis zu 19 DWR-Brennelementen. Dieser wird von einem Behälterkörper aus Gusseisen mit Kugelgraphit umschlossen und mittels eines verschraubten Doppeldeckelsystems verschlossen.

Um den CASTOR[®] an die Anforderungen der Tiefenlagerung anzupassen sollen die Hohlräume im Inneren mit Magnetit verfüllt und die beiden Deckel mit dem Behälterkörper gasdicht verschweißt werden.

Es existieren weitere Varianten der CASTOR $^{\otimes}$ Familie zur Aufnahme von SWR-BE, WWER-BE oder verglasten

WA-Abfällen sowie von Brennelementen aus Forschungs- und Versuchsreaktoren [14], [34], [53].

Länge	5940	Gebindevo-	27,8 m³	Innenvolu-	ca.
	mm	lumen	[14, S. 20]	men	10,85
	[14,				m³ [14]
	S. 20]				
Durchmes-	2440	Gebinde-	126 t	Masse In-	9,823 t
ser	mm	masse	[14, S. 20]	ventar	[14,
	[14,				S. 47]
	C 201				

Werkstoffe Behälter				
	Material	Masse	Anmerkung	
Tragkorb	borierter Edelstahl/Aluminium [34, S. 170ff]	9.600 kg [34, S. 170ff]		
Behälterkörper & Kühlrippen	Sphäroguss (EN-GJS-400-15U) [34, S. 170ff]	90.000 kg [34, S. 170ff]		
Primärdeckel & Sekundärde- ckel	Edelstahl (1.4313 / X5CrNi13.4) [34, S. 170ff] ca. 360 mm Wandstärke (andere Werkstoffe denkbar)	6.800 kg [34, S. 170ff]	Bei der Verwen- dung als TLB verschraubt, soll durch ein ver- schweißtes De- ckelsystem ersetzt werden	
Tragzapfen	Edelstahl (X5CrNi13.4, 1.4313) [34, S. 170ff]	Nicht be- kannt	Wird vor Einlage- rung entfernt	

	C	ASTOR [®] V/19		
	Inver	ntar der Behält	er	
HAW-Inventar				
Brennele- menttyp	Anzahl	Masse SM	Anmerkung	
Druckwasser- reaktor	19 [14, S. 20]	19 X 0,517 t = 9,823 t [14, S. 47]	Wärmeleistung und Ak- tivität in Abhängigkeit vom Abbrand können der Tabelle im Anhang entnommen werden	
weiteres Inventa	ar			
Wasserinven- tar im Behälter	34 kg (extrem konservative Abschätzung, keine Konditionierung defek- ter Brennstäbe), realistische Abschätzung 0,120 kg pro Behälter [34, S. 190]			
Werkstoffe Behä	ilterumfeld			
Einlagerungs- variante	Die Behälter werden mittels eines Einlagerungsgerätes, welches auf Luftkissentechnik basiert, in horizontalen Einlagerungsbohr- löchern eingeschoben und dort abgelegt. Im Anschluss werden die Gleise der Einlagerungsmaschine zu- rückgebaut und der Hohlraum um die Behälter mit trockenem Salzgrus verfüllt. Der Verschluss der Einlagerungsstrecken er- folgt mittels Abdichtbauwerken aus Salzbeton [14], [15], [53]			
	Material		Anmerkung	
Verfüllung	naturtrockener Salzgrus ca. 0,02% Restfeuchte, Anfangsporosität 30-40 % [14], [15], [53]Durch die geringe Rest feuchte des eingebrach ten Versatzes wird die für die Korrosion der Behälter verfügbare Wassermenge begrenz [14], [15], [53]		Durch die geringe Rest- feuchte des eingebrach- ten Versatzes wird die für die Korrosion der Behälter verfügbare Wassermenge begrenzt [14], [15], [53]	

Sonstige Informationen	
Gesamtinventar	10.448 tSM, ca.1900 CASTOR [®] Behälter insgesamt (alle Bauarten), die sich zusammensetzen aus 736 CASTOR [®] V/19, 300 CASTOR [®] V/52 und 61 CAS- TOR [®] 440/84; hinzu kommen ca. 260 CASTOR [®] en mit Wiederaufbereitungsabfällen sowie 511 CAS- TOR [®] Behälter mit BE aus Versuchsreaktoren[1, S. 69], [15, S. 17]
Behälterstandzeit nach Auslegung	>500 Jahre (Handhabbarkeit bei Bergung; Materia- lien nahezu identisch zu Pollux) [34, S. 211,224]
Standzeit (bei Flächenkorrosion)	>1000 Jahre (Lösungsabhängig, sehr geringe Restfeuchte im Versatz; Materialien nahezu identisch zu Pollux) [34, S. 211, 224, 234]
Standzeit (bei Lochfraßkorrosion)	Noch nicht untersucht [34, S. 212,224]
Wasserstoffversprödung	Bei der Auslegung berücksichtigt, bisher für Lage- rung in Salz nicht untersucht. Behältermaterialien und Hüllrohre könnten betroffen sein [34, S. 234,526]
Sicherheit gegen Handhabungsunfälle	Auslegung gemäß Verkehrsrecht. Zulassung gegen Absturz, Handhabung nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Dosis- leistung nicht relevant. [34, S. 605]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 2 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach >500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behälter	Keine nennenswerte Verlagerung infolge nur gerin- ger Dichteunterschiede 2m / 1 Millionen Jahre [34, S. 837ff], [89]

CASTOR [®] V/19					
Werkstoffkennwerte					
Gusseisen mit Kugelgraphit GGG40 (0.7040 oder EN-GJS-400-15)					
Verwendet für:	Außenbehälter und zugehöriger Deckel [34, S. 208]				
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bil- den sich die ausgeschiedenen Graphitphasen in Form kugeliger Ausscheidungen aus und es entsteht ein überwiegend ferritisches Gefüge, welches dem Werkstoff seine duktilen, stahlähnlichen Ei- genschaften verleiht.				
Masse ges.	90.000 kg [34, S. 170ff]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärmeleitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffizient	11,2- 13,4* 10 ⁻⁶ /K [35, S. 65]
0,2 % Dehngrenze RT	250 MPa [35, S. 57] (abh. von der Mate- rialstärke)	0,2 % Dehngrenze 150°C	210 MPa [35, S. 57] (abh. von der Mate- rial- stärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Mate- rial- stärke)
Kompressi- onsmodul Legierungselem	125,2 GPa (berech- net)	Schubmodul	66,3 GPa (berech- net)	Poisson- zahl	0,275 [33, S. 32]
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2
Kupfer Cu	0,15-0,75			1-111	

Edelstahl (X5CrNi13.4, 1.4313)					
Verwendet für:	Tragzapfen, Primär- und Sekundärdeckel				
Werkstoff- beschreibung	Bei dem Edelstahl 1.4313 handelt es sich um einen weitestge- hend korrosionsresistenten Stahl der gute mechanische Eigen- schaften aufweist.				
Masse ges.	ca. 6800 kg [34, S. 170ff]	E-Modul	206 GPa [94]	Schmelz- punkt	- °C
Dichte	7,7 kg/dm³ [94]	Wärmeleitfä- higkeit	26 W/m*K [94]	Ausdeh- nungs- koeffizient	11* 10 ⁻⁶ /K [94]
0,2 % Dehngrenze RT	560 MPa [94]	0,2 % Dehngrenze 150°C	МРа	0,2 % Dehn- grenze 250°C	MPa
Kompressi- onsmodul	162 GPa (berechnet)	Schubmodul	80 GPa (berech- net)	Poisson- zahl	0,288 [95]
Legierungselemente in %: [94]					
Kohlenstoff C	0,04	Chrom Cr	13	Molybdän Mo	0,5
Nickel Ni	4	Phosphor P	0,02	Silicium Si	0,4
Schwefel S	0,001				

CASTOR [®] V/19					
Werkstoffkennwerte					
Rostfreier Stahl (exemplarisch 1.4541)					
Anmerkung	Der für den Tragkorb verwendete, rostfreie Stahl ist derzeit in den Veröffentlichungen nicht genauer spezifiziert. Es ist jedoch davon auszugehen, dass ein Stahl gewählt wurde, welcher von seinen Eigenschaften dem beim Pollux für den Tragkorb verwen- deten 1.4541 entspricht. Die an dieser Stelle angegebenen Werte stellen somit nur unge- fähre Anhaltswerte dar!				
Verwendet für:	Tragkorb	Tragkorb			
Werkstoff- beschreibung	Beim 1.4541 handelt es sich um einen Rost- und säurebeständi- gen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für ei- nen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit.				
Masse ges.	9,600 kg [34, S. 170ff]	E-Modul	200 GPa [93]	Schmelz- punkt	>1400 °C [93]
Dichte	7,9 kg/dm³ [93]	Wärmeleitfä- higkeit	15 W/m*K [93]	Ausdeh- nungs- koeffizient	17* 10 ⁻⁶ /K [93]
0,2 % Dehngrenze RT	200 MPa [92]	0,2 % Dehngrenze 150°C	167 MPa [92]	0,2 % Dehn- grenze 250°C	147 MPa [92]
Kompressions- modul	166,7 GPa (berechnet)	Schubmodul	76,9 GPa (be- rechnet)	Poisson- zahl	0,3 [93]
Legierungselemente in %: [92], [93]					
Kohlenstoff C	<= 0,08	Silicium Si	<= 1,00	Mangan Mn	<= 2
Phosphor P	<=0,045	Chrom Cr	17-19	Molybdän Mo	4,0-5,0
Titan Ti	<=1	Schwefel S	<=0,01 5	Nickel Ni	9,0- 12,0

Polyethylen (Lupolen, Gur, Hostalen, PE-HD)					
Verwendet	Moderatorstäbe, Abschirmplatte				
Werkstoff- beschreibung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halb- durchsichtiges Thermoplast. Es weist, verglichen mit Polyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemi- schen Substanzen höhere Temperaturfestigkeit auf. Die mechani- schen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei Lagerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Gitterato- men abgebremst werden und so nachfolgend wirksamer absor- biert werden können.				
Masse ges.	2.000 kg [34, S. 170ff]	E-Modul	1,15 GPa [82]	Schmelz- punkt	130- 145 °C
Dichte	0,95 Kg/dm ³ Bei 20 °C [82]	Wärme-leit- fähigkeit	0,42 W/m K [82]	Ausdeh- nungs- koeffizient	100 - 200 *10 ⁻⁶ K ⁻¹ [82]
Dehngrenze RT	27 MPa [82]				
Kompressions- modul	7,9-10 GPa (berech- net)	Schubmodul	0,32- 0,41 GPa (berech- net)	Poisson- zahl	0,46 [83]

Behälterdossier CASTOR[®] V/52

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungssystem und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover
CASTOR®	V/52	
Beim CASTOR [®] V/52 handelt es sich um ei- nen abgeschirmten Transport- und Lagerbe- hälter (TLB) für abgebrannte Brennelemente. Im Rahmen der VSG wurde seine Eignung zur Einlagerung in tiefen geologischen For- mationen untersucht.	CASTOR® V/52	
Als Einlagerungsvariante soll hierbei die Ein- lagerung in kurzen, horizontalen Bohrlöchern Anwendung finden. Die den Lagerbehälter umgebenden Bereiche sowie die Einlage- rungsstrecken werden nach der Einlagerung mit trockenem Salzgrus verfüllt.		
Der CASTOR [®] V/52, welcher zur Aufnahme von 52 Brennelementen eines Siedewasser- Reaktors bestimmt ist, steht exemplarisch für eine ganze Reihe von Transport- und La- gerbehältern. Weitere Modifikationen dieses Behältertyps sollen zur Lagerung von Brenn- elementen aus anderen Reaktortypen sowie	[98]	
von verglasten Wiederaufbereitungsabfällen	Land	Deutschland
zum Einsatz kommen.	Lagerkonzept	CASTOR®
Use and the second second state of the CAC	Gesellschaften /	GNS / DBE
Hervorzuneben Ist, dass es sich bei der CAS-	Organisationen	BFS
ter handelt, welche auch ohne zusätzliche	Gestein	Salzdiaphir
Overpacks transportiert werden können.	Einlagerung	Kurzes, hori-
		Zontales
Da bei Lagerkonzepten im Salz der langfris-	Macco	124 Mg
tige Einschluss der Radionuklide durch das	länge	5 53 m
Gebirge erfolgt, beträgt die Mindestlebens-	Durchmesser	2 44 m
dauer der Behälter, in der diese die alleinige	Anzahl gesamt	300 V/52, ak-
Schutzfunktion übernehmen müssen, nur	Juizani gesunt	tuell 93 Be-
wenige hundert Jahre. Für diesen Zeitrah-		hälter ca.
men ist die Integrität des Benalters Sicherge-		1900 CAS-
stellt und somit auch eine Bergung möglich		TOR [®] en ge-
[14], [13]		samt [98]

Aufbau des Behälters

Der CASTOR[®]-Behälter besitzt einen zylindrischen Aufbau mit einem Durchmesser von etwa 2,44 m und einer Länge von 5,53 m. Beladen wiegt er etwa 124 t. Zur Handhabung des Behälters besitzt er angeschraubte Tragzapfen aus Edelstahl [14], [15]

	Material	Beschrei	ibung			
Tragkorb	Borierter	Der Tragl	korb dient der <i>i</i>	Arretierung der in CASTOR®		
	Edelstahl/Alu-	eingelage	erten Brenneler	nente.		
	minium					
Primärde-	Edelstahl	Primär- und Sekundärdeckel schließen die Radio-				
ckel &	260mm	nuklide si	nuklide sicher im Benälter ein. Sie werden mit dem			
Sekundarde-		Behalterk	orper verschra	UDT.		
CKEI		bel uel V	d die Deckel a	schicht mit dem Behälter zu		
		verschwe	ißen. Um dies	zu gewährleisten kann es		
		erforderli	ch werden die	Deckel aus einem anderen		
		Werkstof	f neu zu fertige	en.		
Behälterkör-	Gusseisen mit	Der Behä	lterkörper dien	t der Abschirmung von		
per & Kühl-	Kugelgraphit	Neutrone	n- und Gamma	strahlung, hierzu sind in		
rippen		ihm Moderatorstäbe aus Polyethylen eingelassen.				
		Die Kühlrippen dienen der Wärmeabfuhr.				
Besonder-	Die Behälter wurden ursprünglich als TLB entwickelt.					
heiten	Die hohe therm	Ische Bela	stbarkeit des S	teinsalzes und seine gute		
Inventor	warmeleitianigi	keit ernog	inchen eine nor	le benalterbeladung.		
Beschroi-	Dac Inventar ei		P® V/52 bosts	ht aug 52 BE gings Sig-		
bung	deswasserreakt	nrs CASIC	JK V/JZ Deste	ant aus 52 DE entes Sie-		
bung	Insgesamt betr	ägt das Inv	ventar bis zu 9	,0 TSM [14, S. 20, 47]		
max.	23,4 KW [1, S.	16]	max.	116,9 *10 ¹⁵ Bq [1, S. 16]		
Wärmeleis-	(MOX, 40a Abk	linglage-	Aktivität	(MOX, 40a Abklinglage-		
tung	rung)			rung)		
Konzeptstand						
Der CASTOR® \	//52 ist als Trans	port- und	Lagerbehälter	entwickelt und gebaut wor-		
den. Im deutsc	hen Alternativko	nzept wurd	le seine prinzip	ielle Eignung als Endlager-		
behälter unters	ucht. Von den Be	ehältern wi	urden bereits n	nehrere Hundert gebaut.		
Die Gesamtzahl ähnlicher CASTOR®behälter unterschiedlicher Größe beläuft sich auf						
uber 1000 Behalter. Lechnologien zur Einlagerung und zum Transport der Behälter						
In den norizonta	alen Kammern w	urue berei	ts entwickeit, e	Auf Crund dor zum Pollux		
ähnlichen Gesta	altung und Mater	ialien der l	Rehälter kann 4	an Großteil der Kenntnisse		
über dessen La	ngzeitstabilität a	uf den CAS	STOR [®] übertrad	gen werden. Der Nachweis		

der Langzeitsicherheit steht jedoch für beide Behälter noch aus.

CASTOR® V/52

Aufbau CASTOR®

Der prinzipielle Aufbau des CASTOR[®]-Behälters kann der nachfolgenden Zeichnung entnommen werden.

Er besitzt einen Tragkorb aus Aluminium und Edelstahl zur Aufnahme von bis zu 53 SWR-Brennelementen. Dieser wird von einem Behälterkörper aus Gusseisen mit Kugelgraphit umschlossen und mittels eines verschraubten Doppeldeckelsystems verschlossen.

Um den CASTOR[®] an die Anforderungen der Tiefenlagerung anzupassen sollen die Hohlräume im Inneren mit Magnetit verfüllt und die beiden Deckel mit dem Behälterkörper gasdicht verschweißt werden.

Es existieren weitere Varianten der CASTOR $^{\otimes}$ Familie zur Aufnahme von SWR-BE, WWER-BE oder verglasten

WA-Abfällen sowie von Brennelementen aus Forschungs- und Versuchsreaktoren [14], [34], [53].

Länge	5530 mm	Gebindevo-	25,9 m³	Innenvolu-	ca. 10,25
	[14, S. 20]	lumen	[14, S. 20]	men	m³ [14]
Durch-	2440 mm	Gebinde-	124 Mg	Masse In-	8,996 t
messer	[14, S. 20]	masse	[14, S. 20]	ventar	[14,
					S 471

CASTOR[®] V/52 schematisch, nach [14], [100]

Weinsteine Bei			
	Material	Masse	Anmerkung
Tragkorb	borierter Edelstahl/Alu- minium [34, S. 170ff]	9.600 kg [34, S. 170ff]	
Behälterkör- per & Kühlrip- pen	Sphäroguss (EN-GJS-400-15U) [34, S. 170ff]	87.000 kg [34, S. 170ff]	
Primärdeckel & Sekundär- deckel	Edelstahl (1.4313 / X5CrNi13.4) [34, S. 170ff] ca.360 mm Wandstärke (andere Werkstoffe denkbar)	6.800 kg [34, S. 170ff]	Bei der Verwendung als TLB verschraubt, soll durch ein verschweißtes Deckelsystem ersetzt werden
Tragzapfen	Edelstahl (X5CrNi13.4, 1.4313) [34, S. 170ff]	Nicht be- kannt	Wird vor Einlagerung entfernt

CASTOR® V/52				
	In	ventar der Behä	lter	
HAW-Inventa	ar			
Brennele- menttyp	Anzahl	Masse SM	Anmerkung	
Siedewas- serreaktor	52 [14, S. 20]	52 x 0,173 t = 8,996 t [14, S. 47]	Wärmeleistung und Aktivi- tät in Abhängigkeit vom Abbrand können der Ta- belle im Anhang entnom- men werden	
weiteres Inv	entar			
Wasserin- ventar 37 kg im Behälter (extrem konservative Abschätzung, keine Konditionierung defekter Brennstäbe), Realistische Abschätzung 0,120 kg pro Behälter [34, c. 100]				
Werkstoffe B	ehälterum	feld		
Einlage- rungs- varianteDie Behälter werden mittels eines Einlagerungsgerätes, welches auf Luftkissentechnik basiert, in horizontalen Einlagerungsbohrlöchern eingeschoben und dort abgelegt. Im Anschluss werden die Gleise der Einlagerungsmaschine zurück- gebaut und der Hohlraum um die Behälter mit trockenem Salzgrus verfüllt. Der Verschluss der Einlagerungsstrecken erfolgt mittels Ab- dichtbauwerken aus Salzbeton [14], [15], [53]				
	Material Anmerkung			
Verfüllung	naturtrockener Salzgrus ca. 0,02% Restfeuchte, Anfangsporosität 30-40 % [14], [15], [53]		Durch die geringe Rest- feuchte des eingebrachten Versatzes wird die für die Korrosion der Behälter verfügbare Wassermenge begrenzt [14], [15], [53]	

Sonstige Informationer	n
Gesamtinventar	10.448 tSM, ca.1900 CASTOR [®] Behälter insgesamt (alle Bauarten), die sich zusammensetzen aus 736 CASTOR [®] V/19, 300 CASTOR [®] V/52 und 61 CASTOR [®] 440/84; hinzu kommen ca. 260 CASTOR [®] en mit Wiederaufberei- tungsabfällen sowie 511 CASTOR [®] Behälter mit BE aus Versuchsreaktoren[1, S. 69], [15, S. 17]
Behälterstandzeit nach Auslegung	>500 Jahre (Handhabbarkeit bei Bergung; Materialien
Standzeit (bei Flä-	>1000 Jahre (Lösungsabhängig, sehr geringe Rest-
chenkorrosion)	feuchte im Versatz; Materialien nahezu identisch zu Pol- lux) [34, S. 211, 224, 234]
Standzeit (bei Loch- fraßkorrosion)	Noch nicht untersucht [34, S. 212,224]
Wasserstoffver-	Bei der Auslegung berücksichtigt, bisher für Lagerung in
sprödung	Salz nicht untersucht. Behältermaterialien und Hüllrohre könnten betroffen sein [34, S. 234,526]
Sicherheit gegen	Auslegung gemäß Verkehrsrecht. Zulassung gegen Ab-
Handhabungsunfälle	sturz, Handbabung nach KTA [34 S 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutro- nen- und Gamma-Strahlung. Auf Grund der geringen Dosisleistung
	nicht relevant. [34, S. 605]
Gasbildung durch Ra- diolyse	zwei bis drei Größenordnungen kleiner als Gasbildung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fer- tigungsdefizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 2 Behälter [34, S. 234]
Langfristige Ausfall- rate	Nach >500 Jahren ist mit Behälterversagen durch chemi- sche / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behäl- ter	Keine nennenswerte Verlagerung infolge nur geringer Dichteunterschiede 2m / 1 Millionen Jahre [34, S. 837ff], [89]

CASTOR [®] V/52						
	Werkstoffkennwerte					
Gusseisen mit	Kugelgraph	it GGG40 (0.70	40 oder EN-	GJS-400-15)		
Verwendet für:	Außenbehä	lter und zugehö	öriger Decke	el [34, S. 208]	
Werkstoff- beschrei- bung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die ausgeschiedenen Graphitphasen in Form kugeliger Aus- scheidungen aus und es entsteht ein überwiegend ferritisches Ge- füge, welches dem Werkstoff seine duktilen, stahlähnlichen Einenschaften verleiht					
Masse ges.	87.000 kg [34, S. 170ff]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]	
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärmeleitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2- 13,4*10 - ⁶ /K [35, S. 65]	
0,2 % Dehngrenze RT	250 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehngrenze 150°C	210 MPa [35, S. 57] (abh. von der Mate- rialstärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Mate- rialstärke)	
Kompressi- onsmodul Legierungsele	IndicativeIndicativeIndicative125,2 GPaSchubmodul66,3 GPaPoisson-(berech- net)(berech- net)[33, S. 32]					
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2	
Kupfer Cu	0,15-0,75					

Edelstahl (X5C	rNi13.4, 1.431	3)			
Verwendet für:	Tragzapfen, P	rimär- und Seku	undärdeckel		
Masse ges.	ca. 6800 kg [34, S. 170ff]	E-Modul	206 GPa [94]	Schmelz- punkt	- °C
Dichte	7,7 kg/dm ³ [94]	Wärmeleitfä- higkeit	26 W/m*K [94]	Ausdeh- nungs- koeffi- zient	11* 10 ⁻⁶ /K [94]
0,2 % Dehngrenze RT	560 MPa [94]	0,2 % Dehngrenze 150°C	MPa	0,2 % Dehn- grenze 250°C	MPa
Kompressi- onsmodul	162 GPa (be- rechnet)	Schubmodul	80 GPa (berech- net)	Poisson- zahl	0,288 [95]
Legierungselemente in %: [94]					
Kohlenstoff C	0,04	Chrom Cr	13	Molybdän Mo	0,5
Nickel Ni	4	Phosphor P	0,02	Silicium Si	0,4
Schwefel S	0,001				

CASTOR [®] V/52					
	Wer	kstoffkenn	werte		
Rostfreier Stahl	(exemplaris	sch 1.4541)			
Anmerkung	Der für den Tragkorb verwendete, rostfreie Stahl ist derzeit in den Veröffentlichungen nicht genauer spezifiziert. Es ist jedoch davon auszugehen, dass ein Stahl gewählt wurde, welcher von seinen Eigenschaften dem beim Pollux für den Tragkorb verwen- deten 1.4541 entspricht. Die an dieser Stelle angegebenen Werte stellen somit nur unge- fähre Analtswerte darl				
Verwendet für:	Tragkorb				
Werkstoff- beschreibung	Beim 1.4541 handelt es sich um einen Rost- und säurebeständi- gen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für ei- nen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit.				
Masse ges.	9,600 kg [34, S. 170ff]	E-Modul	200 GPa [93]	Schmelz- punkt	> 1400 °C [93]
Dichte	7,9 kg/dm ³ [93]	Wärmeleitfä- higkeit	15 W/m*K [93]	Ausdeh- nungs- koeffi- zient	17* 10 ⁻⁶ /K [93]
0,2 % Dehngrenze RT	200 MPa [92]	0,2 % Dehngrenze 150°C	167 MPa [92]	0,2 % Dehn- grenze 250°C	147 MPa [92]
Kompressions- modul	166,7 GPa (berech- net)	Schubmodul	76,9 GPa (berech- net)	Poisson- zahl	0,3 [93]
Legierungseleme	ente in %: [92], [93]			
Kohlenstoff C	<= 0,08	Silicium Si	<= 1,00	Mangan Mn	<= 2
Phosphor P	<=0,045	Chrom Cr	17-19	Molybdän Mo	4,0-5,0
Titan Ti	<=1	Schwefel S	<=0,015	Nickel Ni	9,0- 12,0

Polyethylen (Lupolen, Gur, Hostalen, PE-HD)						
Verwendet für:	Moderatorstä	Moderatorstäbe, Abschirmplatte				
Werkstoff- beschreibung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halbdurchsichtiges Thermoplast. Es weist, verglichen mit Po- lyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemischen Substanzen höhere Temperaturfestigkeit auf. Die mechanischen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei Lagerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Git- teratomen abgebremst werden und so nachfolgend wirksamer absorbiert werden können.					
Masse ges.	2.000 kg [34, S. 170ff]	E-Modul	1,15 GPa [82]	Schmelz- punkt	130- 145 °C	
Dichte	0,95 Kg/dm ³ bei 20 °C [82]	Wärme- leitfähig- keit	0,42 W/m K [82]	Ausdeh- nungs- koeffizient	100 - 200 *10 ⁻⁶ K ⁻¹ [82]	
Dehngrenze RT	27 MPa [82]					
Kompressions- modul	7,9-10 GPa (berechnet)	Schub- modul	0,32- 0,41 GPa (berech- net)	Poisson- zahl	0,46 [83]	

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier CASTOR[®] 440/84

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

CASTOR® 440/84

Beim CASTOR[®] 440/84 handelt es sich um einen abgeschirmten Transportund Lagerbehälter (TLB) für abgebrannte Brennelemente. Im Rahmen der VSG wurde seine Eignung zur Einlagerung in tiefen geologischen Formationen untersucht.

Als Einlagerungsvariante soll hierbei die Einlagerung in kurzen, horizontalen Bohrlöchern Anwendung finden. Die den Lagerbehälter umgebenden Bereiche sowie die Einlagerungsstrecken werden nach der Einlagerung mit trockenem Salzgrus verfüllt.

Der CASTOR[®] 440/84, welcher zur Aufnahme von 84 Brennelementen eines Druckwasser-Reaktors des Typs WWER 70 oder WWER 440 bestimmt ist, steht exemplarisch für eine ganze Reihe von Transport- und Lagerbehältern. Weitere Modifikationen dieses Behältertyps sollen zur Lagerung von Brennelementen aus anderen Reaktortypen sowie von verglasten Wiederaufbereitungsabfällen zum Einsatz kommen.

Hervorzuheben ist, dass es sich bei der CASTOR[®]-Familie um selbstabschirmende Behälter handelt, welche auch ohne zusätzliche Overpacks transportiert werden können.

Da bei Lagerkonzepten im Salz der langfristige Einschluss der Radionuklide durch das Gebirge erfolgt, beträgt die Mindestlebensdauer der Behälter, in der diese die alleinige Schutzfunktion übernehmen müssen, nur wenige hundert Jahre. Für diesen Zeitrahmen ist die Integrität des Behälters sichergestellt und somit auch eine Bergung möglich [14], [15]

Lagerkonzept	CASTOR®
Gesellschaften /	GNS / DBE
Organisationen	BFS
Gestein	Salzdiaphir
Einlagerung	kurzes horizonta- les Bohrloch
Masse	116 Mg
Länge	4,080 m
Durchmesser	2,66 m
Anzahl gesamt	62 440/84 Behäl- ter ca. 1900 CASTOR®en ge- samt [98]

Aufbau des Behälters

Der CASTOR[®]-Behälter besitzt einen zylindrischen Aufbau mit einem Durchmesser von etwa 2,66 m und einer Länge von 4,080 m. Beladen wiegt er etwa 116 t. Zur Handhabung des Behälters besitzt er angeschraubte Tragzapfen aus Edelstahl [14], [15]

	Material		Bes	schreibung	
Tragkorb	Borierter Ede	lstahl/	Der	Tragkorb dient der Arretie-	
	Aluminium		rung	g der in CASTOR [®] eingelager-	
			ten	Brennelemente.	
Primärdeckel &	Edelstahl		Prin	när- und Sekundärdeckel	
Sekundardeckel	260mm		SCHI	ließen die Radionuklide sicher	
			den	n Behälterkörner verschraubt	
			Bei	der Verwendung des CAS-	
			TOF	R [®] s als Endlagerbehälter sind	
			die	Deckel gasdicht mit dem Be-	
			hält	er zu verschweißen. Um dies	
			zu g	Jewahrleisten kann es erfor-	
			nem	anderen Werkstoff neu zu	
			fert	igen.	
Behälterkörper &	Gusseisen m	it Kugel-	Der	Behälterkörper dient der Ab-	
Kühlrippen	graphit		schi	irmung von Neutronen- und	
			Gan	nmastrahlung, hierzu sind in	
			Infit Moderatorstabe aus Po-		
			ripp	en dienen der Wärmeabfuhr.	
Besonderheiten	Die Behälter	wurden ursp	orüng	lich als TLB entwickelt.	
	Die hohe the	Die hohe thermische Belastbarkeit des Steinsalzes und			
	seine gute Warmeleitfahigkeit ermoglichen eine hohe Be-			ermoglichen eine hohe Be-	
Inventor	Tialterbeladul	ig.			
Beschrei- Das In	entar eines Cl	STOP® 440	/84 F	esteht aus 84 BE eines	
bung Drucky	asserreaktors.		/041	Destent dus 04 DE enles	
Insges	amt beträgt da	s Inventar b	is zu	40,04 TSM [14, S. 20, 47]	
max. 17,5 K	W [1, S. 16]	max.		144,4 *10 ¹⁵ Bq [1, S. 16]	
Wärme- (UO2, -	40a Abkling-	Aktivität		(UO2, 40a Abklinglagerung)	
leistung lagerur	ng)	g)			
Konzeptstand	4 · · · ·		<u> </u>		
Der CASTOR® 440/8	4 ist als Transponder	port- und La	gerbe	ehalter entwickelt und gebaut	
Endlagerbehälter un	tersucht Von d	inzept wurde Ion Bohältor	n wu	rden bereits 61 Stück gebaut	
Die Gesamtzahl ähn		[®] behälter un	tersc	hiedlicher Größe beläuft sich	
auf über 1000 Behälter. Technologien zur Einlagerung und zum Transport der Be				ng und zum Transport der Be-	
hälter in den horizontalen Kammern wurde bereits entwickelt, eine praktische Er-					
probung unter Endla	gerbedingunge	en ist jedoch	noch	n nicht erfolgt. Auf Grund der	
zum Pollux ähnlicher	n Gestaltung u	nd Materialie	en de	r Behälter kann ein Großteil	
der Kenntnisse über	aessen Langze	eitstabilität a	ut de	en CASTOR [®] ubertragen wer-	
uen. Der Nachweis C		iennen stent	Jeuo		

CASTOR® 440/84

Aufbau CASTOR®

Der prinzipielle Aufbau des CASTOR[®]-Behälters kann der nachfolgenden Zeichnung entnommen werden.

Er besitzt einen Tragkorb aus Aluminium und Edelstahl zur Aufnahme von bis zu 84 DWR-Brennelementen. Dieser wird von einem Behälterkörper aus Gusseisen mit Kugelgraphit umschlossen und mittels eines verschraubten Doppeldeckelsystems verschlossen. Um den CASTOR[®] an die Anforderungen der Tiefenlagerung anzupassen sollen die Hohlräume im Inneren mit Magnetit verfüllt und die beiden Deckel mit dem Behälterkörper gasdicht verschweißt werden.

Es existieren weitere Varianten der CASTOR[®] Familie zur Aufnahme von SWR-BE, DWR-BE oder verglasten WA-Abfällen sowie von Brennelementen aus Forschungs- und Versuchsreaktoren [14], [34], [53].

Länge	4080 mm	Gebinde-	22,7 m ³	Innenvo-	ca. 12,09 m ³
	[14, S. 20]	volumen	[14, S. 20]	lumen	[14]
Durch-	2660 mm	Gebinde-	116 t	Masse	14,58 t
messer	[14, S. 20]	masse	[14, S. 20]	Inventar	[14, S. 47]

CASTOR[®] 440/84 schematisch, nach [14], [100] Werkstoffe Behälter

	Material	Masse	Anmerkung
Tragkorb	borierter Edelstahl/Alu- minium [34, S. 170ff]	9.600 kg [34, S. 170ff]	
Behälterkör- per & Kühlrip- pen	Sphäroguss (EN-GJS-400-15U) [34, S. 170ff]	80.000 kg [34, S. 170ff]	
Primärdeckel & Sekundär- deckel	Edelstahl (1.4313 / X5CrNi13.4) [34, S. 170ff] ca. 360 mm Wand- stärke (andere Werk- stoffe denkbar)	6.800 kg [34, S. 170ff]	Bei der Verwendung als TLB verschraubt, soll durch ein verschweiß- tes Deckelsystem er- setzt werden
Tragzapfen	Edelstahl (X5CrNi13.4, 1.4313) [34, S. 170ff]	Nicht be- kannt	Wird vor Einlagerung entfernt

CASTOR [®] 440/84					
	Inver	ntar der Behä	lter		
HAW-Inventar					
Brennele- menttyp	Anzahl	Masse SM		Anmerkung	
Wasser-Was- ser Energie-Reak- tor	84 [14, S. 21]	84 x 0,1736 t = 14,58 t S. 47]	[14,	Wärmeleistung und Aktivität in Abhängigkeit vom Abbrand können der Tabelle im An- hang entnommen werden	
weiteres Inventa	ar				
Wasserinven- tar im Behälter	 37 kg (extrem konservative Abschätzung, keine Konditionierung defek- ter Brennstäbe), realistische Abschätzung 0,120 kg pro Behälter [34, S. 190] 				
Werkstoffe Behä	ilterumfeld				
Einlagerungs- variante	Die Behälter werden mittels eines Einlagerungsgerätes, welches auf Luftkissentechnik basiert, in horizontalen Einlagerungsbohr- löchern eingeschoben und dort abgelegt. Im Anschluss werden die Gleise der Einlagerungsmaschine zu- rückgebaut und der Hohlraum um die Behälter mit trockenem Salzgrus verfüllt. Der Verschluss der Einlagerungsstrecken er- folgt mittels Abdichtbauwerken aus Salzbeton [14], [15], [53]				
	Material		Anmer	kung	
Verfüllung	naturtrocker ca. 0,02% R Anfangsporo [14], [15], [Material naturtrockener Salzgrus ca. 0,02% Restfeuchte, Anfangsporosität 30-40 % [14], [15], [53]		die geringe Rest- des eingebrachten es wird die für die on der Behälter aare Wassermenge zt L5], [53]	

Sonstige Informationen	
Gesamtinventar	10.448 tSM, ca.1900 CASTOR [®] Behälter insgesamt (alle Bauarten), die sich zusammensetzen aus 736 CASTOR [®] V/19, 300 CASTOR [®] V/52 und 61 CAS- TOR [®] 440/84; hinzu kommen ca. 260 CASTOR [®] en mit Wiederaufbereitungsabfällen sowie 511 CAS- TOR [®] Behälter mit BE aus Versuchsreaktoren[1, S. 69], [15, S. 17]
Behälterstandzeit nach Auslegung	>500 Jahre (Handhabbarkeit bei Bergung; Materia-
Standzeit (bei Flächenkorrosion)	 >1000 Jahre (Lösungsabhängig, sehr geringe Restfeuchte im Versatz; Materialien nahezu identisch zu Pollux) [34, S. 211, 224, 234]
Standzeit (bei Lochfraßkorrosion)	Noch nicht untersucht [34, S. 212,224]
Wasserstoffversprödung	Bei der Auslegung berücksichtigt, bisher für Lage- rung in Salz nicht untersucht. Behältermaterialien und Hüllrohre könnten betroffen sein [34, S. 234,526]
Sicherheit gegen Handha- bungsunfälle	Auslegung gemäß Verkehrsrecht. Zulassung gegen Absturz, Handhabung nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Dosis- leistung nicht relevant. [34, S. 605]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Ferti- gungsdefizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 2 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach >500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behälter	Keine nennenswerte Verlagerung infolge nur gerin- ger Dichteunterschiede 2m / 1 Millionen Jahre [34, S. 837ff], [89]

CASTOR [®] 440/84						
Werkstoffkennwerte						
Gusseisen mit	Kugelgraphi	it GGG40 (0.704	40 oder EN-	GJS-400-15))	
Verwendet für:	Außenbehä	lter und zugehö	öriger Decke	el [34, S. 208]	
Werkstoff- beschrei- bung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die ausgeschiedenen Graphitphasen in Form kugeliger Aus- scheidungen aus und es entsteht ein überwiegend ferritisches Ge- füge, welches dem Werkstoff seine duktilen, stahlähnlichen Eigenschaften verleiht.					
Masse ges.	80.000 kg [34, S. 170ff]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]	
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärmeleitfä- higkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2-13,4 10 ⁻⁶ /K [35, S. 65]	
0,2 % Dehngrenze RT	250 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehngrenze 150°C	210 MPa [35, S. 57] (abh. von der Mate- rialstärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Mate- rialstärke)	
Kompressi- onsmodul	125,2 GPa (berech- net)	Schubmodul	66,3 GPa (berech- net)	Poisson- zahl	0,275 [33, S. 32]	
Legierungsele	mente in %:	[33]	-			
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2	
Kupfer Cu	0,15-0,75					

Edelstahl (X5C	rNi13.4, 1.43	313)				
Verwendet für:	Tragzapfen,	Tragzapfen, Primär- und Sekundärdeckel				
Werkstoff-	Bei dem Edel	stahl 1.4313 hand	delt es sich u	m einen weite	stgehend	
beschreibung	korrosionsres	istenten Stahl de	r gute mecha	nische Eigens	chaften	
	aufweist.	-	-			
Masse ges.	ca. 6800 kg [34, S. 170ff]	E-Modul	206 GPa [94]	Schmelz- punkt	- °C	
Dichte	7,7 kg/dm ³ [94]	Wärmeleitfä- higkeit	26 W/m*K [94]	Ausdeh- nungs- koeffi-	11* 10 ⁻⁶ /K [94]	
0,2 % Dehngrenze RT	560 MPa [94]	0,2 % Dehngrenze 150°C	MPa	0,2 % Dehn- grenze 250°C	MPa	
Kompressi- onsmodul	162 GPa (berechnet)	Schubmodul	80 GPa (berech- net)	Poisson- zahl	0,288 [95]	
Legierungselemente in %: [94]						
Kohlenstoff C	0,04	Chrom Cr	13	Molybdän Mo	0,5	
Nickel Ni	4	Phosphor P	0,02	Silicium Si	0,4	
Schwefel S	0,001					

CASTOR [®] 440/84							
	Werkstoffkennwerte						
Rostfreier Stahl (exemplarisch 1.4541)							
Anmerkung	Der für den Tragkorb verwendete, rostfreie Stahl ist derzeit in den Veröffentlichungen nicht genauer spezifiziert. Es ist jedoch davon auszugehen, dass ein Stahl gewählt wurde, welcher von seinen Eigenschaften dem beim Pollux für den Tragkorb verwen- deten 1.4541 entspricht. Die an dieser Stelle angegebenen Werte stellen somit nur unge- fähre Anhaltswerte dar!						
Verwendet für:	Tragkorb						
Werkstoff- beschreibung	Beim 1.4541 handelt es sich um einen Rost- und säurebeständi- gen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für ei- nen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit.						
Masse ges.	9,600 kg [34, S. 170ff]	E-Modul	200 GPa [93]	Schmelz- punkt	> 1400 °C [93]		
Dichte	7,9 kg/dm ³ [93]	Wärmeleitfä- higkeit	15 W/m*K [93]	Ausdeh- nungs- koeffizient	17* 10 ⁻⁶ /K [93]		
0,2 % Dehngrenze RT	200 MPa [92]	0,2 % Dehngrenze 150°C	167 MPa [92]	0,2 % Dehn- grenze 250°C	147 MPa [92]		
Kompressions- modul	166,7 GPa (berech- net)	166,7 GPa Schubmodul 76,9 GPa (berech- net) 76,9 GPa zahl [93]					
Legierungselem	Legierungselemente in %: [92], [93]						
Kohlenstoff C	<= 0,08	Silicium Si	<= 1,00	Mangan Mn	<= 2		
Phosphor P	<=0,045	Chrom Cr	17-19	Molybdän Mo	4,0-5,0		
Titan Ti	<=1	Schwefel S	<=0,015	Nickel Ni	9,0- 12,0		

Polyethylen (Lupolen, Gur, Hostalen, PE-HD)						
Verwendet für:	Moderatorsta	Moderatorstäbe, Abschirmplatte				
Werkstoff- beschreibung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halbdurchsichtiges Thermoplast. Es weist, verglichen mit Po- lyethylen geringerer Dichte, eine gute Beständigkeit gegen- über chemischen Substanzen höhere Temperaturfestigkeit auf. Die mechanischen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei Lagerbehältern zum Ein- satz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Gitteratomen abgebremst werden und so nach- folgend wirksamer absorbiert werden können.					
Masse ges.	1540 kg [34, S. 170ff]	E-Modul	1,15 GPa [82]	Schmelz- punkt	130- 145 °C	
Dichte	0,95 Kg/dm ³ Bei 20 °C [82]	Wärme- leitfähig- keit	0,42 W/m K [82]	Ausdehn- ungs- koeffi- zient	100 - 200 *10 ⁻⁶ K ⁻¹ [82]	
Dehngrenze RT	27 MPa [82]					
Kompressions- modul	7,9-10 GPa (berechnet)	Schubmo- dul	0,32- 0,41 GPa (berech- net)	Poisson- zahl	0,46 [83]	

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier CASTOR[®] HAW 28

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

CASTOR® HAW 28

Beim CASTOR[®] HAW 28 handelt es sich um einen abgeschirmten Transport- und Lagerbehälter (TLB) für verglaste radioaktive Abfälle. Im Rahmen der VSG wurde seine Eignung zur Einlagerung in tiefen geologischen Formationen untersucht.

Als Einlagerungsvariante soll hierbei die Einlagerung in kurzen, horizontalen Bohrlöchern Anwendung finden. Die den Lagerbehälter umgebenden Bereiche sowie die Einlagerungsstrecken werden nach der Einlagerung mit trockenem Salzgrus verfüllt.

Hervorzuheben ist, dass es sich bei der CASTOR®-Familie um selbstabschirmende Behälter handelt, welche auch ohne zusätzliche Overpacks transportiert werden können.

Da bei Lagerkonzepten im Salz der langfristige Einschluss der Radionuklide durch das Gebirge erfolgt, beträgt die Mindestlebensdauer der Behälter, in der diese die alleinige Schutzfunktion übernehmen müssen, nur wenige hundert Jahre. Für diesen Zeitrahmen ist die Integrität des Behälters sichergestellt und somit auch eine Bergung möglich [14], [15]

Aufbau des Behälters

Der CASTOR[®]-Behälter besitzt einen zylindrischen Aufbau mit einem Durchmesser von etwa 2,43 m und einer Länge von 5,940 m. Beladen wiegt er etwa 114 t. Zur Handhabung des Behälters besitzt er angeschraubte Tragzapfen aus Edelstahl. [14], [15]

	Material	Beschi	reibung		
Tragkorb	Borierter	Der Tra	igkorb dient (der Arretierung der in CAS-	
	Edelstahl/	TOR [®] e	ingelagerten	Brennelemente.	
	Aluminium				
Primärde-	Edelstahl	Primär-	und Sekund	ärdeckel schließen die Radio-	
ckel & Se-	260mm	nuklide	sicher im Be	hälter ein. Sie werden mit	
kundärdec		dem Be	ehälterkörper	verschraubt.	
kel		Bei der	Verwendung	des CASTOR [®] s als Endlager-	
		behalte	r sind die De	ckel gasdicht mit dem Behal-	
		kann es erforderlich werden die Deckel aus einem			
		Rann es erforderlich werden die Deckel aus einem			
D. I. VII.	Ci.	anuere		diast das Abashimun sure	
Benaiter-	Gusselsen mit	Der Bei	naiterkorper	alent der Abschirmung von	
Kühlrinnen	Kugeigraphic	ihm Moderatorstäbe aus Polyethylen eingelassen			
Kumppen		Die Kühlrippen dienen der Wärmeabfuhr.			
Besonder-	Die Behälter wurden ursprünglich als TLB entwickelt.				
heiten	Die hohe thermische Belastbarkeit des Steinsalzes und seine aute				
	Wärmeleitfähigkeit ermöglichen eine hohe Behälterbeladung.				
Inventar					
Beschrei-	Das Inventar eir	nes CAST	ror [®] haw 28	3 besteht aus 28 mit verglas-	
bung	ten WA-Abfällen	befüllte	n		
	CSD-V Kokille. D	Das Gesa	mtgewicht d	er Kokillen beträgt etwa	
	11.200 kg, hierv	on entfa	allen etwa 9.0	000 kg auf die verglasten Ab-	
-	falle. [14, S. 47], [67, S	. 91ff]		
max.	ca. 27,8 KW		max.	ca. 14*10 ¹⁰ Bq	
Warmeleis-	[1, S. 16]		Aktivitat	[1, S. 16]	
tung	(40a Abklinglage	erung)		(40a Abklinglagerung)	
Konzeptstan	d		··· ·		
Der CASTOR®	HAW 28 ist als I	ransport	- und Lagerb	ehalter entwickelt und gebaut	
worden. Im de	eutschen Alternat	ivkonzep	ot wurde sein	e prinzipielle Eignung als	
endiagerbena	ocamtzahl ähnlick	on den t	Senaltern wu COP®bobältor	ruen bereits menrere Hundert	
läuft sich auf über 1000 Behälter. Technologien zur Einlagerung und zum Trans-					
nort der Behälter in den horizontalen Kammern wurde hereits entwickelt eine					
praktische Err	probung unter End	dlagerbe	dingungen is	t jedoch noch nicht erfolat.	
Auf Grund der	zum Pollux ähnli	ichen Ge	staltung und	Materialien der Behälter kann	
ein Großteil de	er Kenntnisse übe	er desser	n Langzeitsta	bilität auf den CASTOR [®] über-	
tragen werder	n. Der Nachweis d	ler Lang	zeitsicherheit	steht jedoch für beide Behäl-	
ter noch aus.	ter noch aus.				

CASTOR® HAW 28

Aufbau CASTOR®

Der prinzipielle Aufbau des CASTOR $^{\circledast}\mbox{-}Behälters kann der nachfolgenden Zeichnung entnommen werden.$

Er besitzt einen Tragkorb aus Aluminium und Edelstahl zur Aufnahme von bis zu 28 Kokillen.

Dieser wird von einem Behälterkörper aus Gusseisen mit Kugelgraphit umschlossen und mittels eines verschraubten Doppeldeckelsystems verschlossen.

Um den CASTOR[®] an die Anforderungen der Tiefenlagerung anzupassen sollen die Hohlräume im Inneren mit Magnetit verfüllt und die beiden Deckel mit dem Behälterkörper gasdicht verschweißt werden.

Es existieren weitere Varianten der CASTOR® Familie zur Aufnahme von SWR-BE, WWER-BE oder verglasten WA-Abfällen sowie von Brennelementen aus Forschungsund Versuchsreaktoren. [14], [34], [53]

Länge	6122 mm	Gebinde-	28,4 m³	Innenvo-	ca. 7,5 m ³ [14]
	[14, S. 20]	volumen	[14, S. 20]	lumen	,, []
Durch-	2430 mm	Gebinde-	115 t	Masse	11,2 t
messer	[14, S. 20]	masse	[14, S. 20]	Inventar	[14, S. 47]

CASTOR® HAW 28 schematisch, nach [14], [100]

Werkstoffe Behälter

	Material	Masse	Anmerkung
Tragkorb	borierter Edel- stahl/Aluminium [34, S. 170ff]	9.600 kg [34, S. 170ff]	
Behälterkörper & Kühlrippen	Sphäroguss (EN- GJS-400-15U) [34, S. 170ff]	99.600 kg [34, S. 170ff]	
Primärdeckel & Sekundärde- ckel	Edelstahl (1.4313 / X5CrNi13.4) [34, S. 170ff] ca. 360 mm Wandstärke (andere Werk- stoffe denkbar)	6.800 kg [34, S. 170ff]	Bei der Verwendung als TLB verschraubt, soll durch ein ver- schweißtes Deckelsys- tem ersetzt werden
Tragzapfen	Edelstahl (X5CrNi13.4, 1.4313) [34, S. 170ff]	Nicht bekannt	Wird vor Einlagerung entfernt

CASTOR [®] HAW 28					
	Inventar der Behälter				
HAW-Inventar					
Brennele- menttyp	Anzahl	Masse SM	Anmerkung		
HAW-Kokillen	28 [14, S. 22]	28 x 0,32 t = 8,96 t [14, S. 47]	Wärmeleistung und Aktivität in Abhängigkeit vom Abbrand können der Tabelle im Anhang entnommen werden		
weiteres Inventar					
Wasserinventar im Behälter	Die CASTOR [®] HAW werden trocken beladen, daher ist von ei- ner sehr geringen Restfeuchte auszugehen. Realistische Ab- schätzung 0.120 kg pro Bohälter [24, S. 190]				
Werkstoffe Behä	lterumfeld				
Einlagerungs- variante	Die Behälte ches auf Lu rungsbohrl Im Anschlu zurückgeba nem Salzgr cken erfolg [15], [53]	Die Behälter werden mittels eines Einlagerungsgerätes, wel- ches auf Luftkissentechnik basiert, in horizontalen Einlage- rungsbohrlöchern eingeschoben und dort abgelegt. Im Anschluss werden die Gleise der Einlagerungsmaschine zurückgebaut und der Hohlraum um die Behälter mit trocke- nem Salzgrus verfüllt. Der Verschluss der Einlagerungsstre- cken erfolgt mittels Abdichtbauwerken aus Salzbeton [14], 1151 (521)			
	Material		Anmerkung		
Verfüllung	naturtrocke ca. 0,02% Anfangspor [14], [15],	ener Salzgrus Restfeuchte, rosität 30-40 % [53]	Durch die geringe Restfeuchte des eingebrachten Versatzes wird die für die Korrosion der Behälter verfügbare Wasser- menge begrenzt [14], [15], [53]		

Sonstige Informationen	
Gesamtinventar	10.448 tSM, ca.1900 CASTOR [®] Behälter insgesamt (alle Bauarten), die sich zusammensetzen aus 736 CASTOR [®] V/19, 300 CASTOR [®] V/52 und 61 CAS- TOR [®] 440/84; hinzu kommen ca. 260 CASTOR [®] en mit Wiederaufbereitungsabfällen sowie 511 CAS- TOR [®] Behälter mit BE aus Versuchsreaktoren [1, S. 69], [15, S. 17]
Behälterstandzeit nach	>500 Jahre (Handhabbarkeit bei Bergung; Materia-
Standzeit (bei Flächenkorrosion)	 >1000 Jahre (Lösungsabhängig, sehr geringe Restfeuchte im Versatz; Materialien nahezu identisch zu Pollux) [34, S. 211, 224, 234]
Standzeit (bei Lochfraßkorrosion)	Noch nicht untersucht
(ber Lochrabkorrosion) Wasserstoffversprödung	Bei der Auslegung berücksichtigt, bisher für Lage- rung in Salz nicht untersucht. Behältermaterialien und Hüllrohre könnten betroffen sein [34, S. 234,526]
Sicherheit gegen Hand- habungsunfälle	Auslegung gemäß Verkehrsrecht. Zulassung gegen Absturz, Handhabung nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Dosis- leistung nicht relevant. [34, S. 605]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 2 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach >500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behälter	Keine nennenswerte Verlagerung infolge nur gerin- ger Dichteunterschiede 2m / 1 Millionen Jahre [34, S. 837ff], [89]

CASTOR [®] HAW 28					
	Wer	kstoffke	nnwert	te	
Gusseisen mit Kugelgraphit GGG40 (0.7040 oder EN-GJS-400-15)					
Verwendet für:	Außenbehä	lter und zugeh	öriger Deck	el [34, S. 20	8]
Werkstoff- beschrei- bung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die ausgeschiedenen Graphitphasen in Form kugeliger Ausscheidungen aus und es entsteht ein überwiegend ferritisches Gefüge, welches dem Werkstoff seine duktilen, stahlähnlichen Ei- genschaften verleiht.				
Masse ges.	99.600 kg [34, S. 170ff]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärmeleit- fähigkeit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2- 13,4* 10 ⁻⁶ /K [35, S. 65]
0,2 % Dehngrenze RT	250 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehngrenze 150°C	210 MPa [35, S. 57] (abh. von der Mate- rialstärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Mate- rialstärke)
Kompressi- onsmodul	125,2 GPa (berech- net)	Schubmodul	66,3 GPa (berech- net)	Poisson- zahl	0,275 [33, S. 32]
Legierungsele	emente in %	:[33]			
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2
Kupfer Cu	0,15-0,75				

Edelstahl (X5CrNi	Edelstahl (X5CrNi13.4, 1.4313)					
Verwendet für:	Tragzapfe	Tragzapfen, Primär- und Sekundärdeckel				
Werkstoff- beschreibung	Bei dem Eo hend korro schaften a	delstahl 1.4313 han osionsresistenten Sta ufweist.	delt es sich ahl der gute	um einen we mechanische	itestge- e Eigen-	
Masse ges.	ca. 6800 kg [34, S. 170ff]	E-Modul	206 GPa [94]	Schmelz- punkt	- °C	
Dichte	7,7 kg/dm³ [94]	Wärmeleitfä- higkeit	26 W/m*K [94]	Ausdeh- nungs- koeffi- zient	11* 10 ⁻⁶ /K [94]	
0,2 % Dehngrenze RT	560 MPa [94]	0,2 % Dehngrenze 150°C	МРа	0,2 % Dehn- grenze 250°C	MPa	
Kompressions- modul	162 GPa (berech- net)	Schubmodul	80 GPa (berech- net)	Poisson- zahl	0,288 [95]	
Legierungseleme	nte in %: [94]				
Kohlenstoff C	0,04	Chrom Cr	13	Molybdän Mo	0,5	
Nickel Ni	4	Phosphor P	0,02	Silicium Si	0,4	
Schwefel S	0,001					

	CASTOR [®] HAW 28					
	Werkstoffkennwerte					
Rostfreier Stahl	Rostfreier Stahl (exemplarisch 1.4541)					
Anmerkung	Der für den Tragkorb verwendete, rostfreie Stahl ist derzeit in den Veröffentlichungen nicht genauer spezifiziert. Es ist jedoch davon auszugehen, dass ein Stahl gewählt wurde, welcher von seinen Eigenschaften dem beim Pollux für den Tragkorb verwen- deten 1.4541 entspricht. Die an dieser Stelle angegebenen Werte stellen somit nur unge- fähre Anbaltswerte darl					
Verwendet für:	Tragkorb					
Werkstoff- beschreibung	Beim 1.4541 handelt es sich um einen Rost- und säurebeständi- gen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für ei- nen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit.					
Masse ges.	9,600 kg [34, S. 170ff]	E-Modul	200 GPa [93]	Schmelz- punkt	> 1400 °C [93]	
Dichte	7,9 kg/dm³ [93]	Wärmeleitfä- higkeit	15 W/m*K [93]	Ausdeh- nungs- koeffizient	17* 10 ⁻⁶ /K [93]	
0,2 % Dehngrenze RT	200 MPa [92]	0,2 % Dehngrenze 150°C	167 MPa [92]	0,2 % Dehn- grenze 250°C	147 MPa [92]	
Kompressions- modul	166,7 GPa (berech- net)	Schubmodul	76,9 GPa (berech- net)	Poisson- zahl	0,3 [93]	
Legierungselem	ente in %:	92], [93]				
Kohlenstoff C	<= 0,08	Silicium Si	<= 1,00	Mangan Mn	<= 2	
Phosphor P	<=0,045	Chrom Cr	17-19	Molybdän Mo	4,0-5,0	
Titan Ti	<=1	Schwefel S	<=0,015	Nickel Ni	9,0- 12,0	

Polyethylen (Lupolen, Gur, Hostalen, PE-HD)						
Verwendet für:	Moderatorstä	Moderatorstäbe, Abschirmplatte				
Werkstoff- beschreibung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halb- durchsichtiges Thermoplast. Es weist, verglichen mit Polyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemi- schen Substanzen und höhere Temperaturfestigkeit auf. Die me- chanischen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei Lagerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Gitterato- men abgebremst werden und so nachfolgend wirksamer absor- biert werden können.					
Masse ges.	1.540 kg [34, S. 170ff]	E-Modul	1,15 GPa [82]	Schmelz- punkt	130- 145 °C	
Dichte	0,95 Kg/dm ³ Bei 20 °C [82]	Wärme-leit- fähigkeit	0,42 W/m K [82]	Ausdeh- nungs- koeffi- zient	100 - 200 *10 ⁻⁶ K ⁻¹ [82]	
Dehngrenze RT	27 MPa [82]					
Kompressions- modul	7,9-10 GPa (berechnet)	Schubmodul	0,32- 0,41 GPa (berech- net)	Poisson- zahl	0,46 [83]	

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier BSK 3

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

BSK-3 Prototyp der GNS [102] Bei der Brennstabkokille handelt es sich um einen nicht abgeschirmten Lagerbehälter zur direkten Endlagerung abgebrannter Brennelemente. Er wurde zur Einlagerung von wärmeentwickelnden, radioaktiven Abfällen in Steinsalz entwickelt. Als Einlagerungsvariante soll hierbei die Bohrlochlagerung in bis zu 300 m langen, vertikalen Bohrlöchern zum Einsatz kommen. Die den Lagerbehälter umgebenden Bereiche im Bohrloch werden nach der Einlagerung mit trockenem Salzgrus verfüllt. Lagerkonz Die Brennstabkokille (BSK 3), welche zur Aufnahme der aus den Brennelementen (BE) entnommenen Brennstäbe von drei BE eines Einlagerun

Druckwasser-Reaktors bestimmt ist, stellt den Musterbehälter einer ganzen Lagerbehälterfamilie dar. Weitere Modifikationen dieses Behältertyps sollen zur Lagerung von Brennelementen aus anderen Reaktortypen sowie von verglasten Wiederaufbereitungsabfällen (auch als Tripple Pack bezeichnet) zum Einsatz kommen. Da die BSK 3 Behälter keine starke Abschirmung besitzen und auf Grund der geringen Wandstärken nur eine eingeschränkte Sicherheit gegen Transportbeschädigung bieten, ist zum Transport der Behälter ein Overpack/Transportbehälter erforderlich, der den notwendigen Schutz der Umgebung und des Personals sicherstellt. Da bei Lagerkonzepten im Salz der langfristige Einschluss der Radionuklide durch das Gebirge erfolgt, beträgt die Auslegungslebensdauer der Behälter, in der diese die alleinige Schutzfunktion übernehmen müssen, 500 Jahre. Für diesen Zeitrahmen ist die Integrität des Behälters sichergestellt und somit auch eine Bergung möglich. [1], [14], [15], [34], [53]

Land	Deutschland
Lagerkonzept	BSK3 / DENKMAL
Gesellschaften /Organisationen	GNS / DBE BFS
Gestein	Salzdiaphir
Einlagerung	verrohrtes Bohrloch
Masse	ca. 5,3 t [15, S. 31]
Länge	4.980 mm [15, S. 31]
Durchmesser	440 mm [15, S. 31]
Anzahl gesamt	ca. 11.000 BSK [15, S. 18]

Aufbau des Behäl	ters				
Die Brennstabkokille besteht aus einem einwandigen, zylindrischen Außenbehälter, welcher aus Feinkornstahl gefertigt und mittels eines verschraubten Primär- und ei- nes verschweißten Sekundärdeckels mit Tragpilz verschlossen wird. Unter dem Pri- märdeckel ist zur Neutronen-Abschirmung eine Platte aus Graphit oder Polyethylen vorgesehen. Die BSK ist aus einem Feinkornbaustahl gefertigt, ihre Materialstärke beträgt 40 mm. Im Inneren werden die Brennelemente von einem Tragkorb aus Edelstahl aufgenommen. [14, S. 32/ff]					
	Material	Beschreibun	ig		
Tragkorb	Edelstahl	Analog zum P zwei Büchsen S. 16]	ollux Behälte zur Aufnahr	er besitzt der Tragkorb ne von Brennstäben. [53,	
Außenbehälter und zugehörige Deckel	Feinkorn- Stahl Der Außenbehälter dient dem dichten Einschluss der Radionuklide. Er ist mit einem verschraubten Primär- und einem verschweißten Sekundärdeckel verschlossen.				
Besonderheiten	Zwischen den beiden Deckeln wird eine Platte aus Graphit oder Polyethylen als Neutronenabsorber eingelegt.				
Inventar					
Beschreibung	Das Inventa drei Brenne Insgesamt [14, S. 47]	Das Inventar einer BSK 3 besteht aus den Brennstäben von drei Brennelementen eines Druckwasserreaktors. Insgesamt beträgt das Inventar bis zu 1,6 TSM			
max. Wärmeleistung	5.5 KW max. 25,6 *10 ¹⁵ Bq [1, S. 16] Aktivität [1, S. 16] (MOX, 40a Abklinglage- rung) Max. 25,6 *10 ¹⁵ Bq				
Konzeptstand					
Die BSK-3 Brennstabkokille ist als Behälter für das deutsche Alternativkonzept zur Endlagerung in vertikalen Bohrlöchern entwickelt worden. Es wurden bereits einige Prototypen gebaut. Auch die Einlagerungsmaschine zum Einlagern der Behälter in das Einlagerungsbohrloch wurde bereits konstruiert, gebaut und in einem Mock-Up die prinzipielle Eignung der Einlagerungsvariante demonstriert. Die Eignung der Komponenten für den Einsatz unter Tage ist jedoch noch weiterführend zu untersu- chend. [14], [15]					

BSK 3

Aufbau BSK 3

Der prinzipielle Aufbau der BSK 3 Behälter kann der nachfolgenden Zeichnung entnommen werden.

Die BSK 3 gilt als Referenzbehälter für eine ganze Familie von Behältern zur Aufnahme unterschiedlicher wärmeentwickelnder Abfallstoffe. Sie besitzt einen Tragkorb zur Aufnahme der Brennstäbe von 3 DWR-Brennelementen. Es sollen weitere Varianten mit modifiziertem Tragkorb abgeleitet werden, die Brennstäbe von 9 SWR-Brennelementen oder 7,5 WWER-Brennelementen aufnehmen können. Insgesamt wird im BSK-Konzept von einer Gesamtzahl von etwa 10.948 Behältern ausgegangen, welche sich wie folgt aufteilen: DWR: ca. 4.660 Behälter; SWR: ca. 1.734 Behälter; WWER ca. 673 Behälter;

Behälter zur Einlagerung von BE aus Versuchsreaktoren ca. 290; Behälter mit Abfällen aus der WA sowie BE-Strukturteilen ca. 3.590 [15, S. 18], [34, S. 170ff]

Länge	4.980 mm	Gebindevo-	ca. 0,72 m ³	Innenvo-	ca. 0,7 m ³
	[14, S. 31]	lumen	[14, S. 31]	lumen	[15, S. 13]
Durchmes-	440 mm	Gebinde-	5,3 t	Masse	ca. 1,55 t
ser	[14, S. 31]	masse	[15, S. 14]	Inventar	[14, S. 47]

Abbildung der BSK 3 [14, S. 33], [15, S. 13] Werkstoffe Behälter

	Material	Masse	Anmerkung
Tragkorb	Edelstahl 1.4541, [53, S. 16]	340 kg [53, S. 16]	
Außenbehälter	Stahl 15MnNi6.3 (1.6210) Wandstärke 19,5-44,5mm [15, S. 12]	2.526 kg [53, S. 16]	
- Primärdeckel	Stahl 15MnNi6.3 (1.6210)		verschraubt
- Sekundärdeckel	Stahl 15MnNi6.3 (1.6210) Materialstärke ca. 40 mm		verschweißt
- Moderator Primärdeckel	Graphit oder Polyethylen Materialstärke ca. 50 mm	ca. 7 kg [15, S. 182]	

		BSK 3	
	Inver	ntar der Behä	lter
HAW-Inventar			
Brennele- menttyp	Anzahl	Masse SM	Anmerkung
Druckwasser- reaktor	3 [15, S. 11]	3 X 0,517 t = 1,55 t [14, S, 47]	Wärmeleistung und Aktivi- tät in Abhängigkeit vom
Siedewasser- reaktor	9 [15, S. 11]	9 x 0,173 t = 1,56 t [14, S. 47]	Abbrand können der Ta- belle [1, S. 16] entnom-
Wasser- Wasser Energie- Reaktor	7,5 [15, S. 11]	7,55 x 0,1736 t = 1,30 t [14, S. 47]	men werden
weiteres Invent	tar		
Wasserinven- tar im Behälter	5,4 kg (extre defekter Brer realistische A	m konservative Schätzur Instäbe), bschätzung 0.06 kg pro l	ng, keine Konditionierung Behälter [34, S, 190]
Werkstoffe Beh	älterumfeld		
Einlagerungs- variante	In der Sohle 50,6 m Einlag einem Durch mittels der Ei wird der Ring Schicht aus t nachfolgende loch verschlo Salzgrus vers	der Einlagerungsstrecke gerungsbohrlöcher mit ei messer von ca. 0,5 m ers nlagerungsmaschine her ispalt mit trockenem Salz rockenem Salzgrus einge BSK eingelagert wird. Ir ssen und die Einlagerung setzt [14], [15].	werden im Abstand von ner Länge von 300 m und itellt. In diese wird eine BSK abgelassen. Im Anschluss grus verfüllt und eine bracht, auf der dann die n Anschluss wird das Bohr- sstrecke mit trockenem
	Material		Anmerkung
Verfüllung Bohrloch	trockener, rie	eselfähiger Quarzsand	
Verfüllung Einlagerungs- strecke	naturtrocken ca. 0,02% Re Anfangsporos [14], [15], [3	er Salzgrus estfeuchte, sität 30-40 % 34], [53]	Durch die geringe Rest- feuchte des eingebrachten Versatzes wird die für die Korrosion der Behälter verfügbare Wassermenge begrenzt [14], [15], [34], [53]

Sonstige Informationen	
Gesamtinventar	10.448 t, insgesamt 7.068 BE-BSK (alle Bauarten), hinzu kommen ca. 3.590 modifizierte BSK mit WA- Abfällen sowie BE-Strukturteilen und 290 modifi- zierte BSK mit BE aus Versuchsreaktoren [1, S, 69], [15, S, 18]
Behälterstandzeit nach Auslegung	>500 Jahre (Handhabbarkeit bei Bergung) [8], [34, S. 211ff]
Standzeit (bei Flächenkorrosion)	>500 Jahre nach Auslegung (Lösungsabhängig, ge- ringe Restfeuchte im Versatz) 380 Jahre bei unbe- grenztem Lösungszutritt [34, S. 211,224,234]
Standzeit (bei Lochfraßkorrosion)	Noch nicht untersucht. Bei niedrig legierten Stählen ist der Einfluss von Wasserstoffversprödung und Lochfraßkorrosion jedoch untergeordnet [34, S. 211,224]
Wasserstoffversprödung	Bei der Auslegung berücksichtigt, bisher für Lage- rung in Salz nicht untersucht. Behältermaterialien und Hüllrohre könnten betroffen sein [34, S. 526]
Sicherheit gegen Handhabungsunfälle	Auslegung und Handhabung des Transportbehäl- ters und der BSK nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Dosis- leistung nicht relevant. [34, S. 604]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 12 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach >500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behälter	Keine nennenswerte Verlagerung infolge nur gerin- ger Dichteunterschiede 2m / 1 Millionen Jahre [34, S. 837ff]

BSK 3

Werkstoffkennwerte

Stahl 15MnNi6.3 (1.6210)

Verwendet für:	Außenbehälter und zugehörige Deckel						
Werkstoff-	Bei dem Stah	Bei dem Stahl 1.6210 handelt es sich um einen niedrig legierten					
beschreibung	Stahl mit gut	er Schweißeigr	nung.				
Masse ges.	2.526 kg	E-Modul	210 GPa	Schmelz-	- °C		
	[53,		[91,	punkt			
	S. 16]		S. 8]				
Dichte	7,85	Wärme-	39,6	Ausdeh-	11,5*		
	kg/dm³	leitfähig-	W/m*K	nungs-	10 ⁻⁶ /K		
	[91,	keit	[92,	koeffizient	[92,		
	S. 8]		S. 232]		S. 232]		
0,2 %	300 MPa	0,2 %	- MPa	0,2 %	- MPa		
Dehngrenze	[91, S. 8]	Dehn-		Dehn-			
RT		grenze		grenze			
		150°C		250°C			
Kompressions-	175 GPa	Schubmo-	80,8 GPa	Poisson-	0,3		
modul	(berechnet)	dul	(berech-	zahl	[91,		
			net)		S. 8]		
Legierungselem	ente in %: [9	92, S. 232]					
Kohlenstoff C	0,155	Silicium Si	0,29	Mangan	1,44		
	0.000		0.004	Mn	0.000		
Phosphor P	0,008	Schwerel S	0,004	Aluminium	0,036		
Chrom Cr	0,06	Kupfer Cu	0,06	Molybdän	0,04		
	-	•		Mo			
Nickel Ni	0,73	Vanadium V	0,003				
Edelstahl 1.4541							
----------------------------	--	---	------------------------------	-----------------------------------	------------------------------------	--	
Verwendet für:	Tragkorb	Tragkorb					
Werkstoff- beschreibung	Beim 1.4541 gen Stahl. E nen Einsatz besitzt er eir	Beim 1.4541 handelt es sich um einen Rost- und säurebeständi- gen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für ei- nen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit					
Masse ges.	340 kg [53, S. 16]	E-Modul	200 GPa [93]	Schmelz- punkt	> 1400 °C [93]		
Dichte	7,9 kg/dm³ [93]	Wärmeleit- fähigkeit	15 W/m*K [93]	Ausdeh- nungs- koeffizient	17* 10 ⁻⁶ /K [93]		
0,2 % Dehngrenze RT	200 MPa [94]	0,2 % Dehngrenze 150°C	167 MPa [94]	0,2 % Dehn- grenze 250°C	147 MPa [94]		
Kompressions- modul	166,7 GPa (berech- net)	Schubmo- dul	76,9 GPa (berech- net)	Poisson- zahl	0,3 [93]		
Legierungselem	ente in %: [93], [94]					
Kohlenstoff C	<= 0,08	Silicium Si	<= 1,00	Mangan Mn	<= 2		
Phosphor P	<=0,045	Chrom Cr	17-19	Molybdän Mo	4,0-5,0		
Titan Ti	<=1	Schwefel S	<=0,015	Nickel Ni	9,0-12,0		

	BSK 3-R						
	Werkstoffkennwerte						
Polyethylen (Lu	polen, Gur, H	ostalen, PE-H	ID)				
Verwendet für:	Abschirmpla	atte im Decke	1				
Werkstoff- beschreibung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halb- durchsichtiges Thermoplast. Es weist, verglichen mit Polyethylen geringerer Dichte, eine gute Beständigkeit gegenüber chemi- schen Substanzen höhere Temperaturfestigkeit auf. Die mechani- schen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei Lagerbehältern zum Einsatz kommen, vergleichsweise schlecht [34]. PE besitzt jedoch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Gitterato- men abgebremst werden und so nachfolgend wirksamer absor- biert werden können.						
Masse ges.	ca. 7 kg [34, S. 182]	E-Modul	1,15 GPa [83]	Schmelz- punkt	130- 145 °C		
Dichte	0,95 kg/dm³ [83]	Wärmeleit- fähigkeit	0,42 W/m*K [83]	Ausdeh- nungs- koeffizient	100- 200* 10 ⁻⁶ /K [84, S. 1]		
Dehngrenze RT	27 MPa [83, S. 1]						
Kompressions- modul	7,9-10,0 GPa (berechnet)	Schubmo- dul	0,32-0,41 GPa (berechnet)	Poisson- zahl	0,46 [84, S. 1]		

Graphit						
Verwendet für:	Abschirmpla	Abschirmplatte				
Werkstoff- beschreibung	Graphit ist eine Modifikation des Kohlenstoffs. Die mechanischen Eigenschaften des Graphit tragen nicht nennenswert zur Stabili- tät eines Lagerbehälters bei, jedoch eignet sich Graphit, ähnlich wie Polyethylen, gut zur Abschirmung von Neutronenstrahlung.					
Masse ges.	ca. 16,7 kg (berechnet)	E-Modul	4,8 GPa [86, S. 1]	Schmelz- tempera- tur	3370 °C [86, S. 1]	
Dichte	2,267 kg/cm ³ [86, S. 1]	Wärme- leitfähig- keit	155 W/m*K [86, S. 1]	Ausdeh- nungs- koeffizient	2*10 ⁻⁶ /K [86, S. 1]	
0,2 % Dehngrenze RT	14-34 MPa [87, S. 16]	0,2 % Dehn- grenze 150°C	- MPa	0,2 % Dehn- grenze 250°C	- MPa	
Kompressions- modul	33 GPa [86, S. 1]	Schubmo- dul	1,62 GPa (berech- net)	Poisson- zahl	0,48 [86, S. 1]	

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier BSK 3-R

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

BSK 3-K		

	.*	
5000	Vardersna Libit	
1845 1		
11 11 11 11 11 11 11 11 11 11 11 11 11	10	
	Schultzanizhtă d	

S Benni B		
Zeichnung einer BSK 3-R [15, S. 13]	
Bei der Brennstabkokille handelt es sich um ei-		
nen nicht abgeschirmten Lagerbehälter zur direk-	Land	Deutschland
ten Endlagerung abgebrannter Brennelemente.		
den radioaktiven Abfällen in Steinsalz entwickelt.	Lagerkonzept	BSK3 /
Als Einlagerungsvariante soll hierbei die Bohr-		DENKMAL
lochlagerung in verrohrten, bis zu 300 m langen	Gesellschaften	GNS / DBE
Bohrlöchern zum Einsatz kommen. Die den La-	/ Organisatio-	BFS
gerbenalter umgebenden Bereiche in der Verron-	Gestein	Salzdianhir
trockenem Sand verfüllt.	Costem	Sulzulupini
Die Brennstabkokille (BSK 3-R), welche zur Auf-	Einlagerung	verrohrtes
nahme der aus den Brennelementen entnomme-		Bohrloch
nen Brennstäbe von drei Brennelementen eines	Masse	5,3 t [15, S.
Musterbehälter einer ganzen Lagerbehälterfami-		14]
lie dar. Weitere Modifikationen dieses Behälter-	Länge	5.060 mm
typs sollen zur Lagerung von Brennelementen		[15, S. 14]
aus anderen Reaktortypen sowie von verglasten	Durchmesser	520 mm
Wiederaufbereitungsabfallen (auch als Tripple	Anzahl gesamt	$\begin{bmatrix} 13, 5, 14 \end{bmatrix}$
Da die BSK 3-R Behälter keine starke Abschir-	Anzam gesume	BSK
mung besitzen und auf Grund der geringen		[15, S. 18]
Wandstärken nur eine eingeschränkte Sicherheit		
gegen Transportbeschädigung bieten, ist zum		
ransport der Behalter ein Overpack/Transport-		
Schutz der Umgebung und des Personals sicher-		
zustellen.		
Da bei Lagerkonzepten im Salz der langfristige		
Einschluss der Radionuklide durch das Gebirge		
erroigt, betragt die Ausiegungslebensdauer der Behälter, in der diese die alleinige Schutzfunktion		
übernehmen müssen, 500 Jahre. Für diesen Zeit-		
rahmen ist die Integrität des Behälters sicherge-		
stellt und somit auch eine Bergung möglich. [1],		
[14], [15], [34], [53]		

Aufbau des E	Behälters				
Die Brennstab	kokille besteht aus e	einem einv	vandigen, koni	schen Außenbehälter,	
welcher aus Fe	welcher aus Feinkornstahl gefertigt und mittels eines verschraubten Primär- und ei-				
nes verschweißten Sekundärdeckels mit Tragpilz verschlossen wird. Unter dem Pri-					
märdeckel ist	märdeckel ist zur Neutronen-Abschirmung eine Platte aus Graphit oder Polyethylen				
vorgesehen. Die BSK ist aus einem Feinkornbaustahl gefertigt, ihre Materialstärke					
beträgt 40 mn	n. Im Inneren werde	en die Brer	nnelemente vo	n einem Tragkorb aus	
Edelstahl aufg	enommen. [14, S. 3	2ff]			
	Material	Beschre	ibung		
Tragkorb	Edelstahl	Edelstahl Analog zum Pollux Behälter besitzt der Tragkorb zwei Büchsen zur Aufnahme von Brennstäben. [53, S. 16]			
Außenbe-	Feinkornstahl	Der Auße	enbehälter dien	t dem dichten Einschluss	
hälter		der Radio	onuklide. Er ist	mit einem verschraubten	
und zuge-		Primär- u	und einem vers	chweißten Sekundärde-	
hörige De- ckel		ckel verschlossen.			
Besonder-	Zwischen den beid	en Deckeli	n wird eine Plat	tte aus Graphit oder Po-	
heiten	lyethylen als Neutr	onenabsor	rber eingelegt.		
Inventar	L				
Beschrei-	Das Inventar einer	BSK 3-R	besteht aus de	n Brennstäben von	
bung	drei Brennelemente	en eines D	ruckwasserrea	ktors.	
	Insgesamt beträgt	das Inven	tar bis zu 1,6	TSM	
	[14, S. 47], [15, S	. 11]			
max.	5,5 KW [1, S. 16]		max.	25,6 *10 ¹⁵ Bg	
Wärmeleis-	(MOX, 40 a		Aktivität	[1, S. 16]	
tuna	Abklinglagerung)			(MOX, 40 a	
5	5 5 5,			Abklinglagerung)	
Konzeptstan	d				
Die BSK-3R Bi	ennstabkokille ist al	ls Behälter	r für das deutse	che Alternativkonzept zur	
Endlagerung in verrohrten Bohrlöchern entwickelt worden und stellt eine Weiterent-					
Enulagerung I	n verrohrten Bohrlöc	chern entw	vickelt worden	und stellt eine Weiterent-	
wicklung der r	n verrohrten Bohrlöc nicht rückholbaren B	chern entw SK 3 dar.	vickelt worden	und stellt eine Weiterent-	
wicklung der r Von den urspr	n verrohrten Bohrlöc nicht rückholbaren B ünglichen BSK 3 Bel	chern entw SK 3 dar. hältern wu	vickelt worden Irden bereits w	und stellt eine Weiterent- enige Prototypen gebaut.	
wicklung der r Von den urspr Auch die Einla	n verrohrten Bohrlöc nicht rückholbaren B ünglichen BSK 3 Bel gerungsmaschine zu	chern entw SK 3 dar. hältern wu ım Transp	vickelt worden Irden bereits w ort und zum Al	und stellt eine Weiterent- enige Prototypen gebaut. blegen der Behälter auf	
wicklung der r Von den urspr Auch die Einla der Sohle der	n verrohrten Bohrlöc nicht rückholbaren B ünglichen BSK 3 Bel gerungsmaschine zu Einlagerungsstrecke	chern entw SK 3 dar. hältern wu Im Transp wurde be	vickelt worden Irden bereits w ort und zum Al Preits konstruie	und stellt eine Weiterent- enige Prototypen gebaut. olegen der Behälter auf rt, gebaut und in einem	
wicklung der r Von den urspr Auch die Einla der Sohle der Mock-Up die p	n verrohrten Bohrlöc nicht rückholbaren B ünglichen BSK 3 Bel gerungsmaschine zu Einlagerungsstrecke rinzipielle Eignung d	chern entw SK 3 dar. hältern wu im Transp wurde be ler Einlage	vickelt worden Irden bereits w ort und zum Al Preits konstruie Prungsvariante	und stellt eine Weiterent- enige Prototypen gebaut. olegen der Behälter auf rt, gebaut und in einem demonstriert. Insbeson-	
wicklung der r Von den urspr Auch die Einla der Sohle der Mock-Up die p dere die Rückl	n verrohrten Bohrlöc nicht rückholbaren B ünglichen BSK 3 Bel gerungsmaschine zu Einlagerungsstrecke rinzipielle Eignung d nolung der Behälter	chern entw SK 3 dar. hältern wu im Transp e wurde be ler Einlage aus bereit	vickelt worden Irden bereits w ort und zum Al Preits konstruie Prungsvariante Is verfüllten Eir	und stellt eine Weiterent- enige Prototypen gebaut. olegen der Behälter auf rt, gebaut und in einem demonstriert. Insbeson- ilagerungsbohrlöchern so-	
wicklung der r Von den urspr Auch die Einla der Sohle der Mock-Up die p dere die Rückl wie die Eignur	n verrohrten Bohrlöc nicht rückholbaren B ünglichen BSK 3 Bel gerungsmaschine zu Einlagerungsstrecke rinzipielle Eignung d nolung der Behälter ng der Komponenten	chern entw SK 3 dar. hältern wu um Transp wurde be ler Einlage aus bereit für den E	vickelt worden ort und zum Al rreits konstruie rrungsvariante s verfüllten Eir insatz unter Ta	und stellt eine Weiterent- enige Prototypen gebaut. olegen der Behälter auf rt, gebaut und in einem demonstriert. Insbeson- lagerungsbohrlöchern so- nge sind jedoch noch	

BSK 3-R

Aufbau BSK 3-R

Der prinzipielle Aufbau der BSK 3-R Behälter kann der nachfolgenden Zeichnung entnommen werden.

Die BSK 3-R gilt als Referenzbehälter für eine ganze Familie von Behältern zur Aufnahme unterschiedlicher wärmeentwickelnder Abfallstoffe. Sie besitzt einen Tragkorb zur Aufnahme der Brennstäbe von 3 DWR-Brennelementen. Es sollen weitere Varianten mit modifiziertem Tragkorb abgeleitet werden, die Brennstäbe von 9 SWR-Brennelementen oder 7,5 WWER-Brennelementen aufnehmen können. Insgesamt wird im BSK-Konzept von einer Gesamtzahl von etwa 10.948 Behältern ausgegangen, welche sich wie folgt aufteilen: DWR: ca. 4.660 Behälter; SWR: ca. 1.734 Behälter; WWER ca. 673 Behälter;

Behälter zur Einlagerung von BE aus Versuchsreaktoren ca. 290; Behälter mit Abfällen aus der WA sowie BE-Strukturteilen ca. 3.590 [15, S. 18], [34, S. 170ff]

		1	1	-	1
Länge	5.060 mm	Gebinde-	ca. 0,94 m ³	Innenvolu-	ca.
	[15, S. 14]	volumen	[15, S. 14]	men	0,7 m³
					[15, S. 13]
Durchmes-	520 mm	Gebinde-	5,3 t	Masse In-	ca.
ser	[15, S. 14]	masse	[15, S. 14]	ventar	1,55 t
	_		_		[14, S. 47]

Werkstoffe Behälter

	Material	Masse	Anmerkung
Tragkorb	Edelstahl 1.4541,	340 ka	
	[53, S. 16]	[53, S. 16]	
Außenbehälter	Stahl 15MnNi6.3 (1.6210)	2.526 kg	
	Wandstärke 19,5 - 44,5 mm	[53, S. 16]	
	[15, S. 12]		
- Primärdeckel	Stahl 15MnNi6.3 (1.6210)		verschraubt
-Sekundärdeckel	Stahl 15MnNi6.3 (1.6210)		verschweißt
	Materialstärke ca. 40 mm		
- Moderator	Graphit oder Polyethylen	ca. 7 kg	
Primärdeckel	Materialstärke ca. 50 mm	[15, S. 182]	

BSK 3-R							
Inventar der Behälter							
HAW-Inventar							
Brennelement-typ	Anzahl	Masse SM	Anmerkung				
Druckwasserreak- tor Siedewasserreak- tor Wasser-Wasser Energie-Reaktor	3 [15, S. 11] 9 [15, S. 11] 7,5 [15, S. 11]	3 X 0,517 t = 1,55 t [14, S. 47] 9 x 0,173 t = 1,56 t [14, S. 47] 7,55 x 0,1736 t = 1,30 t [14, S. 47]	Wärmeleistung und Aktivität in Abhängig- keit vom Abbrand können der Tabelle [1, S. 16] entnommen werden				
weiteres Inventar							
Wasserinventar im Behälter	5,4 kg (extre rung defekter pro Behälter	m konservative Schätzu Brennstäbe), realistisc [34, S. 190]	ıng, keine Konditionie- he Abschätzung 0,06 kg				
Werkstoffe Behälte	rumfeld						
Einlagerungs- variante	In der Sohle der Einlagerungsstrecke werden im Abstand von 50,6 m Einlagerungsbohrlöcher mit einer Länge von 300 m und einem Durchmesser von 0,76 m erstellt. Im Anschluss wird ein 50 mm starken Liner aus Eisen oder Stahl (bei der Auslegung wurde als Referenz ein EN-GJS400 verwendet) mit einem Außendurchmesser von 0,72 m in das Bohrloch einge- führt. [15, S. 135ff] Nach dem Aufkriechen des Salzes auf den Liner werden die einzelnen BSK in die Bohrlöchern abge- lassen und der verbleibende Ringspalt mittels rieselfähigem, trockenem Quarzsand verfüllt. Im Anschluss wird das Bohr- loch verschlossen und die Einlagerungsstrecke mit trockenem						
Vorfüllung	Material	colfähiger Quarzcand	Anmerkung				
Bohrloch	u ockener, ne	senaniyer Quarzsallu					
Verfüllung Einlagerungsstre- cke	naturtrockene ca. 0,02% Re Anfangsporos [14], [15], [3	er Salzgrus istfeuchte, ität 30-40 % i4], [53]	Durch die geringe Rest- feuchte des eingebrach- ten Versatzes wird die für die Korrosion der Behälter verfügbare Wassermenge begrenzt [14], [15], [34], [53]				

Sonstige Informationen	
Gesamtinventar	10.448 t, insgesamt 7.068 BE-BSK (alle Bauar- ten), hinzu kommen ca. 3.590 modifizierte BSK mit WA-Abfällen sowie BE-Strukturteilen und 290 modifizierte BSK mit BE aus Ver- suchsreaktoren [1, S. 69], [15, S. 18]
Behälterstandzeit nach Auslegung	>500 Jahre (Handhabbarkeit bei Bergung) [8], [34, S. 211ff]
Standzeit (bei Flächenkorrosion)	>500 Jahre nach Auslegung (Lösungsabhän- gig, geringe Restfeuchte im Versatz) 380 Jahre bei unbegrenztem Lösungszutritt [34, S. 211,224,234]
Standzeit (bei Lochfraßkorrosion)	Noch nicht untersucht [34, S. 211,224]. Bei niedrig legierten Stählen ist der Einfluss von Wasserstoffversprödung und Lochfraßkorrosion jedoch untergeordnet
Wasserstoffversprödung	Bei der Auslegung berücksichtigt, bisher für Lagerung in Salz nicht untersucht. Behälterma- terialien und Hüllrohre könnten betroffen sein [34, S. 526]
Sicherheit gegen Handhabungsunfälle	Auslegung und Handhabung des Transportbe- hälters und der BSK nach KTA [34, S. 234]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Dosisleistung nicht relevant. [34, S. 604]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gas- bildung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungs- defizite (<500 Jahre)	maximal 0,1% der Behälter = ca. 12 Behälter [34, S. 234]
Langfristige Ausfallrate	Nach >500 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [34, S. 234]
Absinken der Behälter	Keine nennenswerte Verlagerung infolge nur geringer Dichteunterschiede 2m / 1 Millionen Jahre [34, S. 837ff]

BSK 3-R						
Werkstoffkennwerte						
Stahl 15MnNi6.	3 (1.6210)					
Verwendet für:	Außenbehäl	Außenbehälter und zugehörige Deckel				
Werkstoff- beschreibung	Bei dem Stah Stahl mit gut	l 1.6210 hande er Schweißeigr	elt es sich ur nung.	n einen niedrig	legierten	
Masse ges.	2.526 kg [53, S. 16]	E-Modul	210 GPa [91, S. 8]	Schmelz- punkt	- °C	
Dichte	7,85 kg/dm³ [91, S. 8]	Wärme- leitfähig- keit	39,6 W/m*K [92, S. 232]	Ausdeh- nungs- koeffizient	11,5* 10 ⁻⁶ /K [92, S. 232]	
0,2 % Dehngrenze RT	300 MPa [91, S. 8]	0,2 % Dehn- grenze 150°C	- MPa	0,2 % Dehn- grenze 250°C	- MPa	
Kompressi- onsmodul	175 GPa (berechnet)	Schubmo- dul	80,8 GPa (berech- net)	Poisson- zahl	0,3 [91, S. 8]	
Legierungselem	ente in %: [9	92, S. 232]				
Kohlenstoff C	0,155	Silicium Si	0,29	Mangan Mn	1,44	
Phosphor P	0,008	Schwefel S	0,004	Aluminium AL	0,036	
Chrom Cr	0,06	Kupfer Cu	0,06	Molybdän Mo	0,04	
Nickel Ni	0,73	Vanadium V	0,003			

Edelstahl 1.4541						
Verwendet für:	Tragkorb	Tragkorb				
Werkstoff- beschreibung	Beim 1.4541 gen Stahl. Er Einsatz an Lu eine gute Sch	Beim 1.4541 handelt es sich um einen Rost- und säurebeständi- gen Stahl. Er weist eine hohe Warmfestigkeit auf und ist für einen Einsatz an Luft bis zu 900°C zugelassen. Des Weiteren besitzt er eine gute Schweißbarkeit				
Masse ges.	340 kg [53, S. 16]	E-Modul	200 GPa [93]	Schmelz- punkt	> 1400 °C [93]	
Dichte	7,9 kg/dm³ [93]	Wärme- leitfähig- keit	15 W/m*K [93]	Ausdeh- nungs- koeffizient	17*10 ⁻⁶ /K [93]	
0,2 % Dehngrenze RT	200 MPa [94]	0,2 % Dehn- grenze 150°C	167 MPa [94]	0,2 % Dehn- grenze 250°C	147 MPa [94]	
Kompressi- onsmodul	166,7 GPa (berechnet)	Schub- modul	76,9 GPa (berechnet)	Poisson- zahl	0,3 [93]	
Legierungselem	ente in %: [9	3], [94]				
Kohlenstoff C	<= 0,08	Silicium Si	<= 1,00	Mangan Mn	<= 2	
Phosphor P	<=0,045	Chrom Cr	17-19	Molybdän Mo	4,0-5,0	
Titan Ti	<=1	Schwefel S	<=0,015	Nickel Ni	9,0-12,0	

Gusseisen mit K	(ugelgraphit (GGG40 (0.7	040 oder EN-	Gusseisen mit Kugelgraphit GGG40 (0.7040 oder EN-GJS-400-15)					
Verwendet für:	Verrohrung d	Verrohrung der Einlagerungsbohrlöcher							
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze beispielsweise mit Magnesium bilden sich die ausgeschiedenen Graphitphasen in Form kugeliger Ausscheidungen aus und es entsteht ein überwiegend ferritisches Gefüge, welches dem Werkstoff seine duktilen, stahlähnlichen Ei- genschaften verleiht.								
Masse ges.	20.620 kg [34, S.170]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150°C [35, S. 96]				
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärme- leitfähig- keit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2-13,4* 10 ⁻⁶ /K [35, S. 65]				
0,2 % Dehngrenze RT	250 MPa [35, S. 57]	0,2 % Dehn- grenze 150°C	210 MPa [35, S. 57]	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57]				
Kompressi- onsmodul	125,2 GPa (berechnet)	Schub- modul	66,3 GPa (berechnet)	Poisson- zahl	0,275 [33, S. 32]				
Legierungselem	ente in %: [3	33]							
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2				
Kupfer Cu	0,15-0,75								

BSK 3-R						
	Werks	stoffker	nwert	е		
Polyethylen (Lupol	en, Gur, Ho	stalen, PE-H	D)			
Verwendet für:	Abschirmp	olatte im Dec	kel			
Werkstoff- beschreibung	Bei Polyethylen hoher Dichte (PE-HD) handelt es sich um ein halbkristallines (normalerweise zu 70 %-80 %), weißliches, halbdurchsichtiges Thermoplast. Es weist, verglichen mit Po- lyethylen geringerer Dichte, eine gute Beständigkeit gegen- über chemischen Substanzen höhere Temperaturfestigkeit auf. Die mechanischen Eigenschaften von PE sind verglichen mit anderen Werkstoffen, welche bei Lagerbehältern zum Ein- satz kommen, vergleichsweise schlecht [34]. PE besitzt je- doch die Eigenschaft, dass schnelle Neutronen durch elastische Stöße an den Gitteratomen abgebremst werden und so nachfolgend wirksamer abgerhiert werden können					
Masse ges.	ca. 7 kg [34, S. 182]	E-Modul	1,15 GPa [83]	Schmelz- punkt	130-145 °C	
Dichte	0,95 kg/dm ³ [83]	Wärme- leitfähig- keit	0,42 W/m*K [83]	Ausdeh- nungs- koeffi- zient	100-200* 10 ⁻⁶ /K [84, S. 1]	
Dehngrenze RT	27 MPa [83, S. 1]					
Kompressions- modul	7,9-10,0 GPa (berech- net)	Schubmo- dul	0,32 - 0,41 GPa (berech- net)	Poisson- zahl	0,46 [84, S. 1]	

Graphit						
Verwendet für:	Abschirm	olatte Primär	behälter			
Werkstoff- beschreibung	Graphit ist eine Modifikation des Kohlenstoffs. Die mechani- schen Eigenschaften des Graphit tragen nicht nennenswert zur Stabilität eines Lagerbehälters bei, jedoch eignet sich Gra- phit, ähnlich wie Polyethylen, gut zur Abschirmung von Neut- ronenstrahlung.					
Masse ges.	ca. 16,7 kg (berech- net)	E-Modul	4,8 GPa [86, S. 1]	Schmelz- punkt	3370 °C [86, S. 1]	
Dichte	2,267 kg/cm ³ [86, S. 1]	Wärme- leitfähig- keit	155 W/m*K [86, S. 1]	Ausdeh- nungs- koeffizient	2*10 ⁻⁶ /K [86, S. 1]	
0,2 % Dehngrenze RT	14-34 MPa [87, S. 16]	0,2 % Dehn- grenze 150°C	- MPa	0,2 % Dehn- grenze 250°C	- MPa	
Kompressions- modul	33 GPa [86, S. 1]	Schubmo- dul	1,62 GPa (berech- net)	Poissonzahl	0,48 [86, S. 1]	

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier C-Overpack

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

C-Overpack

Das C-Overpack stellt den Referenzbehälter des französischen Endlagerkonzeptes zur Einlagerung von wärmeentwickelnden, hochradioaktiven Wiederaufarbeitungsabfällen (WA-Abfälle) dar. Das französische Referenzkonzept sieht eine für mehrere Jahrhunderte rückholbare Einlagerung der Behälter in verrohrten, horizontalen Bohrlöchern in etwa 500 m Tiefe im Tonstein vor. Um die etwaige Rückholung zu erleichtern werden die Einlagerungsrohre nicht verfüllt, sondern nur an ihren Enden mittels quellfähigem Ton und Beton verschlossen. Da die Verrohrung der Einlagerungsstrecken im Auslegungsfall für mehrere Jahrhunderte dem Gebirgsdruck standhalten muss und elementar für die Begrenzung des Wasser- und Sauerstoffzutritts zu den Behältern ist, wird diese hier als Teil des Behälterkonzeptes berücksichtigt, [67], [103, S. 100ff, 128ff] Die Overpacks stellen eine technische Barriere dar und sollen den sicheren Einschluss der Abfälle während der thermischen Periode von etwa 1000 Jahren sowie eine sichere Handhabbarkeit der Abfälle gewährleisten. Die langfristige Rückhaltung der Radionuklide erfolgt bei diesem Konzept durch Sorption und geringe Diffusionsraten im Wirtsgestein. Da die Behälter nur eine geringe Schutzwirkung gegen ionisierende Strahlung aufweisen, ist ihr Transport in abgeschirmten Transportbehältern vorgesehen. [67]

Die Overpacks bestehen aus unlegiertem Stahl und nehmen ieweils eine Edelstahlkokille mit verglasten WA-Abfällen auf. Insgesamt sind fünf verschiedene Varianten des Overpacks vorgesehen, welche an die leicht unterschiedlichen Abmessungen der mit verglasten WA-Abfälle gefüllten Edelstahlkokillen aus unterschiedlichen WA-Anlagen (unterteilt in die Kategorien CO-C4) angepasst sind. Da jedoch alle Overpacks einen vergleichbaren Aufbau und identische Wandstärken besitzen und nur in Höhe und Durchmesser voneinander abweichen, werden sie gemeinsam betrachtet. Der größte Unterschied liegt hierbei in der auf Grund unterschiedlicher Abbrände und Lagerzeiträume unterschiedlichen Zusammensetzung der enthaltenen WA-Abfälle. Hieraus resultiert eine unterschiedliche Aktivität und Wärmeentwicklung der verschiedenen Gebinde. [67], [103]

Zeichnung eines C-Overpacks [103, S. 126]

Land	Frankreich
Lagerkonzept	Referenzkon-
	zept
	Tonstein
Gesellschaften /	ANDRA
Organisationen	
Gestein	Tonstein
Einlagerung	verrohrtes ho-
	rizontales
	Bohrloch
Masse	1,7-2 t
	[103,
	S. 112ff]
Länge	1.25-1,6 m
	[103,
	S. 112ff]
Durchmesser	max. 650
	mm
	[103,
	S. 112ff]
Anzahl gesamt	max. 38.350
	[67, S. 103]

Aufbau des Be	hälters			
Der C-Overpack besitzt einen zylindrischen Aufbau mit einem Durchmesser von etwa 0,65 m und einer Länge von max. 1,6 m. Beladen wiegt er circa 2 Tonnen [103, S. 112ff]				
	Material	Beschreibun	g	
Innenbehäl- ter	Edelstahl	Beim Innenbe mit den vergla [104]	ehälter handelt asten WA-Abfä	es sich um die Kokillen llen (CSD-V Kokille) [53],
Außenbehäl- ter und De- ckel	unlegierterAufgabe des Außenbehälters, der mittels Elektronen- strahlschweißen verschlossen wird, ist der wasser- dichte Einschluss der verglasten Abfälle während der [97, thermischen Phase sowie der mechanische Schutz des Innenbehälters beispielsweise beim Transport			
Besonderhei- ten	Der Außenbehälter ist zum Transport und zur Erleichterung der Einlagerung mit einer Griffmulde im Deckel und Gleitstücken aus Keramik versehen [103]			
Inventar				
Beschrei- bung	Das Inventar glasten WA-A der Kokillen auf die vergl	⁻ der C-Overpa Abfällen befüllt beträgt etwa 4 asten Abfälle.	cks besteht aus en CSD-V Koki 00 kg, hiervon [67, S. 91]	s jeweils einer, mit ver- lle. Das Gesamtgewicht entfallen etwa 320 kg
max.	ca. 950 W /	Kokille	max.	ca. 5*10 ¹⁵ Bg / Kokille
Wärmeleis- tung	nach 40 a Aktivität nach > 30 a ca. 800W / Kokille ca. 265 Sv/h in 5cm Ab- nach 60 a stand nach > 60 a [67, S. 91] [67, S. 91]			
Konzeptstand				
Das C-Overpack ist der Referenzbehälter des französischen Endlagerkonzepts. Es existieren bereits mehrere Prototypen. Auch die zugehörigen Transportsysteme so- wie Einlagerungsgeräte wurden bereits gebaut und an einem Mock-Up ihre Eignung zur Einlagerung und Rückholung der Behälter erprobt. Der Nachweis der Langzeitsi- cherheit des Endlagerkonzepts sowie der Eignung der Einlagerungsgeräte für den				

Einsatz unter Tage ist noch zu erbringen [67], [103], [105], [106].

Werl	kstoffe Beh	älter			
		Material	Material		Anmerkung
Inne	nbehälter	Warmfester Ede	Warmfester Edelstahl		Elektronen- strahl-
-D	eckel	5 mm Wanddicl [53, S. 14], [10	ke)4, S. 103]]	[007 01 1 1]	geschweißt
Auße	enbehälter	niedriglegierter GH	Stahl P235	ca. 1.300 kg (AVM-Typ) -	Elektronen- strahl-
-D	eckel	mindest-Wando 55 mm (Zylinde	licke er)	1.600 kg (R7/T7 Typ)	geschweißt [67, S. 132ff]
-В	oden	— 77 bzw. 83 mm (Boden + Decker [67, S. 132ff]	el)		
Gleit	er	Korund (Al ₂ O ₃), Yttriumoxid (Y ₂ tiertes Korund ([67, S. 141]	Korund (Al ₂ O ₃), Yttriumoxid (Y ₂ O ₃) oder do- tiertes Korund (Al ₂ O ₃ +ZrO ₂) [67. S. 141]		
Inve	Inventar der Behälter				
HAW	-Inventar				
Koki [105,	llentyp S. 50ff]	Anzahl [106, S. 76]	Beschreibu	ng	Anmerkung
C0	Sicral & Phenix Kokillen	4.124	max.105 kg aus Versuchs 45 I Innenvol	WA-Abfälle anlagen, lumen	Wärmeleistung und Aktivität in der Tabelle im An-
C1	CSD-V Kokillen Typ	32.100 - 38.350; 10.560 falls	gesamt ca. 4 verglaste Abf Uran-Wiedera	00 kg, fälle aus der aufarbeitung	hang entnommen werden. In [105, S. 55ff] ist das
C2	R7/T7 oder AVM	keine weitere Wiederauf-ar- beitung erfolgt	ca. 400 kg, zukünftige verglaste Abfälle aus der Uran-Wiederaufarbeitung		Radionuklid-in- ventar dargestellt. Die chem. Zusam-
C3			ca. 400 kg, verglaste UOX/MOX Abfälle		mensetzung des Borosilikatglases
C4			ca. 400 kg, verglaste UOX und Pu Abfälle		kann [53, S. 26]entnommen wardan
Gesa Over	mt packs	max.42.470	hinzu komme hängig noch direkten End BE	en konzeptab- Behälter zur lagerung von	weraen

	C-Overpack					
	Inventar der Behälter					
weiteres Inventa	r					
Wasserinventar im Behälter	Die HAW-Kokillen enthalten aufgrund ihres Herstellungsprozes- ses kein Wasser, da die Beladung der Overpacks ebenfalls tro- cken erfolgt sind im Behälter nur minimale Spuren von Feuchtigkeit eingeschlossen [67] [103 S. 268]					
Werkstoffe Behäl	terumfeld					
Einlagerungs- variante	Ausgehend von der Infrastrukturstrecke werden in e stand von 8,5 – 13 m horizontale, etwa 40 m lange mit einem Durchmesser von 0,7 m erstellt. In diese hinteren 30 m eine, am Ende verschlossene, dichte V aus Stahl (S235) eingeführt, der vordere Teil wird fü der Einlagerung mittels eines temporären Rohrstücke brückt. Die einzelnen Behälter werden nacheinander Rohr eingelagert. Um die thermische Belastung des reduzieren, können zwischen den Lagerbehältern Pla zum Einsatz kommen, welche in ihren Materialeigens den Einlagerungsbehältern entsprechen. Nach dem Einlagerungsende wird zur Abschirmung e pfropfen in das Einlagerungsrohr eingesetzt, das tem Rohr entfernt und der Zellkopf mittels Bentonit und schlossen. [67, S. 239ff], [103, S. 128ff]	inem Ab- Bohrlöcher wird in den /errohrung ur die Zeit es über- in das Gesteins zu itzhalter schaften ein Stahl- nporäre Beton ver-				
	Material	Anmer- kung				
Verfüllung Bohr- loch	keine / Abstandshalter aus P235 zwischen den Containern [67, S. 189ff], [103, S. 128ff]					
Verschluss Bohrloch	Stahl (P235) zur Abschirmung Bentonit (MX80 auf einer Länge von 3 m) Beton (4 m) [67, S. 212ff, 222ff], [103, S. 128ff]					
Verfüllung Zugangs strecken	Verfüllung mit einer gleichmäßigen Mischung aus Ton und Sand. Verfüllung des Firstspalts mit Ben- tonitpulver [67, S. 229ff]					

Sonstige Informationen	
Gesamtinventar	Je nach Zeitpunkt des Atomausstiegs und Wiederauf- arbeitungs-konzept sind bis zu 54.000 CU1-Behälter mit einem Gesamtvolumen von etwa 355.000 m ³ einzulagern. Hinzu kommen 4.000-5.400 CU2-Behäl- ter zur direkten Endlagerung von MOX-BE mit einem Gesamtvolumen von etwa 8.100 m ³ [106, S. 76].
Behälterstandzeit nach Auslegung	>1000 Jahre [105, S. 130]
Standzeit (bei Flächenkorrosion)	Etwa 4000 Jahre nach konservativer Abschätzung [67, S. 138]
Standzeit (bei Lochfraßkorrosion)	bei niedrig legierten Stählen ist der Einfluss von Was- serstoffversprödung und Lochfraßkorrosion unterge- ordnet [67, S. 131]
Sicherheit gegen Handhabungsunfälle	Im Rahmen der Auslegung wurde der Absturz eines Overpacks in seinem Transportbehälter in den För- derschacht untersucht, es kam zu keiner Beschädi- gung des Primärbehälters, eine Freisetzung von Radionukliden ist damit faktisch ausgeschlossen.
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neut- ronen- und Gamma-Strahlung. Auf Grund der gerin- gen Dosisleistung nicht relevant [34, S. 604]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	Seitens ANDRA nicht veröffentlicht, aufgrund der mit dem Pollux-Konzept vergleichbaren Fertigungspro- zesse muss jedoch auch hier mit einem Versagen von maximal 0,1% der Behälter = ca. 38 Behälter gerechnet werden [33, S. 234]
Langfristige Ausfallrate	Nach >10000 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [66, S. 138]
Absinken der Behälter	Im Ton/Tonstein nicht relevant

C-Overpack						
	Wei	kstoff	kennv	verte		
Niedrig legiert	er Stahl (P2	35 GH / 1.0	345) [78]	-[80]		
Verwendet für:	Außenbehä	lter				
Werkstoff- beschreibung	Gute Schwei [67, S. 128ff	ßbarkeit, gei	ringe Anfäll	igkeit für Lochf	fraßkorrosion	
Masse ges.	1,3 - 1,6 t [67, S. 148]	E-Modul	210 GPa	Schmelz- punkt	1420-1460 °C [80]	
Dichte 20°C	7,85 kg/dm ³ Bei 20 °C	Wärme- leitfähig- keit	57 W/m K	Ausdeh- nungs- koeffizient	12,5*10 ⁻⁶ K ⁻¹	
0,2 % Dehngrenze RT	218 MPa [79] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 150°C	190 MPa [79] (abh. von der Mate- rial- stärke)	0,2 % Dehn- grenze 250°C	160 MPa [79] (abh. von der Materialstärke)	
Kompressi- onsmodul	ca. Schub- ca. Poisson- ca. 0,3 175,5 GPa (berechnet) Rote (berech- net) Alter (berech-					
Legierungsele	Legierungselemente in % [79]					
C ≤ 0,16	Si ≤ 0,35	Mn ≤ 1,20	P ≤ 0,025	S ≤ 0,015	AI ≥ 0,020	
Cu+Cr+Mo+Ni ≤ 0,70						

Baustahl S23	Baustahl S235JR [107]					
Verwendet für:	Bohrlochv	errohrung				
Werkstoff- beschrei- bung	Gute Schwo S. 128ff]	eißbarkeit, gering	ge Anfälligke	it für Lochfraßko	rrosion [67,	
Masse ges.	ca. 12,7 t pro Rohr [67, S. 202]	E-Modul	210 GPa	Schmelz- punkt	1250- 1460 °C	
Dichte	7,85 Kg/dm ³ Bei 20°C	Wärmeleit- fähigkeit	54 W/m*K	Ausdeh- nungs- koeffizient	12*10 ⁻⁶ K ⁻¹	
0,2 % Dehn- grenze RT (ca. 25mm)	235 MPa	0,2 % Dehngrenze 150°C (ca. 25mm)	ca. 190 MPa	0,2 % Dehn- grenze 250°C (ca. 25mm)	ca. 160 MPa	
Kompressi- onsmodul	ca. 175,5 GPa (berech- net)Schubmodul GPa (berech- net)ca. 81 GPa (berech- net)Poissonzahl 0,30,3					
$C \le 0,20$	Mn≤1,40	P ≤ 0,035	S≤ 0,035	Cu ≤ 0,55	N ≤ 0,012	

Rostfreier Stahl (1.4833) [53]							
Verwendet für:	CSD-V Kol	kille					
Werkstoff- beschreibung	Bei dem für um einen v Schweißeig	Bei dem für die Kokillen verwendeten Stahl handelt es sich um einen warmfesten, korrosionsbeständigen Stahl mit guter Schweißeignung					
Masse ges.	ca. 80 kg [53, S. 14]	E-Modul	196 GP a [53]	Schmelz- punkt	ca. 1500- 1538°C		
Dichte 20°C	20°C 7,9 Kg/dm ³ [53]	Wärme- leitfähig- keit	15 W/m K [53]	Ausdeh- nungs- koeffizient	18,8* 10 ⁻⁶ /K [53]		
0,2 % Dehngrenze R _p	210 MPa [53] (abh. von der Mate- rial- stärke)	0,2 % Dehn- grenze 150°C	128 MP a [53] (abh. von der Materi- al- stärke)	0,2 % Dehngrenze 250°C	108 MPa [53] (abh. von der Mate- rial- stärke)		
Kompressions- modul	192 GPa (berech- net)	92 GPa Schubmo- berech- et) 75 GPa Poissonzahl 0,33					
Legierungseleme	nte in %:						
Kohlenstoff C	< 0,15	Silizium Si	< 1	Stickstoff N	0,08		
Mangan Mn	< 2,0	Chrom Cr	22 - 24	Nickel Ni	12 - 14		
Eisen Fe	> 58,8						

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier CU1-Behälter

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

CU1-Behälter

CU-Behälter Prototyp [67, S. 156]

Der CU1-Behälter ist der Behälter, welcher im französischen Endlagerkonzept zur Einlagerung UOX-Brennelementen (BE) vorgesehen ist, falls keine vollständige Wiederaufarbeitung der Brennelemente erfolgt. Von ihm werden der CU2- und der CU3- Behälter abgeleitet, welche für die Endlagerung von MOX-BE sowie für BE aus Versuchsreaktoren bestimmt sind. Das französische Referenzkonzept sieht eine für mehrere Jahrhunderte rückholbare Einlagerung der Behälter in verrohrten, horizontalen Bohrlöchern in etwa 500 m Tiefe im Tonstein vor. Um die etwaige Rückholung zu erleichtern, werden die Einlagerungsrohre nicht verfüllt, sondern nur an ihren Enden mittels quellfähigem Ton und Beton verschlossen

[67], [103, S. 100ff].

Die CU-Behälter stellen eine technische Barriere dar und sollen den sicheren Einschluss der Abfälle während der thermischen Periode von etwa 10.000 Jahren sowie eine sichere Handhabbarkeit der Abfälle gewährleisten. Die langfristige Rückhaltung der Radionuklide erfolgt bei diesem Konzept durch Sorption und geringe Diffusionsraten im Wirtsgestein. Da die Behälter nur eine begrenzte Schutzwirkung gegen ionisierende Strahlung aufweisen, ist Ihr Transport in abgeschirmten Transportbehältern vorgesehen [67].

Die CU-Behälter bestehen aus einem Mantel aus unlegiertem Stahl und einer Innenstruktur aus Gusseisen mit Einsätzen aus rostfreiem Stahl zur Aufnahme von bis zu 4 UOX-BE. Insgesamt werden fünf verschiedene Varianten vom CU-Behälter abgeleitet. Eine kurze und eine lange Version des CU1-Behälters für 4 UOX-BE, eine kurze und eine lange Version mit reduziertem Durchmesser zur Aufnahme eines MOX-BE (CU2) sowie eine kleinere Version (CU3) mit reduzierter Abschirmung zur Einlagerung von UOX-BE aus Forschungsreaktoren mit reduzierter Wärmeleistung. Bezüglich der Handhabung entsprechen die CU2- und CU3-Behälter, bis auf ihre größere Länge, jedoch eher den CO-Behältern für verglaste Abfälle. Aus diesem Grund besitzen auch sie Keramikgleiter um die Einlagerung zu erleichtern. [67], [103]

Land	Frankreich
Lagerkon-	Referenzkon-
zent	zent Tonstein
Cecell	
Gesen-	ANDRA
schaften /	
Organisa-	
tionen	
Gestein	Tonstein
Einlage-	verrohrtes ho-
rung	rizontales
	Bohrloch
Masse	43 t
	[67 S 63]
	[07, 5: 05]
Lange	5.400 mm
	[67, 5. 63]
Durchmes-	1.250 mm
ser	[67, S. 145]
Anzahl ge-	max, 54,000
samt	[67, S. 103]
	[0//01 100]
1	1

Aufbau des B	Behälters					
Der CU1-Behä	lter besitzt eine	n zylindrisc	hen Aufb	au mit einem Durchmesser von		
etwa 1,2 m und einer Lange von 5,4 m. Beladen wiegt er circa 43 Tonnen [67 S 63 145ff]						
[07, 01 00, 11	Material	Beschreit	oung			
BE-	Edelstahl	Quadratise	che oder	runde Profile zur Aufnahme unver-		
Schächte		kleideter s	owie ver 6ff]	kleideter Brennelemente		
Innen- struktur	Gusseisen	Nachdem die BE-Schächte in der geschmiedeten Au- Benhülle positioniert sind wird der umgebende Hohl- raum mit Gusseisen vergossen. Die Mindeststärke des Gusseisens beträgt dabei 40 mm				
Außenhülle	unlegierter Stahl >110 mm [103, S. 126]	[67, S. 146ff] Aufgabe des Außenbehälters, der mittels Elektronen- strahlschweißen verschlossen wird, ist der wasser- dichte Einschluss der BE während der thermischen Phase [67, S. 146ff]				
Besonder- heiten	Da für die CU3 Behälter dieselbe Einlagerungsvariante wie für die C- Overpacks vorgesehen ist besitzt auch dieser zum Transport und zur Erleichterung der Einlagerung eine Griffmulde im Deckel und ist Gleitstücken aus Keramik versehen [67, S. 147]					
Inventar						
Beschrei- bung	Das Inventar d tungsreaktoren Die Masse der	es CU1-Beh BE beträgt (iälters be ca. 2 t [6	steht aus 4 UOX-BE aus Leis- 7], [105]		
max.	ca. 1.600 W / 0	CU1 nach	max.	Abgeschätzt ca. 1,2*10 ¹⁶ Bq		
Wärmeleis- tung	60 a Akti- /CU1 Behälter ca. 1.100 W / CU2 nach vität nach > 60 a [105, S. 55ff] 90 a 25 Sv/h Beh. Oberfläche CU1 150 W / CU3 [105, S. 15 Sv/h Beh. Oberfläche CU2 55ff] 15 Sv/h Beh. Oberfläche CU2 105, S. 61] 105, S. 61]					
Konzeptstan	d					
Die Entwicklung der CU-Behälter wurde bereits recht weit vorangetrieben. Es exis- tieren bereits mehrere Prototypen. Das zugehörigen Transportsystem sowie die Ein- lagerungsgeräte für den CU1-Behälter befinden sich derzeit jedoch erst im Konzeptstadium. Der Nachweis der Langzeitsicherheit des Endlagerkonzepts sowie der Eignung der Einlagerungsgeräte für den Einsatz unter Tage ist noch zu erbrin- gen. [67], [103], [105], [106]						

Werkstoffe Behälter							
		Material		Masse	Anmerkung		
BE- Sc	hächte	rostfreier Stahl [67, S. 148] 12.5 mm		ca. 2.200 kg	Deckel wird MIG- geschweißt		
-Deckel ((runde Schächte CU1) 14,2 mm (eckige Schächte CU1)					
BE-Einsatz Struktur		Gusseisen Mindestdicke 40 mm [67, S. 146ff]		ca. 22.000 kg	zwischen Außen- hülle und Schächte gegos- sen		
Außenbehäl- ter		unlegierter Stahl P235 bei CU1 >110 mm; bei CU2 >120 mm		ca. 17.500 kg	Deckel und Boden werden per Elekt- ronenstrahl-		
-Dec	скеі	[67, 5. 148π]			gasdicht gefügt		
Invent	Inventar der Behälter						
BE-Inv	entar						
Behält	er Typ	Anzahl [106, S. 76]	Beschreibung [105, S. 54]		Anmerkung		
CU1	4 UO- BE	max. 54.000	Als Referenz-Br werden DWR B	rennelemente E aus 1300	Wärmeleistung und Aktivität kön-		
CU2	1 MOX- BE	4.000 - 5.400;	MWe bzw. 1450 MWe Reak- toren betrachtet (AFA-2LE 'long' fuel as- semblies)		nen der Tabelle im Anhang ent- nommen werden. In [105, S. 55ff]		
Gesamt Behäl- ter		max.58.000			ist das Radionuk- lid-inventar dar- gestellt.		
weiteres Inventar							
Wasserinventar im Behälter		In französischen Konzept nicht veröffentlicht, auf Grund der mit dem Pollux-Konzept vergleichbaren Konditionierung können die Angaben des Pollux übernommen werden. Hieraus resultiert bei extrem konservativen Abschätzung ein maximales Wasserin- ventar von etwa 7,2 kg, realistische Abschätzung ergeben ca. 0,024 kg pro Behälter. [34, S. 190]					

Werkstoffe Behäl	terumfeld				
Einlagerungs- variante	Ausgehend von der Infrastrukturstrecke werden in einem Ab- stand von 22,5 m horizontale, etwa 43 m lange Bohrlöcher mit einem Durchmesser von 3,3 m erstellt. In diese wird in den hinteren 32 m eine, am Ende verschlossene, dichte Verrohrung aus Stahl (S235) mit einem Innendurchmesser von 1,37 m und einer Wandstärke von 40 mm eingeführt. Diese ist von einem 0,8 m dicken Bentonitpuffer umgeben, welcher seinerseits von einem 30 mm starken Metallring gestützt wird. Der vordere Teil wird für die Zeit der Einlagerung mittels eines temporären Rohrstückes überbrückt. In diesem Bereich wird der Raum zwischen dem Rohr und der Bohrlochwandung mit- tels Beton verfüllt. Die einzelnen Behälter werden nacheinander in das Rohr eingelagert. Um die thermische Belastung des Ge- steins zu reduzieren, werden zwischen den Lagerbehältern Platzhalter eingesetzt, welche in ihren Materialeigenschaften den Einlagerungsbehältern entsprechen. Nach dem Einlagerungsende wird zur Abschirmung ein Stahl- pfropfen in das Einlagerungsrohr eingesetzt, das temporäre Rohr entfernt und der Zellkopf mittels Bentonit und Beton ver- schlossen. [67, S. 239ff], [103, S. 128ff]				
	Material	Anmer-			
		kung			
Verfüllung Bohr-	keine / Abstandshalter aus P235 zwischen den				
loch	Containern [67, S. 189ff], [103, S. 128ff]				
Verschluss	Stahl (P235) zur Abschirmung				
Bohrloch	Bentonit (MX80 auf einer Länge von 3 m)				
	Beton (4 m) [67, S. 212ff, 222ff], [103, S. 128ff]				
Verfüllung	Verfüllung mit einer gleichmäßigen Mischung aus				
Zugangsstre-	Ton und Sand. Verfüllung des Firstspalts mit Ben-				
cken	tonitpulver [67, S. 229ff]				

Sonstige Informationen				
Gesamtinventar	Je nach Zeitpunkt des Atomausstiegs und Wie- deraufarbeitungs-konzept sind bis zu 54.000 CU1-Behälter mit einem Gesamtvolumen von etwa 355.000 m ³ einzulagern. Hinzu kommen 4.000-5.400 CU2-Behälter zur direkten Endlage- rung von MOX-BE mit einem Gesamtvolumen von etwa 8.100 m ³ [106, S. 76]			
Behälterstandzeit nach Aus- legung	>10.000 Jahre [67, S. 63]			
Standzeit (bei Flächenkorrosion) Standzeit	>10.000 Jahre nach konservativer Abschätzung [67, S. 138] bei niedrig legierten Stählen ist der Einfluss von			
(bei Lochfraßkorrosion) Wasserstoffversprödung	Wasserstoffversprödung und Lochfraßkorrosion untergeordnet [67, S. 131]			
Sicherheit gegen Handhabungsunfälle	Im Rahmen der Auslegung wurde der Absturz ei- nes CU-Behälters in seinem Transportbehälter in dem Förderschacht untersucht. Es kam zu keiner Beschädigung des Primärbehälters, eine Freiset- zung von Radionukliden ist damit faktisch ausge- schlossen.			
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung, auf Grund der geringen Dosisleistung nicht relevant [34, S. 604]			
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gas- bildung durch Korrosion oder Zersetzung [34, S. 605]			
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	Seitens ANDRA nicht veröffentlicht, aufgrund der mit dem Pollux-Konzept vergleichbaren Ferti- gungsprozesse muss jedoch auch hier mit einem Versagen von maximal 0,1% der Behälter = ca. 58 Behälter gerechnet werden [34, S. 234]			
Langfristige Ausfallrate	Nach >10000 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [67, S. 138]			
Absinken der Behälter	Im Ton/Tonstein nicht relevant			

CU1-Behälter						
Werkstoffkennwerte						
Niedrig legierte	r Stahl (P23	5 GH / 1.0345	5) [78]–[80]			
Verwendet für:	Außenbehä	Außenbehälter				
Werkstoff- beschreibung	Gute Schwei sion[67, S.	<i>ißbarkeit, gering</i> 128ff]	ge Anfälligkei	t für Lochfraßk	orro-	
Masse ges.	ca. 17.500 kg [67, S. 148]	E-Modul	210 GPa	Schmelz- punkt	1420- 1460 °C [80]	
Dichte	7,85 Kg/dm ³ Bei 20 °C	Wärmeleit- fähigkeit	57 W/m K	Ausdeh- nungs- koeffizient	12,5* 10 ⁻⁶ K ⁻¹	
0,2 % Dehngrenze RT	218 MPa [79] (abh. von der Materi- alstärke)	0,2 % Dehngrenze 150°C	190 MPa [79] (abh. von der Mate- rial- stärke)	0,2 % Dehn- grenze 250°C	160 MPa [79] (abh. von der Mate- rial- stärke)	
Kompressi- onsmodul	ca. 175,5 GPa (berech- net)	Schubmodul	ca. 81 GPa (berech- net)	Poisson- zahl	ca. 0,3	
Legierungselemente in % [79]						
C ≤ 0,16	Si ≤ 0,35	Mn ≤ 1,20	P ≤ 0,025	S ≤ 0,015	AI ≥ 0,020	
Cu+Cr+Mo+Ni ≤ 0,70						

Baustahl S235JR [107]						
Verwendet für:	Bohrlochverrohrung					
Werkstoff- beschreibung	Gute Schweißbarkeit, geringe Anfälligkeit für Lochfraßkorrosion [67, S. 128ff]					
Masse ges.	ca. 12,7 t [67, S. 202]	E-Modul	210 GPa	Schmelz- punkt	1250- 1460 °C	
Dichte	7,85 Kg/dm ³ Bei 20°C	Wärmeleitfä- higkeit	54 W/m*K	Ausdeh- nungs- koeffizient	12* 10 ⁻⁶ K ⁻¹	
0,2 % Dehngrenze RT (ca. 25mm)	235 MPa	0,2 % Dehngrenze 150°C (ca. 25mm)	ca. 190 MPa	0,2 % Dehn- grenze 250°C (ca. 25mm)	ca. 160 MPa	
Kompressi- onsmodul	ca. 175,5 GPa (berech- net)	Schubmodul	ca. 81 GPa (berech- net)	Poisson- zahl	0,3	
Legierungselemente in %: [107]						
C ≤ 0,20	Mn ≤ 1,40	P ≤ 0,035	S ≤ 0,035	Cu ≤ 0,55	N ≤ 0,012	

Rostfreier Stahl (exemplarisch 1.4833) [53]					
Anmerkung	Der verwendete rostfreie Stahl ist derzeit in den Veröffentlichun- gen nicht genauer spezifiziert. Es ist jedoch davon auszugehen, dass ein Stahl gewählt wurde, welcher in etwa dem 1.4833 der Primärbehälter für WA-Abfälle entspricht. Die an dieser Stelle angegebenen Werte stellen somit nur unge- fähre Anhaltswerte dar!				
Verwendet für:	BE-Schäch	te			
Werkstoff- beschreibung	Bei dem für die BE-Schächte verwendeten Stahl handelt es sich um einen warmfesten, korrosionsbeständigen Stahl mit guter Schweißeignung				
Masse ges.	ca. 2.200 kg [67, S. 148]	E-Modul	196 GPa [53]	Schmelz- punkt	-
Dichte	20°C 7,9 Kg/dm ³ [53]	Wärmeleitfä- higkeit	15 W/m K [53]	Ausdeh- nungs- koeffizient	18,8* 10 ⁻⁶ /K [53]
0,2 % Dehngrenze R _p	210 MPa [53] (abh. von der Materi- alstärke)	0,2 % Dehngrenze 150°C	128 MP a [53] (abh. von der Material- stärke)	0,2 % Dehn- grenze 250°C	108 MPa [53] (abh. von der Mate- rial- stärke)
Kompressi- onsmodul	192 GPa (berech- net)	Schubmodul	75 GPa [81]	Poisson- zahl	0,33 [81]
Legierungselemente in %: [53]					
Kohlenstoff C	< 0,15	Silizium Si	< 1	Stickstoff N	0,08
Mangan Mn	< 2,0	Chrom Cr	22 - 24	Nickel Ni	12 - 14
Eisen Fe	> 58,8				

CU1-Behälter						
Werkstoffkennwerte						
Gusseisen (ex	emplarisch El	N-GJS-400)				
Anmerkung	Das verwendete Gusseisen ist derzeit in den Veröffentlichungen nicht genauer spezifiziert! Auf Grund der in den Veröffentlichungen genannten Eigenschaften ist jedoch davon auszugehen, dass es sich dabei um ein Gusseisen mit Kugelgraphit mit einer dem bei den deutschen Pollux-Behältern verwendeten EN-GJS-400 ver- gleichbaren Spezifikation handelt. Die an dieser Stelle angegebenen Werte stellen somit nur unge- fähre Anhaltswerte dar!					
Verwendet für:	BE-Einsatz S	truktur [67, 9	S. 148]			
Werkstoff- beschrei- bung	Bei Gusseisen mit Kugelgraphit oder auch Sphäroguss handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze, beispielsweise mit Magnesium, bil- den sich die ausgeschiedenen Graphitphasen in Form kugeliger Ausscheidungen aus und es entsteht ein überwiegend ferritisches Gefüge, welches dem Werkstoff seine duktilen, stahlähnlichen Ei- genschaften verleibt					
Masse ges.	ca. 22.000 kg [67, S. 146ff]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150 °C [35, S. 96]	
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärme- leitfähig- keit	35,0-41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffi- zient	11,2-13,4* 10 ⁻⁶ /K [35, S. 65]	
0,2 % Dehngrenze RT	250 MPa [13, S. 57] (abh. von der Material- stärke)	0,2 % Dehn- grenze 150°C	210 MPa [35, S. 57] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57] (abh. von der Materi- alstärke)	
Kompressi- onsmodul	125,2 GPa (berechnet)	Schubmo- dul	66,3 GPa (berechnet)	Poisson- zahl	0,275 [33, S. 32]	
Legierungselemente in %: [33]						
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2	
Kupfer Cu	0,15-0,75					

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier CU2-Behälter

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

Land	Frankreich
Lagerkonzept	Referenzkon-
	zept
	Tonstein
Gesellschaften/	ANDRA
Organisationen	
Gestein	Tonstein
Einlagerung	verrohrtes ho-
	rizontales
	Bohrloch
Masse	12 t
	[67, S. 63]
Länge	5.400 mm
	[67, S. 63]
Durchmesser	1.250 mm
	[67, S. 145]
Anzahl gesamt	max. 54.000
-	[67, S. 103]

Aufbau des	Behälters				
Der CU2-Behä	älter besitzt ei	nen zylindrisc	hen Aufb	au mit einem Durchmesser von	
etwa 1,2 m u	etwa 1,2 m und einer Länge von 5,4 m. Beladen wiegt er circa 43 Tonnen				
[67, S. 63, 14	15ff]	1			
	Material	Beschreibu	ng		
BE-	Edelstahl	Quadratische	e oder ru	nde Profile zur Aufnahme unver-	
Schächte		kleideter sov [67, S. 146ff	vie verkle]	eideter Brennelemente	
Innen-	Gusseisen	Nachdem die	BE-Sch	ächte in der geschmiedeten Au-	
struktur		ßenhülle pos	itioniert	sind wird der umgebende Hohl-	
		raum mit Gu	sseisen v	vergossen. Die mindeststärke des	
		Gusseisens b	betragt da	abei 40 mm [67, S. 146ff]	
Ausennulle	unlegierter	Aufgabe des	Außenbe	enalters, der mittels Elektronen-	
	Stahl	Stranischwei	ben verse	chiossen wird, ist der wasserdichte	
	>110 mm		er de wai Fi		
	[103,	[67, 5. 14011]			
	S. 126]				
Besonder-	Da für die Cl	J2 Behälter di	eselbe Ei	nlagerungsvariante wie für die C-	
heiten	Overpacks v	orgesehen ist,	besitzt a	auch dieser zum Transport und zur	
	Erleichterung	g der Einlager	ung eine		
	Gleitstücken	aus keramik	versenen	[[07, 5. 147]	
Inventar					
Beschrei-	Das Inventa	r des CU2-Beł	nälters be	esteht aus einem MOX-BE aus Leis-	
bung	tungsreaktor	en.			
	Die Masse de	es BE beträgt	<u>ca. 0,5 t</u>	[67], [105]	
max.	ca. 1.600 W	/ CU1	max.	Abgeschätzt ca. 1,2*10 ¹⁶ Bq	
Wärmeleis-	nach 60 a		Akti-	/CU1 Behälter	
tung	ca. 1.100 W	/ CU2	vität	nach > 60 a [105, S. 55ff]	
	nach 90 a			25 Sv/h Beh. Oberfläche CU1	
	150 W / CU3			[105, S. 61] 15 Cuth Bala, Obaufikaha CU2	
	[105, S. 55h	S. 55ff] 15 Sv/h Beh. Oberfläche CU2			
Konnonteine	[105, S. 61]				
Dio Entwicklu	ng dar CII Bal	aältor wurde k	oroita ra	cht weit verangetrieben. Es evis	
tioron boroits	mobroro Prot		ugobörig	on Transportsystem sowie die Ein-	
Lieren bereits menrere Prototypen. Das zugenorigen Transportsystem sowie die Ein-					
Konzentstadium. Der Nachweis der Langzeitsicherheit des Endlagerkonzents sowie					
der Eignung der Einlagerungsgeräte für den Einsatz unter Tage ist noch zu erbrin-					
gen. [67], [10	gen. [67], [103], [105], [106]				

Werkstoffe Behälter					
		Material	Masse	Anm	erkung
BE- Ve	erkleidung	rostfreier Stahl [67, S. 148]	ca. 200 kg	Deck schw	el wird MIG-Ge- eißt
-De	ckel	Außendurchmes- ser 330 mm Wandstärke 5 mm			
Außen	behälter	unlegierter Stahl, P235	ca. 11.200 kg	Deck den p	el und Boden wer- Der Elektronen-
-De	ckel	bei CU1 >110 mm; bei CU2 >120 mm [67, S. 146ff]		strahlschweißen gas- dicht gefügt	
Gleiter (Nur CU2 und CU3)		Korund (Al ₂ O ₃), Yttriumoxid (Y ₂ O ₃) oder do- tiertes Korund (Al ₂ O ₃ + ZrO_2) [67, S. 140ff]			
Invent	tar der Behälte	er			
BE-Inv	/entar				
Behält	er Typ	Anzahl [106, S. 76]	Beschreibung [105, S. 54]		Anmerkung
CU2	1 MOX-BE	4.000 - 5.400;	Als Referenz Brenn- elemente werden DWR BE aus 1300		Wärmeleistung und Aktivität kön- nen der Tabelle
CU1	4 UO-BE	max. 54.000	MWe bzw. 1450 MWe Reaktoren betrachtet (AFA-2LE 'long' fuel as- semblies)		im Anhang ent- nommen werden. In [105, S. 55ff] ist das Radionukli- dinventar darge-
Gesamt Behälter		max.58.000			stellt.

	CU2-Behälter				
Inventar der Behälter					
weiteres Inventar					
Wasserinvetar im Behälter	In französischen Konzept nicht veröffentlicht, auf Grund der mit dem Pollux-Konzept vergleichbaren Konditionierung können die Angaben des Pollux übernommen werden. Hie- raus resultiert bei extrem konservativen Abschätzung ein maximales Wasserinventar von etwa 1,8 kg, realistische Abschätzung ergeben ca. 0,024 kg pro Behälter. [34, S. 1901				
Werkstoffe Behälteru	umfeld				
Einlagerungs- variante	Ausgehend von der Infrastrukturstrecke werde Abstand von 22,5 m horizontale, etwa 43 m la cher mit einem Durchmesser von 3,3 m erstel wird in den hinteren 32 m eine, am Ende vers dichte Verrohrung aus Stahl (S235) mit einem messer von 1,37 m und einer Wandstärke vor geführt. Diese ist von einem 0,8 m dicken Ber umgeben, welcher seinerseits von einem 30 m Metallring gestützt wird. Der vordere Teil wird für die Zeit der Einlageru eines temporären Rohrstückes überbrückt. In reich wird der Raum zwischen dem Rohr und o wandung mittels Beton verfüllt. Die einzelnen werden nacheinander in das Rohr eingelagert. mische Belastung des Gesteins zu reduzieren, schen den Lagerbehältern Platzhalter eingeset ihren Materialeigenschaften den Einlagerungsl sprechen. Nach dem Einlagerungsende wird zur Abschirr Stahlpfropfen in das Einlagerungsrohr eingeset poräre Rohr entfernt und der Zellkopf mittels J Beton verschlossen. [67, S. 239ff], [103, S. 1	en in einem inge Bohrlö- lt. In diese chlossene, a Innendurch- a tonitpuffer in starken ung mittels diesem Be- der Bohrloch- Behälter Um die ther- werden zwi- zt, welche in pehältern ent- nung ein tzt, das tem- Bentonit und 28ff]			
	Material	Anmerkung			
Verfüllung Bohrloch	keine / Abstandshalter aus P235 zwischen den Containern [67, S. 189ff], [103, S. 128ff]				
Verschluss Bohrloch	Stahl (P235) zur Abschirmung Bentonit (MX80 auf einer Länge von 3 m) Beton (4 m) [67, S. 212ff, 222ff], [103, S. 128ff]				
Verfüllung Zugangsstrecken	Verfüllung mit einer gleichmäßigen Mischung aus Ton und Sand. Verfüllung des Firstspalts mit Bentonitpulver [67, S. 229ff]				

Sonstige Informationen	
Gesamtinventar	Je nach Zeitpunkt des Atomausstiegs und Wiederauf- arbeitungs-konzept sind bis zu 54.000 CU1-Behälter mit einem Gesamtvolumen von etwa 355.000 m ³ einzulagern. Hinzu kommen 4.000-5.400 CU2-Behäl- ter zur direkten Endlagerung von MOX-BE mit einem Gesamtvolumen von etwa 8.100 m ³ [106, S. 76]
Behälterstandzeit nach Auslegung	>10.000 Jahre [67, S. 63]
Standzeit (bei Flächenkorrosion)	>10.000 Jahre nach konservativer Abschätzung [67, S. 138]
Standzeit (bei Lochfraßkorrosion) Wasserstoffversprödung	bei niedrig legierten Stählen ist der Einfluss von Was- serstoffversprödung und Lochfraßkorrosion unterge- ordnet [67, S. 131]
Sicherheit gegen Handhabungsunfälle	Im Rahmen der Auslegung wurde der Absturz eines CU-Behälters in seinem Transportbehälter in dem Förderschacht untersucht, es kam zu keiner Beschä- digung des Primärbehälters, eine Freisetzung von Ra- dionukliden ist damit faktisch ausgeschlossen.
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neut- ronen- und Gamma-Strahlung. Auf Grund der gerin- gen Dosisleistung nicht relevant [34, S. 604]
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung [34, S. 605]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	Seitens ANDRA nicht veröffentlicht, aufgrund der mit dem Pollux-Konzept vergleichbaren Fertigungspro- zesse muss jedoch auch hier mit einem Versagen von maximal 0,1% der Behälter = ca. 58 Behälter gerechnet werden [34, S. 234]
Langfristige Ausfallrate	Nach >10000 Jahren ist mit Behälterversagen durch chemische / mechanische Einwirkung zu rechnen [67, S. 138]
Absinken der Behälter	Im Ton/Tonstein nicht relevant

CU2-Behälter							
	Wer	kstoffk	ennwert	e			
Niedrig legierte	r Stahl (P23	5 GH / 1.03	45) [78]-[80]				
Verwendet für:	Außenbehä	ilter					
Werkstoff- beschreibung	Gute Schwe sion[67, S.	ißbarkeit, geri 128ff]	inge Anfälligkei	t für Lochfra	ßkorro-		
Masse ges.	ca. 11.200 kg [67, S. 148]	E-Modul	210 GPa	Schmelz punkt	1420- 1460 °C [80]		
Dichte	7,85 kg/dm ³ Bei 20 °C	Wärme- leitfähig- keit	57 W/m K	Ausdeh- nungs- koeffi- zient	12,5* 10 ⁻⁶ K ⁻¹		
0,2 % Dehngrenze RT	218 MPa [79] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 150°C	190 MPa [79] (abh. von der Material- stärke)	0,2 % Dehn- grenze 250°C	160 MPa [79] (abh. von der Materi- alstärke)		
Kompressi- onsmodul	ca. Schubmo- ca. 81 GPa Poisson- 175,5 GPa dul (berechnet) zahl						
Legierungselemente in % [79]							
C ≤ 0,16	Si ≤ 0,35	$ Si \le 0,35 \qquad Mn \le 1,20 \qquad P \le 0,025 \qquad S \le 0,015 \qquad Al \ge 0,020 \\ 0,015 \qquad O(200) \\ O(2$					
Cu+Cr+Mo+Ni ≤ 0,70							

Baustahl S235JR [107]						
Verwendet für:	Bohrlochve	Bohrlochverrohrung				
Werkstoff- beschreibung	Gute Schwe [67, S. 128f	ißbarkeit, geringe f]	Anfälligkei	t für Lochfraßk	orrosion	
Masse ges.	ca. 12,7 t [67, S. 202]	E-Modul	210 GPa	Schmelz- punkt	1250- 1460 °C	
Dichte	7,85 kg/dm ³ Bei 20°C	Wärmeleitfä- higkeit	54 W/m*K	Ausdeh- nungs- koeffizient	12* 10 ⁻⁶ K ⁻¹	
0,2 % Dehngrenze RT (ca. 25mm)	235 MPa	0,2 % Dehngrenze 150°C (ca. 25mm)	ca. 190 MPa	0,2 % Dehn- grenze 250°C (ca. 25mm)	ca. 160 MPa	
Kompressi- onsmodul	ca. 175,5 GPa (berech- net)	Schubmodul	ca. 81 GPa (berech- net)	Poisson- zahl	0,3	
Legierungselemente in %: [107]						
C ≤ 0,20	Mn ≤ 1,40	P ≤ 0,035	S ≤ 0,035	Cu ≤ 0,55	N ≤ 0,012	

Rostfreier Stahl	(exemplari	sch 1.4833) [53]				
Anmerkung	Der verwendete rostfreie Stahl ist derzeit in den Veröffentlichun- gen nicht genauer spezifiziert. Es ist jedoch davon auszugehen, dass ein Stahl gewählt wurde, welcher in etwa dem 1.4833 der Primärbehälter für WA-Abfälle entspricht. Die an dieser Stelle angegebenen Werte stellen somit nur unge- fähre Anhaltswerte dar!						
Verwendet für:	BE-Schächt	te					
Werkstoff- beschreibung	Bei dem für um einen wa Schweißeign	die BE-Schä armfesten, k jung	ichte verwende korrosionsbestä	eten Stahl han ändigen Stahl i	delt es sich nit guter		
Masse ges.	ca. 200 kg [67, S. 148]	E-Modul	196 GPa [53]	Schmelz- punkt			
Dichte	20°C 7,9 Kg/dm ³ [53]	Wärme- leitfä- higkeit	15 W/m K [53]	Ausdeh- nungs- koeffizient	600°C 18,8*10 ⁻⁶ /°C [53]		
0,2 % Dehngrenze R _P	210 MPa [53] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 150°C	128 MPa [53] (abh. von der Materi- alstärke)	0,2 % Dehn- grenze 250°C	108 MPa [53] (abh. von der Materi- alstärke)		
Kompressi- onsmodul	192 GPa Schub- (berech- net) 75 GPa [81] Poisson- zahl 0,33 [81]						
Legierungselemente in %: [53]							
Kohlenstoff C	< 0,15	< 0,15 Silizium < 1 Stickstoff 0,08					
Mangan Mn	< 2,0	Chrom Cr	22 - 24	Nickel Ni	12 - 14		
Eisen Fe	> 58,8						

CU2-Behälter

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier KBS-3V

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

KBS-3V Behälter		
Beim KBS-3V-Behälter handelt es sich	KBS-3V schematisch,	nach SKB
um einen nicht abgeschirmten Lager-	[54, S. 9]	
behälter zur direkten Endlagerung ab-	1,050 m	m
gebrannter Brennelemente.		
Er wurde zur Einlagerung von wärme-		*
entwickelnden radioaktiven Reststoffen	TE C	
im kristallinen Gestein (Granit) entwi-	1. 14	
ckeit. Als Einlagerungsvariante soli		
nierbei die Einlagerung in kurzen, ver-		
tikalen Bonriochern in der Sohle der		
Einidgerungsstrecke zum Einsatz kom-	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
den Bereiche werden mit Bentonit		E C
einem quellfähigen Ton, verfüllt, wel-		835
cher den Wasserzutritt zu den Behäl-		4
tern limitiert.		
Beim KBS-3V-Behälter handelt es sich		
um einen nicht abgeschirmten Behäl-		
ter. Auch wenn die zum Einsatz kom-		
menden Materialien bereits einen		
großen Teil der emittierten Strahlung		· · ·
abschirmen, ist für den sicheren		
Transport der Behalter ein zusatzlicher	Land	Schweden
Transportbenalter erforderlich, um ei-	Lagerkonzept	KBS-3V
inerisionender Strahlung zu gewährleis	Gesellschaften/	SKB
ten, [12], [54], [109]	Gestein	Kristallin
	Finlagerung	kurze vertikale
	Liniugerung	Bohrlöcher
	Masse	24.7 to (SWR)
		26,8 to (DWR)
		[12, S. 28]
	Länge	4,84 m [12, S. 34]
	Durchmesser	1,05 m
	Anzahl gesamt	ca. 6.500 [109, S.
	1	15]

Aufbau des Be	hälters				
Der KBS-3V-Be	hälter besitzt e	einen zylindris	chen Aufbau mit	einem Durchmesser	
von etwa 1,1 m	und einer Lan	ge von 4,9 m	. Beladen wiegt	er etwa 27 t. Zur Hand-	
[54, S, 10ff]	Verschweibten	Deckel des De		gillulue elligelassell.	
[54, S. 10ff]	Material	Beschreibu	ng		
BE-Schächte	niedrig legierter Stahl	Der Innenbe (SWR) einge Brennelemer	hälter besitzt vie gossene Schäch nte	er (DWR) bzw. zwölf te zur Aufnahme der	
Innenbehäl- ter	Gusseisen mit Kugel- graphit >38 mm	Der Innenbehälter mit einem Durchmesser von 0,95 m dient hauptsächlich als lasttragender Teil des KBS- 3V-Behälters. Verschlossen wird der Innenbehälter über einen verschraubten Deckel. Durch den hohen Graphitanteil des Gusseisens schirmt der Innenbe- hälter einen Teil der emittierten Strahlung ab.			
Außenbehäl- ter	Kupfer >49 mm	Der Außenbe fer mit einer schlossen wi Kupferdecke der Behälter	hälter besteht a Mindestwandstä rd er mit einem I, der mit einer (versehen ist.	us sauerstofffreiem Kup- irke von 49 mm. Ver- verschweißten Griffmulde zum Heben	
Besonder- heiten	Das KBS-3V- Stabilität (Inr (Kupfer). Auc erzielt er durc Abschirmwirk	Konzept beruh nenbehälter au ch wenn er nic ch die hohe M cung.	nt auf der Trenn us Gusseisen) ur ht als Abschirml aterialstärke ein	ung der mechanischen nd der Korrosionsbarriere behälter ausgelegt ist, e vergleichsweise hohe	
Inventar					
Beschrei- bung	Das Inventar des KBS-3V Behälters besteht aus vier DWR-Brenn- elementen bzw. zwölf SWR-Brennelementen. Insgesamt beträgt das Inventar bis zu 2.1 TSM [109, S. 30ff]				
max. Wärmeleis- tung	2,1 KW max. 21*10 ¹⁵ Bq [109, S. 30ff] Aktivität [109, S. 30ff]				
Konzeptstand	Konzeptstand				
Der KBS-3V ist der Einlagerungsbehälter für das schwedische Referenzkonzept. Von den Behältern wurden bereits einige Prototypen gebaut [12, S. 68ff].Auch Verfahren zur Einlagerung sowie zur Rückholung der Behälter aus dem Lager wurden bereits an Mock-Up Behältern untersucht.					

KBS-3V Behälter

Aufbau KBS-3V Behälter

Der prinzipielle Aufbau des KBS-3V-Behälters kann der nachfolgenden Zeichnung entnommen werden.

Es existieren derzeit zwei Varianten des KBS-3V. Die erste besitzt zwölf Schächte zur Aufnahme von SWR-Brennelementen, die zweite besitzt vier Schächte für DWR-Brennelemente. Insgesamt wird im KBS-3V-Konzept von einer Gesamtzahl von 6.103 Behältern ausgegangen, welche sich wie folgt aufteilen: DWR: 1.652 Behälter; SWR: 4.451 Behälter [105, S. 75]

Länge	4.835 mm [54, S. 9]	Gebindevo- lumen	ca. 4,2 m ³ [54, S. 9]	Innenvolu- men	ca. 1,4 m³ [54, S. 10]
Durch- messer	1.050 mm [54, S. 9]	Gebinde- masse	24,6 t [54, S. 9]	Masse In- ventar gesamt	3,5 t [12, S. 28]

Komponenten des KBS-3V [12, S. 28]

Detailzeichnungen können dem Anhang von [54] entnommen werden

Werkstoffe Behälter						
	Material	Masse	Anmerkung			
Innenbehäl- ter	EN-GJS 400-15U; Mindestwandstärke 38 mm [54, S. 17]	13.600 kg [54, S. 9]				
-BE- Schächte	S355 JR		mit Gusseisen umgossen			
- Deckel	S355JR		verschraubt			
Außenbehäl- ter	sauerstofffreies Kupfer nach KTS001 Mindestwandstärke 49 mm [12, S. 50], [54, S. 17ff]	7.400 kg [54, S. 9]				
-Boden	sauerstofffreies Kupfer nach KTS001 Mindestwandstärke 50 mm [12, S. 50]		rührreibge- schweißt			
-Deckel	sauerstofffreies Kupfer nach KTS001 Mindestwandstärke 50 mm [12, S. 50]		rührreibge- schweißt			

KBS-3V Behälter					
	Inver	ntar der Behä	lter		
HAW-Inventar					
Brennele- menttyp	Anzahl	Masse SM	Anmerkung		
Druckwasser- reaktor	4 [109, S. 30ff]	ca. 2.1 t [109, S. 30ff]	Wärmeleistung und Akti- vität in Abhängigkeit vom Abbrand können den Ta-		
Siedewasserre- aktor	12 [109, S. 30ff]	ca. 2.1 t [109, S. 30ff]	belle im Anhang von [105] entnommen werden		
weiteres Inventa	ar				
Wasserinventar ter	im Behäl-	< 0,6 kg pro Behälter [3	109, S. 56]		
Werkstoffe Behä	lterumfeld				
Einlagerungs- variante	Einlagerungs- variante Die Behälter werden aus dem Transportbehälter in vertikalen Bohrlöcher abgelassen. Die von der Streckensohle ausgehenden Bohrungen werden zuvor mit Bentonitringen ausgekleideten. Im Anschluss wird das Bohrloch mit Bentonitblöcken verschlossen. Die Einlagerungsstrecken sollen nach Ende der Einlagerung mit Bentonitblöcken und Bentonitgrauhat vorfüllt werden.				
	Material				
Verfüllung	Zur Verfüllung der Behälter kommen vorkompaktierte Blöcke aus Bentonit zum Einsatz. Diese weisen ein starkes Quellvermö- gen auf. Hierdurch werden etwaige Hohlräume bei Feuchtigkeits- zutritt verschlossen, so dass maximal ein sehr langsamer, diffusionsgetriebener Flüssigkeitstransport stattfinden kann. De- tails zur Produktion und Zusammensetzung der Bentonitverfül- lung können [110] entnommen werden.				

Sonstige Information	onen
Gesamtinventar	Insgesamt werden zur Einlagerung der Abfälle im schwedi- schen Konzept ca. 6.500 Behälter benötigt. Das Gesamtin- ventar beträgt dabei etwa 13.600 TSM [109, S. 30ff]
Behälterstandzeit nach Auslegung	Im Kristallingestein muss das Barrierensystem aus Behälter und Verfüllung die Rückhaltung der Radionuklide gewährleis- ten, da ein begrenzter Zufluss von Wasser zu den Behältern nicht ausgeschlossen werden kann. Es wird von einer Stand- zeit von mehreren 100.000 Jahren ausgegangen. [12]
Standzeit (bei Flächenkor- rosion)	Eine aerobe Flächenkorrosion ist nur in den ersten Jahren nach dem Verschluss der Einlagerungsstrecken zu erwarten. Durch die begrenzte Verfügbarkeit von O_2 wird sie auf etwa 4,8 kg pro Behälter (entsprechend etwa 50 µm) begrenzt [12, S. 50ff]
Standzeit (bei Lochfraßkor- rosion)	Die zu erwartende Lochtiefe liegt im Bereich von maximal 4 mm. Unter den gegebenen Umgebungsbedingungen ist Lochkorro- sion nicht zu erwarten. Jedoch wurden die Auswirkungen denkbarer Einflussfaktoren, welche die Lochbildung begünsti- gen könnten, noch nicht abschließend untersucht [58, S. 8]
Wasserstoffver- sprödung	Wasserstoffversprödung spielt bei sauerstofffreiem Kupfer nur eine untergeordnete Rolle. Die möglichen Einflüsse der Wasserstoffversprödung auf den Behälter wurden jedoch noch nicht abschließend untersucht [58], [111]
Sicherheit gegen Handhabungsun- fälle	Auch wenn die Behälter auf Grund ihrer Wandstärken eine hohe Stabilität aufweisen, ist aus Gründen der Radiologie ein Transportbehälter erforderlich, welcher die Sicherheit maß- geblich beeinflusst [12, S. 98]
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der maximalen Dosisleis- tung von maximal 1Gy/h (real <0,5Gy/h) ist maximal eine Korrosion von 4,1 kg (entsprechend 43 µm) zu erwarten [58, S. 8], [112, S. 280]. Auch die direkten Auswirkungen der Strahlung auf das Kupfer sind vernachlässigbar [112, S. 271]
Gasbildung durch Radiolyse	Der Einfluss der Gasbildung durch Radiolyse ist (verglichen mit der Gasbildung durch Zersetzung und Korrosion) ver- nachlässigbar [34, S. 605], [112, S. 280]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	Nicht veröffentlicht. Analog zu anderen Behälterkonzepten ist bei maximal 0,1% der Behälter = ca. 7 Behältern von unent- deckten Fertigungsfehlern auszugehen, welche zu einer früh- zeitigen Schädigung führen [34, S. 234]
Langfristige Ausfallrate	Die erwartete Lebensdauer der Behälter beträgt mehrere Mil- lionen Jahre. Es sind jedoch noch nicht alle denkbaren Ein- flüsse abschließend untersucht [110, S. 19]
Absinken der Behälter	im kristallinen Gestein nicht relevant

KBS-3V Behälter									
	Wer	kstoffken	nwert	e					
Kupfer nach KTS	5001 [87], [8	38]							
Verwendet für:	Außenbeha [12, S. 50ff]	Außenbehälter inkl. Boden und Deckel							
Werkstoff- Beschreibung	Bei dem Ma	terial handelt es s	ich um sau	erstofffreiem K	lupfer.				
Masse ges.	23.900 kg [12, S. 28]	E-Modul	115 GPa	Schmelz- punkt	1083 °C				
Dichte	8,94 kg/dm ³	Wärme-leitfä- higkeit	391 W/m*K	Ausdeh- nungs- koeffizient	17,0* 10 ⁻⁶ /K				
0,2 % Dehngrenze RT	360 MPa	0,2 % Dehngrenze 150°C	-	0,2 % Dehn- grenze 250°C	-				
Kompressi- onsmodul	100,1 GPa (berech- net)	Schubmodul	44 GPa (berech- net)	Poisson- zahl	0,31				
Legierungselem	ente in %:	[12, S. 74]							
Kupfer CU	99,99	Silber Ag	25×10 ⁻⁶	Arsen As	5×10 ⁻⁶				
Eisen Fe	10×10 ⁻⁶	Schwefel S	15×10 ⁻⁶	Antimon Sb	4×10 ⁻⁶				
Tellur Te	2×10 ⁻⁶	Blei Pb	5×10 ⁻⁶	Bismut Bi	1×10 ⁻⁶				
Cadmium Cd	1×10 ⁻⁶	Mangan Mn	0,5×10 ⁻⁶	Quecksil- ber Hg	1×10 ⁻⁶				
Nickel Ni	10×10 ⁻⁶	Sauerstoff O	5×10 ⁻⁶	Zinn Sn	2×10 ⁻⁶				
Zink Zi	1×10 ⁻⁶								

Gusseisen mit Kugelgraphit EN-GJS-400-15U (0.7040 oder GGG40)								
Verwendet für:	Innenbehä	Innenbehälter [54, S. 17]						
Werkstoff- beschreibung	Bei Gusseisen mit Kugelgraphit, oder auch Sphäroguss, handelt es sich um einen Gusswerkstoff mit einem Kohlenstoffgehalt von >2,06 %. Durch eine geeignete Legierungszusammensetzung und die Behandlung der Schmelze, beispielsweise mit Magne- sium, bilden sich die ausgeschiedenen Graphitphasen in Form kugeliger Ausscheidungen aus und es entsteht ein überwiegend ferritisches Gefüge, welches dem Werkstoff seine duktilen, stahl- ähnlichen Figenschaften verleiht							
Masse ges.	ca. 30.000 kg [12, S. 23]	E-Modul	169 GPa [33, S. 32]	Schmelz- punkt	ca. 1150°C [35, S. 96]			
Dichte	7,1 kg/dm ³ [33, S. 32]	Wärmeleitfä- higkeit	35,0- 41,5 W/m*K [35, S. 65]	Ausdeh- nungs- koeffizient	11,2- 13,4* 10 ⁻⁶ /K [35, S. 65]			
0,2 % Dehngrenze RT	250 MPa [35, S. 57]	0,2 % Dehngrenze 150°C	210 MPa [35, S. 57]	0,2 % Dehn- grenze 250°C	180 MPa [35, S. 57]			
Kompressi- onsmodul	125,2 GPa (berech- net)	Schubmodul	66,3 GPa (berech- net)	Poisson- zahl	0,275 [33, S. 32]			
Legierungselem	ente in %:	[33]						
Kohlenstoff C	2,9-3,7	Silizium Si	1,7-4,1	Mangan Mn	< 0,2			
Kupfer Cu	0,15-0,75							

KBS-3V Behälter					
	Werk	stoffkenr	werte	3	
S355 JR (1.004	5)				
Verwendet für:	BE-Aufnahm	erohre und Dec	kel des In	nenbehälters	l
Werkstoff- beschreibung	Beim S355 ha weist eine gut auf.	andelt es sich um te Schweißbarkeit,	einen warn , Verformba	ngewalzten Bau arkeit und Fest	ustahl. Er igkeit
Masse ges.	abgeschätzt aus Abmes- sungen ca.1,0 t (DWR) ca.1,5 t (SWR)	E-Modul	210 GPa [99]	Schmelz- punkt	-
Dichte	7,85 kg/dm ³ [99]	Wärmeleitfä- higkeit	54 W/m*K [99]	Ausdeh- nungs- koeffizient	11,1* 10 ⁻⁶ /K [99]
0,2 % Dehngrenze RT	265 – 355 MPa (dickenab- hängig) [99]				
Kompressions- modul	175 GPa (berechnet)	Schubmodul	80,8 GPa (berech- net)	Poisson- zahl	0,3 [99]
Legierungselem	ente in %: [9	9]	-		
Kohlenstoff C	0,24	Silicium Si	0,55	Mangan Mn	1,6
Phosphor P	0,035	Stickstoff N	0,012	Kupfer Cu	0,55
Schwefel S	0,035				

VP6: Einlagerung in tiefe geologische Formationen mit Vorkehrung zur Überwachung und Rückholbarkeit

Behälterdossier BE-EL-Behälter

Dossier der Arbeitspakete 6.5 und 6.6

- Wechselwirkungen zwischen Endlager, Lagerungs system und Reststoffen zur Beurteilung von Langzeitstabilität und Rückholbarkeit
- Interventionstechniken zur sicheren Rückholbarkeit

Dr.-Ing. T. Hassel Dipl.-Ing. A. Köhler Ö. Kurt

Institut für Werkstoffkunde,

Leibniz Universität Hannover

Version 2.1 / Jun-2018

BE-EL Behälter

BE-Einlagerungsbehälter [114, S. 7]

Beim Schweizer Konzeptbehälter zur Brennelement Einlagerung (BE-ELB) handelt es sich um einen nicht abgeschirmten Lagerbehälter zur direkten Endlagerung abgebrannter Brennelemente.

Er wurde zur Einlagerung von wärmeentwickelnden radioaktiven Abfällen im Opalinus Ton entwickelt. Als Einlagerungsvariante soll hierbei die Einlagerung auf der Sohle von Einlagerungsstrecken zum Einsatz kommen. Die Lagerbehälter werden auf einem Sockel aus Bentonit abgelegt. Anschließend werden die umgebenden Bereiche mit Bentonit verfüllt. Bei dem verwendeten Bentonit handelt es sich um einen guellfähigen Ton, welcher den Wasserzutritt zum Behälter limitiert. Bei den Behältern des Schweizer Konzepts handelt es sich um einen nicht abgeschirmten Behälter. Auch wenn die zum Einsatz kommenden Materialien bereits einen großen Teil der emittierten Strahlung abschirmen, ist somit für den sicheren Transport der Behälter ein Transportbehälter erforderlich, um einen sicheren Schutz des Personals vor ionisierender Strahlung sicher zu stellen. [29], [113]

Land	Schweiz
Lagerkonzept	Referenzmodell
Gesellschaften/	NAGRA
Organisationen	
Gestein	Opalinus Ton
Einlagerung	Streckenlage-
	rung
Masse	22,1 t
	[113, S. 139]
Länge	5,35 m
	[113, S. 139]
Durchmesser	1,05 m
	[113, S. 139]
Anzahl gesamt	ca. 2.065 +
	ca. 730 HAW
	[115, S. 13]

Aufbau des Be	hälters					
Der BE-EL Behä	lter besitzt ein d einer Länge	en zylin	drischen Aufba	u mit einem Durchmesser von		
Handhahung ist	am verschweil	Rtan Da	ckol dos Bohäl	ters eine Tragmulde eingelas-		
sen.[113]	uni versenwen	bien be	eker des bendi	ters ente rruginalae entgelas		
[113], [116]	Material	Besch	reibuna			
BE-Schächte	Feinkorn- baustahl (niedrig le-	Der Behälter besitzt vier (DWR) bzw. neun (SWR) Schächte zur Aufnahme der Brennelemente.				
Behälterkör- per	gierter Stahl)	r Der Behälterkörper mit einem Durchmesser von etwa einem Meter und einer Mindestwandstärke von 15 cm dient als Last tragender Teil des BE-EL Behäl- ters. Verschlossen wird er mit einem verschweißten Deckel.				
Besonderhei- ten	Der Behälter spielt im Schweizer Endlagerkonzept nur eine unter- geordnete Rolle. Ein sicherer Einschluss der Radionuklide in den Behältern wird nur für einen Zeitraum von 1.000 Jahren gefordert. Hauptsächlich werden die Radionuklide durch das Verfüllmaterial in den Hohlräumen sowie das geologische Umfeld zurückgehalten.					
Inventar						
Beschrei- bung	Das Inventar menten bzw. Inventar bis z	des BE- neun S zu 1.55	-EL Behälters t WR-Brennelem TSM, [117, S.	besteht aus vier DWR-Brennele- benten. Insgesamt beträgt das XIX1		
max. Wärmeleis- tung	Invental bis 20 1,55 (SH, [117, 5, XIX]) 1,5 KW max. [118, S. 10] Aktivität [115, S. C], [117, S. XIX]					
Konzeptstand						
Konzeptstand In der Schweiz liegt der Fokus der Endlagerkonzeptentwicklung derzeit auf der Aus- wahl einer geeigneten Geologie. Die Behälter wurden bisher nur auf konzeptueller Ebene entwickelt und im Detail nur so weit ausgestaltet wie es für die Validierung der Geologie erforderlich ist. Derzeit wird die hier vorgestellte Variante aus Stahl fa- vorisiert, alternativ wird jedoch auch eine Variante mit zusätzlicher Kupferumman- telung untersucht. [113]. [119]						

BE-EL Behälter

Aufbau BE-EL Behälter

Der BE-EL Behälter besteht aus Stahl mit einer Mindestwandstärke von 150 mm. Im Inneren befinden sich quadratische Schächte zur Aufnahme von BE. Der Behälter wird mittels eines verschweißten Deckels verschlossen. Als Schweißverfahren hierfür wurde das Elektronenstrahlschweißen sowie ein Lichtbogenschweißverfahren welches auf dem WIG-Schweißen basiert, vorgeschlagen. Im Deckel ist eine Griffmulde eingelassen, welche die Handhabung des Behälters mittels eines Greifers ermöglicht.

Es sind zwei Hauptvarianten des BE-EL Behälters vorgesehen, welche an die unterschiedlichen Abmessungen der verschiedenen Brennelemente sowie an die zu erwartende Wärmeleistung angepasst sind. Die erste Variante besitzt neun Schächte zur Aufnahme von SWR-Brennelementen, die zweite besitzt vier Schächte für DWR-Brennelemente [29, S. 34 ff.].

Insgesamt wird derzeit von einer Gesamtzahl von 2.065 Behältern ausgegangen, welche sich wie folgt aufteilen: DWR: 1.130 Behälter; SWR: 1.015 Behälter hinzu kommen 730 Behälter zur Einlagerung von verglasten Abfällen aus der Wiederaufarbeitung [115, S. 8 ff.]

Länge	max. 5.350 mm [113, S. 139]	Gebinde- volumen	ca. 4,6 m³ [113, S. 139]	Innenvolu- men	ca. 0,95 m³ [29, S. 36]
Durchmes- ser	1.050 mm [113, S. 139]	Gebinde- masse	22,1 t [113, S. 139]	Masse In- ventar gesamt	1,6 TSM [115, S. 13]

Werkstoffe Behälter								
Material	Masse	Anmerkung						
Der BE-EL Behälter soll aus einem niedrig legiertem Stahl geschmiedet werden. Als Re- ferenz wird hier ein Druckbe- hälterstahl vom Typ ASTM/ASME A516/SA516 Grade 70 genannt welcher weitestgehend einem P355GH entspricht [116, S. 1]	ca. 20,5 Ton- nen [113, S. 139], [117, S. XIX]							
Für den Boden und den De- ckel des Behälters ist die Ver- wendung desselben Druckbehälterstahls vorgese- hen. Boden und Deckel werden mit dem Behälterkörper ver- schweißt. [116, S. 1 ff.]								
	ilter Material Der BE-EL Behälter soll aus einem niedrig legiertem Stahl geschmiedet werden. Als Re- ferenz wird hier ein Druckbe- hälterstahl vom Typ ASTM/ASME A516/SA516 Grade 70 genannt welcher weitestgehend einem P355GH entspricht [116, S. 1] Für den Boden und den De- ckel des Behälters ist die Ver- wendung desselben Druckbehälterstahls vorgese- hen. Boden und Deckel werden mit dem Behälterkörper ver- schweißt. [116, S. 1 ff.]	MaterialMasseDer BE-EL Behälter soll aus einem niedrig legiertem Stahl geschmiedet werden. Als Re- ferenz wird hier ein Druckbe- hälterstahl vom Typ ASTM/ASME A516/SA516 Grade 70 genannt welcher weitestgehend einem P355GH entspricht [116, S. 1]ca. 20,5 Ton- nen [113, S. 139], [117, S. XIX]Für den Boden und den De- ckel des Behälters ist die Ver- wendung desselben Druckbehälterstahls vorgese- hen. Boden und Deckel werden mit dem Behälterkörper ver- schweißt. [116, S. 1 ff.]Masse						

			Dahä	Hay		
		BE-EL	вепа	iter		
Inventar der Bel	nälter					
HAW-Inventar						
Behältertyp	An- zahl BE/Be h.	Masse SM/Beh.	Anzahl Behäl- ter	Masse SM gesamt	Anmerkung	
BE-1 SWR UO2	9	1,593 t	935 [1630]	1490 t [2597 †]	Unterschieden wird zwischen zwei ver-	
BE-2 DWR UO2+MOX	3 UO2 1 MOX	1,173 t 0,322 t	450 [450]	528 t [528 t] 145 t [145 t]	schiedenen Nut- zungsszenarien mit unterschiedlichem Abfallaufkommen	
BE-3 DWR UO2	4	1,556 t	680 [1500]	1058 t [2334 t]	[115, S. 13], [117, S. XIX]	
Gesamt			2065 [3580]	3221 t [5604 t]		
weiteres Inventa	ar					
Wasserinven- tar im Behälter	Das Leervolumen der Behälter beträgt etwa 0,15m ³ Das zu erwartende Wasserinventar ist im Schweizer Konzept nicht veröffentlicht, auf Grund der mit dem Pollux-Konzept ver- gleichbaren Konditionierung können die Angaben des Pollux übernommen werden. Hieraus resultiert bei extrem konservati- ven Abschätzung ein maximales Wasserinventar von etwa 7,2 kg, realistische Abschätzung ergeben ca. 0,024 kg pro Behälter					
Werkstoffe Behä	ilterumfe	eld				
Einlagerungs- variante	 Im Schweißer Konzept ist eine Streckenlagerung im Opalinuston vorgesehen. Die Einlagerungsstrecken sollen einen Durchmesser von 2,5m und eine Länge von etwa 800m aufweisen. Der Ab- stand zwischen den einzelnen Strecken soll 40m, der zwischen den einzelnen Einlagerungsbehältern 3m betragen. [121, S. 31 ff., 92 ff.] 					
	Materia	1				
Verfüllung	Die Beh blöcken Bentonit	Die Behälter werden in den Einlagerungsstrecken auf Bentonit- blöcken abgelegt. Der umgebende Bereich wird im Anschluss mit Bentonitgranulat verfüllt [121]				

Sonstige Informationen	
Gesamtinventar	In Abhängigkeit von der zukünftigen Nutzung der Atomkraft sind zwischen 2065 und 3580 Behälter einzulagern [115, S. 13] Das Gesamtvolumen be- trägt damit etwa 9500 – 16500 m ³ . Hinzu kommen noch ca. 1015 m ³ verglaste WA-Abfälle. [115, S. 8]
Behälterstandzeit nach Auslegung	Die Mindestanforderung an die Lebensdauer der Behälter beträgt 1.000 Jahre, die erwartete Le- bensdauer beträgt jedoch mindestens 10.000 Jahre [121]
Standzeit (bei Flächenkorrosion)	Die Korrosionsrate wird mit 0,1-1 µm/Jahr abge- schätzt, hieraus ergibt sich bei 150mm Wandstärke eine theoretische Behälterstandzeit von >150.000 Jahren bei Flächenkorrosion [120, S. 10], [122, S. 45]
Standzeit (bei Lochfraßkorrosion) Wasserstoffversprödung	bei niedrig legierten Stählen ist der Einfluss von Wasserstoffversprödung und Lochfraßkorrosion un- tergeordnet [67, S. 131]
Sicherheit gegen Handhabungsunfälle	Nicht näher beschrieben. Auf Grund der geringen Wandstärke ist für den Transport ein abschirmen- der Transportbehälter erforderlich. Die Auslegung auf die im Endlager wirkenden Kräfte gewährleistet jedoch auch ohne zusätzlichen Außenbehälter be- reits eine ausreichende Sicherheit bei den zu im Rahmen der Handhabung möglichen Unfälle
Radiolyse	In Folge der Abschirmung nur Radiolyse durch Neutronen- und Gamma-Strahlung. Auf Grund der geringen Dosis- leistung nicht relevant [34, S. 604].
Gasbildung durch Radiolyse	zwei bis drei Größenordnungen kleiner als Gasbil- dung durch Korrosion oder Zersetzung [34, S. 605], [53]
Ausfallrate durch Fertigungsdefizite (<500 Jahre)	Seitens Nagra nicht veröffentlicht, aufgrund der mit dem Pollux-Konzept vergleichbaren Fertigungs- prozesse muss jedoch auch hier mit einem Versa- gen von maximal 0,1% der Behälter [34, S. 234]
Langfristige Ausfallrate	Die Auslegungslebensdauer der Behälter liegt bei >10.000 Jahren. Nach dieser Zeit ist mit Behälter- versagen durch chemische / mechanische Einwir- kung zu rechnen [120], [122]
Absinken der Behälter	Im Ton/Tonstein nicht relevant

BE-EL Behälter						
Werkstoffkennv	verte					
ASTM/ASME A5	16/SA516 G	Grade 70				
Verwendet für:	Behälterkö	rper, Boden und D	eckel			
Werkstoff- Beschreibung	Bei dem Druckbehälterstahl vom Typ ASTM/ASME A516/SA516 Grade 70 handelt es sich um einen niedrig legierten Stahl wel- cher weitestgehend einem P355GH entspricht. Auf Grund der schlechten Datenverfügbarkeit zu diesem Stahl sei an dieser Stelle auf das Datenblatt zum P355 verwiesen [116, S. 1]					
Masse ges.	ca. 20,5 t [113, S. 139], [117, S. XIX]	E-Modul		Schmelz- punkt		
Dichte		Wärmeleitfä- higkeit		Ausdeh- nungs- koeffizient		
0,2 % Dehngrenze RT	335 MPa [123]	0,2 % Dehngrenze 150°C		0,2 % Dehn- grenze 250°C		
Kompressi- onsmodul	Schubmodul Poisson- zahl					
Legierungselem	ente in %:	[123]				
Kohlenstoff C	0,10 - 0,22	Kupfer Cu	0,3	Silizium Si	0,6	
Nickel Ni	0,3	Mangan Mn	1 - 1,7	Molybdän Mo	0,08	
Phosphor P	0,03	Niob Nb	0,01	Schwefel S	0,03	
Titan Ti	0,03	Aluminium Al	0,02	Vanadium V	0,02	
Chrom Cr	0,3					

P355 GH					
Verwendet für:	BE-Aufnahmerohre und Deckel des Innenbehälters				
Werkstoff- beschreibung	Bei dem Werkstoff P355 handelt es sich um einen Druckbehälter- stahl, Er weist eine gute Schweißbarkeit, Verformbarkeit und Festigkeit auf.				
Masse ges.	-	E-Modul	190 GPa [124]	Schmelz- punkt	1420 - 1460°C [124]
Dichte	7,8 kg/dm ³ [124]	Wärmeleitfä- higkeit	52 W/m*K [124]	Ausdeh- nungs- koeffizient	12* 10 ⁻⁶ /K [124]
0,2 % Dehngrenze RT	334 MPa [125]	0,2 % Dehngrenze 150°C	291 MPa [125]	0,2 % Dehn- grenze 250°C	245 MPa [125]
Kompressi- onsmodul	166,7 GPa (berechnet)	Schubmodul	76,9 MPa (berech- net)	Poisson- zahl	0,29 [124]
Legierungselemente in %: [125]					
Kohlenstoff C	0,10 - 0,22	Silicium Si	≤ 0,60	Mangan Mn	1,10 - 1,70
Phosphor P	0,025	Schwefel S	0,015	Aluminium Al	≤ 0,020
Stickstoff N	≤ 0,012	Chrom Cr	≤ 0,30	Kupfer Cu	≤ 0,30
Molybdän Mo	≤ 0,08	Niob Nb	≤ 0,020	Nickel Ni	≤ 0,30
Titan Ti	0,03	Vanadium V	≤ 0,02		

Quellenverzeichnis

- [1] F. Peiffer, B. McStocker und D. Gründler, "Abfallspezifikation und Mengengerüst, Basis Ausstieg aus der Kernenergienutzung (Juli 2011), Vorläufige Sicherheitsanalyse Gorleben, Bericht zum Arbeitspaket 3", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-278, ISBN 978-3-939355-54-2, Sep. 2011.
- [2] Kommission Lagerung hoch radioaktiver Abfallstoffe, "Bericht der Kommission, Leitbild B - Bilanz der Wiederaufarbeitung, Ergänzung Kapitel 2.2.3", Kommission Lagerung hoch radioaktiver Abfallstoffe, K-Drs./Ag 4-24, März 2016.
- [3] Bürgerinitiative Umweltschutz Lüchow-Dannenberg e.V., "Stellungnahme zum Entwurf eines Gesetzes zur Fortentwicklung des Gesetzes zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle und anderer Gesetze", Ausschussdrucksache 18(16)526-D, März 2017.
- [4] Deutscher Bundestag, "13. Novelle des AtG", BGBl. I S. 1704, Juli 2011.
- [5] Deutscher Bundestag, "Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle (Standortauswahlgesetz -StandAG)", BGBI. I S. 2553, zuletzt geändert durch Art. 4 des Gesetzes vom 27. Januar 2017 (BGBI. I S. 114), Juli 2013.
- [6] Kommission; Lagerung hoch radioaktiver Abfallstoffe, "Abschlussbericht der Kommission Lagerung hoch radioaktiver Abfälle", DRS-268, Juli 2016.
- [7] J. Stahlmann, R. P. Leon Vargas und V. Mintzlaff, "ENTRIA-Arbeitsbericht-03: Generische Tiefenlagermodelle mit Option zur Rückholung der radioaktiven Reststoffe: Geologische und Geotechnische Aspekte für die Auslegung." Braunschweig-2015.
- [8] Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), "Sicherheitsanforderungen an die Endlagerung wärmeentwickelnder radioaktiver Abfälle", Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Sep. 2010.
- [9] J. C. L. Meeussen und E. Rosca-Bocancea, "Determination of the inventory: part B matrix composition", Centrale Organisatie Voor Radioactief Afval (COVRA NV), OPERA-PU-NRG112B, 2014.
- [10] E. Verhoef, E. Neeft, J. Grupa und A. Poley, "Projectplan "Onderzoeks Programma Berging van Radioactief Afval"", Centrale Organisatie Voor Radioactief Afval (COVRA NV), OPERA-PG-COV008, Nov. 2014.
- [11] International Atomic Energy Agency, "Fundamental safety principles: safety fundamentals", IAEA, Wien, IAEA SF-1, ISBN 978-92-0-110706-0, 2006.
- [12] L. Boerjesson, D. Gunnarsson, L.-E. Johannesson und E. Jonsson, "Design, production and initial state of the canister", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-14, ISSN 1404-0344, Dez. 2010.
- [13] H. Raiko, R. Sandstroem, H. Ryden und M. Johansson, "Design analysis report for the canister", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-28, ISSN 1404-0344, Apr. 2010.
- [14] W. Bollingfehr, W. Filbert und C. Lerch, "Endlagerkonzepte: Bericht zum Arbeitspaket 5; vorläufige Sicherheitsanalyse für den Standort Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, GRS-272, Juli 2011.
- [15] W. Bollingerfehr, W. Filbert und S. Dörr, "Endlagerauslegung und -optimierung: Bericht zum Arbeitspaket 6; vorläufige Sicherheitsanalyse für den Standort Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, GRS-281, ISBN 978-3-939355-57-1, Juni 2012.
- [16] C. Walter und M. Riemann, "Wie viel Strahlendosis für wen? Lange Lagerung, Offenhaltung und ein langer Entsorgungsprozess bedeuten zusätzliche Dosis für Beschäftigte", GAiA-Ökologische Perspektiven für Wissenschaft und Gesellschaft 26/2 (2017) S.106-109, DOI: 10.14512/gaia.26.2.11.

- [17] R. León-Vargas und J. Stahlmann, "Thermal impact in the geometrical settings in deep geological repositories for HLW with retrievability", Phoenix AZ, USA, Proceedings of the 42th Waste Management Symposia, WMS 2016, März 2016.
- [18] DBEtec, "Gutachten: Flächenbedarf für ein Endlager für wärmeentwickelnde hoch radioaktive Abfälle", DBE TECHNOLOGY GmbH, Kommission Lagerung hoch radioaktiver Abfälle K-MAT 58 (TEC-09-216-G).
- [19] Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, "Programm für eine verantwortungsvolle und sichere Entsorgung bestrahlter Brennelemente und radioaktiver Abfälle (Nationales Entsorgungsprogramm)", Aug. 2015.
- [20] Agence nationale pour la gestion des déchets radioactifs, "Stockage réversible profond- Options de sûreté du stockage en formation géologique profonde", ANDRA, C.NT.ASSN.09.0029.B, 2009.
- [21] SKB, "Long-term safety for the final repository for spent nuclear fuel at Forsmark - Main report of the SR-Site project", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR-11-01 Vol. 1-3, ISSN 1404-0344, Dez. 2012.
- [22] A. Rübel und A. Meleshyn, "Methodik und Anwendungsbezug eines Sicherheitsund Nachweiskonzeptes für ein HAW-Endlager im Tonstein: Sicherheitskonzept und Nachweisstrategie", Ges. für Anlagen- und Reaktorsicherheit (GRS), Köln, GRS-338, ISBN 978-3-944161-18-1, Aug. 2014.
- [23] D. Köhnke, M. Reichardt und F. Semper, Hrsg., Zwischenlagerung hoch radioaktiver Abfälle. Wiesbaden: Springer Fachmedien, 2017.
- [24] Strahlenschutzkommission des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, "Strahlenschutz und Strahlenbelastung im Zusammenhang mit Polizeieinsätzen anläßlich von CASTOR-Transporten", SSK, SSK 1998-5, 1998.
- [25] E. Pönitz, C. Walter und T. Hassel, "Calculations of Dose Rates at the Surface of Storage Containers for High-Level Radioactive Waste", 14th International Congress of the International Radiation Protection Association (IRPA), Kapstadt, Südafrika, 2016.
- [26] Gesellschaft für Nuklear-Service mbH, "Patent: Brennstabköcher", GNS, Essen, EP 2 824 669 A1, Juli 2013.
- [27] K. Lintner und E. Schmid, "Werkstoffe des Reaktorbaues mit besonderer Berücksichtigung der Metalle", Springer, Berlin, Heidelberg, ISBN 978-3-662-13421-4 978-3-662-13420-7, 1962.
- [28] J. Stahlmann, R. L. Vargas und V. Mintzlaff, "Geotechnische und geologische Aspekte für Tiefenlagerkonzepte mit der Option der Rückholung der radioaktiven Reststoffe", Bautechnik, Bd. 93, Nr. 3, S. 141–150, 2016.
- [29] L. H. Johnson und F. King, "Canister options for the disposal of spent fuel", National Cooperative for the Disposal of Radioactive Waste (NAGRA), NTB-02-11, ISSN 1015-2636, Apr. 2003.
- [30] Nuclear Waste Management Commission, "Requirements for packages for the disposal of heat generating radioactive waste", ESK, Jan. 2017.
- [31] Gesellschaft für Nuklear-Service mbH, "CASTOR[®] V/19 Transport- und Lagerbehälter für Brennelemente (DWR)^w, GNS, Essen, Apr. 2014.
- [32] R. Graf, K.-J. Brammer und W. Filbert, "Direkte Endlagerung von Transport- und Lagerbehältern – ein umsetzbares technisches Konzept -", GNS Gesellschaft für Nuklear-Service mbH, DBE TECHNOLOGY GmbH, Jahrestagung Kerntechnik, 2012.
- [33] DIN EN 1563:201, "Gusseisen mit Kugelgraphit". März-2012.
- [34] J. Wolf, J. Behlau und T. Beuth, "FEP-Katalog für die VSG Dokumentation Bericht zum Arbeitspaket 7; vorläufige Sicherheitsanalyse für den Standort Gorleben", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-283-7, Juni 2012.
- [35] C. Bartels, R. Gerhards und H. Hanselka, "BDGuss Gusseisen mit Kugelgraphit", Bundesverband der Deutschen Gießerei-Industrie (BDG), Juni 2010.

- [36] L. Nolvi, "Manufacture of disposal canisters", Posiva Oy, Olkiluoto, Posiva 2009-03, ISBN 978-951-652-171-1, Dez. 2009.
- [37] H. Raïko, "Disposal canister for spent nuclear fuel design report", Posiva Oy, Olkiuoto, Posiva 2005-02, ISBN 978-951-652-134-6, Juli 2005.
- [38] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix C: Container Fabrication", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [39] L. Moren, "Design and production of the KBS-3 repository", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-12, ISSN 1404-0344, Dez. 2010.
- [40] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-B1-Corrosion-of-Copper", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [41] SKB, "Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses - TR-09-22", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR 09-22, ISSN 1404-0344, Nov. 2009.
- [42] J. Heinrich und C. Gomes, "Einführung in die Technologie der Keramik", TU Clausthal, Clausthal, 2010.
- [43] Steinzeug-Keramo GmbH, "Rohrsysteme aus Steinzeug", Steinzeug-Keramo GmbH, Frechen, 2014.
- [44] S. Eberhart, "Keramik, ein vielseitiger Werkstoff", Hochschule Rapperswil, 2003.
- [45] P. Poskas, V. Simonis und A. Smaizys, "Main Characteristics for CASTOR[®] and Constor casks loaded with spent RBMK-1500 nuclear fuel", Lithuan Energy Institute, Nuclear Engineering Laboratory, Kaunas, Lithuania, IAEA CN 102 33.
- [46] Gesellschaft für Nuklear-Service mbH, "Datenblatt: Constor", GNS, Essen, Dez. 2014.
- [47] DIN EN ISO 8044:2015, "Korrosion von Metallen und Legierungen".
- [48] H. J. Fahrenwaldt, V. Schuler und J. Twrdek, "Praxiswissen Schweißtechnik", Springer Fachmedien, Wiesbaden, ISBN: 978-3-658-03141-1, 2014.
- [49] DIN 10027-1:2016, "Bezeichnungssysteme für Stähle".
- [50] DIN 10027-2:2011, "Bezeichnungssysteme für Stähle Teil 2: Nummernsystem".
- [51] Raul B. Rebak, "Materials in Nuclear Waste Disposition", Journal of Materials (JOM), Ausgabe 3, Band 66, ISSN: 1047-4838, DOI: 10.1007/s11837-014-0878-2, Feb. 2014.
- [52] H. Berns und W. Theisen, "Eisenwerkstoffe Stahl und Gusseisen", Springer Berlin Heidelberg, ISBN: 978-3-540-32319-5, 2006.
- [53] M. Tholen, "Forschungsvorhaben Chemisch-toxische Stoffe in einem Endlager für hochradioaktive Abfälle, APII – Inventar chemotoxischer Stoffe", DBE TECH-NOLOGY GmbH, Peine, Aug. 2009.
- [54] C.-G. Andersson, "Development of fabrication technology for copper canisters with cast inserts", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-02-07, Apr. 2002.
- [55] K. Hachenberg, H. Kowalke, J. M. Motz, K. Roehrig, W. Siefer, H. P. Staudinger, P. Toelke, H. Werning und D. B. Wolters, "Gusseisen mit Kugelgraphit", VDI-Verlag, 1988.
- [56] E. Roos und K. Maile, "Werkstoffkunde für Ingenieure: Grundlagen, Anwendung, Prüfung, 5. Auflage", Springer Vieweg, Berlin, ISBN: 978-3-642-54988-5, 2015.
- [57] F. King, "Copper corrosion under expected conditions in a deep geologic repository", Posiva, Helsinki, ISBN: 978-951-652-108-7, 2002.
- [58] L. Werme, P. Sellin und N. Kjellbert, "Copper canisters for nuclear high level waste disposal. Corrosion aspects", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR-92-26, Okt. 1992.

- [59] W. H. Bowyer und H.-P. Hermansson, "Comments on SKB RD and D-Programme 98 - Focused on canister integrity and corrosion", Swedish Nuclear Power Inspectorate, 1999.
- [60] T. E. Eriksen, P. Ndalamba und I. Grenthe, "On the corrosion of copper in pure water", Corros. Sci., Bd. 29, Nr. 10, S. 1241–1250, Jan. 1989.
- [61] T. Hernandez-Selva, D. L. Engelberg, F. Scenini, D. Fox und A. McClusky, "Manufacturing technology for implementing geological disposal: electroforming of copper canisters", *Mineral. Mag.*, Bd. 79, Nr. 06, S. 1521–1528, Nov. 2015.
- [62] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-B5-Corrosion-of-Titanium-Alloys", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [63] G. Lütjering und J. Williams, "Titanium 2nd edition", Springer-Verlag, Berlin Heidelberg, ISBN: 978-3-540-71379-5, Berlin Heidelberg.
- [64] J. L. Tisom, "Update on French Deep Geological program for High Level Waste", Agence nationale pour la gestion des déchets radioactifs (ANDRA), Bommersvik, CEG Workshop, Feb. 2009.
- [65] F. King, "Durability of High Level Waste and Spent Fuel Disposal Containers an overview of the combined effect of chemical and mechanical degradation mechanisms - Appendix-A -mechanical-processes", Amec Foster Wheeler Nuclear UK Limited, 17697/TR/03, Dez. 2016.
- [66] S. R. Holdsworth, T. Graule und E. Mazza, "Arbeitsbericht Feasibility evaluation study of candidate canister solutions for the disposal of spent nuclear Fuel and high level waste", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen, NAB 14-90, Sep. 2014.
- [67] ANDRA, "Dossier 2005 Argile Architecture and management of a geological repository", Agence nationale pour la gestion des déchets radioactifs, ANDRA-286VA, ISBN 2-9510108-7-70108-8-5, Dez. 2006.
- [68] S. Schubert, U. Probst und H.-P. Winkler, "Behaviour of metallic seals in CASTOR casks under normal and accident conditions of transport: qualification requirements", *Packag. Transp. Storage Secur. Radioact. Mater.*, Bd. 20, Nr. 4, S. 179– 182, Dez. 2009.
- [69] E.On Kernkraft, "Kurzbeschreibung des Brennelementbehälterlagers Isar KKI BELLA", E.ON Kernkraft GmbH, Essen, Hannover, Feb. 2001.
- [70] G. Köhler, H. Rögnitz und B. Künne, "Maschinenteile. 1, 10. überarb. und aktualisierte Auflage", Teubner, Wiesbaden, ISBN: 978-3-8351-0093-0, 2007.
- [71] A. Maissen, "Festkörperreibung: Reibungszahlen verschiedener Werkstoffe", Schweizer Ingenieur und Architekt, Band 111, Heft 3, DOI: 10.5169/seals-78120, Jan. 1993.
- [72] Eichinger GmbH, "Greifer und Hebezeuge für Kran und Kranhaken". [Online]. Verfügbar unter: https://www.eichinger.de/wp-content/uploads/2017/02/1086 2web.jpg. [Zugegriffen: 04-Juli-2018].
- [73] H. Roloff und W. Matek, "Maschinenelemente", Vieweg+Teubner Verlag, Wiesbaden, DOI: 10.1007/978-3-322-85908-2, 1974.
- [74] DIN 15002, "Lastaufnahmeeinrichtungen". Apr-1980.
- [75] Wikipedia, "Twistlock Container Verriegelung". [Online]. Verfügbar unter: https://de.wikipedia.org/wiki/Twistlock#/media/File:Container_Verriegelung_2.jpg. [Zugegriffen: 04-Juli-2018].
- [76] "CASTOR[®] Demonstrator der GNS eigene Aufnahme", Sep. 2015.
- [77] D. Féron, D. Crusset und J.-M. Gras, "Corrosion issues in nuclear waste disposal", J. Nucl. Mater., Bd. 379, Nr. 1–3, S. 16–23, Sep. 2008.
- [78] Salzgitter Flachstahl, "Datenblatt Flachstahl P235GH Warmfeste Druckbehälterstähle", Sep-2011. [Online]. Verfügbar unter: http:// www.salzgitter-flachstahl.de. [Zugegriffen: 07-Mai-2015].
- [79] ThyssenKrupp, "Datenblatt P235GH Unlegierter warmfester Stahl", Mai-2006. [Online]. Verfügbar unter: http://www.thyssenkrupp.at/files/rohre/Werkstoffdatenblaetter/P235GH.pdf. [Zugegriffen: 23-Okt-2014].

- [80] MakeItFrom, "Datenblatt EN 1.0345 (P235GH) Non-Alloy Steel". [Online]. Verfügbar unter: https://www.makeitfrom.com/material-properties/EN-1.0345-P235GH-Non-Alloy-Steel. [Zugegriffen: 15-Aug-2018].
- [81] Industeel, "Datenblatt SIRIUS 309 23% Cr 13% Ni Heat Resistant Stainless Steel". [Online]. Verfügbar unter: http://www.matweb.com/search/datasheet.aspx?matguid=b69b7838f76f47239c72ffbad8a9a003&ckck=1. [Zugegriffen: 16-Aug-2018].
- [82] GEHR Plastics, "Datenblatt Polyethylene HD-PE", GEHR, 2014-1996. [Online]. Verfügbar unter: http://www.matweb.com/search/datasheettext.aspx?matguid=422462a3944043019f269e31616235d1. [Zugegriffen: 03-Juli-2014].
- [83] Goodfellow, "Datenblatt Polyethylen hoher Dichte online Katalog". [Online]. Verfügbar unter: http://www.goodfellow.com/G/Polyethylen-hoher-Dichte.html. [Zugegriffen: 24-Nov-2016].
- [84] A. Meyer, "Fakten über Polyethylen". [Online]. Verfügbar unter: www.faktenuber.de/polyethylen. [Zugegriffen: 03-Juli-2014].
- [85] Periodensystem online, "Physikalische Eigenschaften Kohlenstoff", Physikalische Eigenschaften Kohlenstoff - Das Periodensystem online. [Online]. Verfügbar unter: http://www.periodensystem-online.de/index.php?el=6&id=modify. [Zugegriffen: 27-Juni-2014].
- [86] Graphit Entegris, "Properties an Characteristics of Graphite". Mai-2013.
- [87] Azom, "Datenblatt Oxygen Free Copper UNS C10100". [Online]. Verfügbar unter: http://www.azom.com/article.aspx?ArticleID=6314. [Zugegriffen: 08-Juni-2015].
- [88] Swissprofile, "Datenblatt 2.0040 Cu OF". [Online]. Verfügbar unter: http://www.swissprofile.com/data/documents/fiches-techniques/EN/CU_OF.pdf. [Zugegriffen: 04-Juni-2015].
- [89] OECD NEA, "Features, Events and Processes (FEPs) for Geologic Disposal of Radioactive Waste", Nuclear Energy Agency, NEA 2549, 2010.
- [90] U. Mayer und S. Offermanns, "Behälterabsturz CASTOR[®] SiTE CASTOR[®] Teil 1", BFS, MPA, Stuttgart, 831 801 001, Jan. 2004.
- [91] F. Richter, "Die physikalischen Eigenschaften der Stähle, Richter ,Das 100 -Stähle - Programm' Teil I: Tafeln und Bilder", Mülheim a. d. Ruhr.
- [92] Lucefin, "Datenblatt 1.4541". [Online]. Verfügbar unter: http://www.lucefin.com/wp-content/files_mf/1.4541a32110.pdf. [Zugegriffen: 23-Juli-2014].
- [93] LOB, "Datenblatt 1.4541". [Online]. Verfügbar unter: http://www.lobgmbh.de/de/werkstoffe/1.4541.html.
- [94] Industeel, "Datenblatt 1.4313". [Online]. Verfügbar unter: http://www.matweb.com/search/datasheet_print.aspx?matguid=8fcfb4bc2cbb4a77ae1f486346c47539.
- [95] Euralligne, "Datenblatt EN-AW 6060". [Online]. Verfügbar unter: http://www.euralliage.com/6060_english.htm.
- [96] P. Amelung, M. Jobmann und L. Uhlig, "Untersuchungen zur sicherheitstechnischen Auslegung eines generischen Endlagers im Tonstein in Deutschland - GE-NESIS", DBE TECHNOLOGY GmbH, Peine, März 2007.
- [97] F. Pfeiffer, "Endlagerkonzept im Tonstein", Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH, GRS A-3535/3, Dez. 2010.
- [98] GNS GNS, "Referenzen -Behälter für hochradioaktive Abfälle", März-2015. [Online]. Verfügbar unter: http://www.gns.de/language=de/22739/referenzen. [Zugegriffen: 02-Juli-2015].
- [99] ThyssenKrupp, "Datenblatt S355JX", Feb-2011. [Online]. Verfügbar unter: http://www.thyssenkrupp-schulte.de/tl_files/ThyssenKrupp/Infothek%20(Downloads)/Baustaehle/S355Jxx.pdf. [Zugegriffen: 08-Juni-2015].
- [100] Peter Borsch, "Wie gefährlich sind Transporte von verbrauchten Brennelementen?", Jan. 2002.
- [101] Gesellschaft für Nuklear-Service mbH, "CASTOR[®] 440/84 Transport- und Lagerbehälter für Brennelemente (WWER)", GNS, Essen, Apr. 2014.
- [102] Gesellschaft für Nuklear-Service mbH, "Pressefotos". [Online]. Verfügbar unter: https://www.gns.de/language=de/18244/pressefotos. [Zugegriffen: 04-Juli-2018].
- [103] ANDRA, "Dossier 2005 Argile -SYNTHESIS Evaluation of the feasibility of a geological repository in an argillaceous formation", Agence nationale pour la gestion des déchets radioactifs (ANDRA), ANDRA-266VA, ISBN 2-916162-00-3, Dez. 2005.
- [104] B. Kienzler, M. Altmaier und C. Bube, "Radionuclide Source Term for HLW Glass, Spent Nuclear Fuel, and Compacted Hulls and End Pieces (CSD-C Waste)", Karlsruhe Institute of Technology, KIT-SR 7624, ISBN 978-3-86644-907-7; ISSN 1869-9669, 2012.
- [105] ANDRA, "Dossier 2005 Argile Phenomenological evolution of a geological repository", Agence nationale pour la gestion des déchets radioactifs, ANDRA-269VA, ISBN 2-9510108-7-70108-8-5, Dez. 2006.
- [106] ANDRA, "Dossier 2005 Argile Safety evaluation of a geological repository", Agence nationale pour la gestion des déchets radioactifs, ANDRA-270VA, ISBN 2-9510108-7-70108-8-5, Dez. 2006.
- [107] Mertens, "Datenblatt 1.0038 / St37-2 / S235JR". [Online]. Verfügbar unter: http://www.mertens-stahl.de/fileadmin/files/mertens-stahl.de/documents/Datenblaetter/Bau-_und_Qualitaetsstahl/1.0038_St37-2_S235JR__gewalzt.pdf. [Zugegriffen: 07-Nov-2014].
- [108] ANDRA, "Synthesis Report 2012 NATIONAL INVENTORY of Radioactive Materials and Waste", Age, ANDRA 467VA, ISSN: 2105-3065, Juli 2012.
- [109] P. Grahn, L. Moren und M. Wiborgh, "Spent nuclear fuel for disposal in the KBS-3 repository", Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), TR-10-13, ISSN 1404-0344, Dez. 2010.
- [110] SKB, "Design, production and initial state of the buffer", Svensk Kärnbränslehantering AB, TR-10-15, ISSN 1404-0344, Dez. 2010.
- [111] C. Lilja, "Localised corrosion of copper canisters in bentonite pore water", TR-13-27, ISSN 1404-0344, Dez. 2013.
- [112] SKB, "Programme for research, development and demonstration of methods for the management and disposal of nuclear waste", Svensk Kärnbränslehantering AB, Stockholm (Sweden), TR-10-63, ISSN 1104-8395, Sep. 2010.
- [113] R. Patel, C. Punshon, J. Nicholas, P. Bastid, R. Zhou, C. Schneider, N. Bagshaw, D. Howse, E. Hutchinson, R. Asano und others, "Canister design concepts for disposal of spent fuel and high level waste", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland), NTB-12-06, ISSN 1015-2636, Okt. 2012.
- [114] L. Johnson, P. Marschall, P. Zuidema und P. Gribi, "Effects of post-disposal gas generation in a repository for spent fuel, high-level waste and long-lived intermediate level waste sited in opalinus clay - NTB-04-06", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland), NTB-04-06, ISSN 1015-2636, Juli 2004.
- [115] D. F. McGinnes, "Model radioactive waste inventory for reprocessing waste and spent fuel", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland), NTB-01-01, ISSN 1015-2636, Dez. 2002.
- [116] S. Pike, C. Allen, C. Punshon, P. Threadgill, M. Gallegillo, B. Holmes und J. Nicholas, "Critical review of welding technology for canisters for disposal of spent fuel and high level waste", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland), NTB-09-05, ISSN 1015-2636, März 2010.
- [117] L. Johnson, J. Schneider, P. Zuidema, P. Gribi, G. Mayer und P. Smith, "Project Opalinus Clay- Demonstration of disposal feasibility for spent fuel, vitrified highlevel waste and long-lived intermediate-level waste", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland), NTB-02-05, ISSN 1015-2636, Dez. 2002.

- [118] L. H. Johnson, M. Niemeyer, G. Klubertanz, P. Siegel und P. Gribi, "Calculations of the temperature evolution of a repository for spent fuel, vitrified high-level waste and intermediate level waste in Opalinus Clay", National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland), NTB 01-04, ISSN 1015-2636, 2002.
- [119] D. Landolt, A. Davenport, J. Payer und D. Shoesmith, "A review of materials and corrosion issues regarding canisters for disposal of spent fuel and high-level waste in Opalinus Clay", Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland), NTB-09-02, ISSN 1015-2636, Jan. 2009.
- [120] A. Turnbull, "A review of the possible effects of hydrogen on lifetime of carbon steel nuclear waste canisters - NTB-09-04", National Physical Laboratory (NPL), Teddington, Middlesex (United Kingdom). Funding organisation: National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland), NTB-09-04, ISSN 1015-2636, 2009.
- [121] Nagra, "Konzept für die Anlage und den Betrieb eines geologischen Tiefenlagers", National Cooperative for the Disposal of Radioactive Waste, Wettingen, NTB-02-02, ISSN 1015-2636, Dez. 2002.
- [122] S. Watson, R. Metcalfe, T. McEwen und A. Paulley, "International Precedents for HLW/SF Iron Canister Concepts - Review and Consideration of Applicability in the UK Context", QRS-1376A-1-Version 2.0, Sep. 2007.
- [123] Masteel, "Datenblatt: ASTM A516 Grade 70 and ASME SA516 Grade 70". [Online]. Verfügbar unter: http://www.azom.com/article.aspx?ArticleID=4787. [Zugegriffen: 21-Sep-2015].
- [124] MakeItFrom, "Datenblatt EN 1.0473 (P355GH) Non-Alloy Steel". [Online]. Verfügbar unter: https://www.makeitfrom.com/material-properties/EN-1.0473-P355GH-Non-Alloy-Steel. [Zugegriffen: 23-Aug-2018].
- [125] Salzgitter Flachstahl, "Datenblatt P355 GH". [Online]. Verfügbar unter: http://www.salzgitter-flachstahl.de/de/produkte/warmgewalzte-produkte/stahlsorten/warmfeste-druckbehaelterstaehle.html. [Zugegriffen: 21-Sep-2015].