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Abstract
Fuel “hot” particles are the most unpredictable dose-forming components in the soils of uranium contaminated regions, 
such as Chernobyl Exclusion Zone. Over time in the environment, “hot” particles undergo gradual dissolution with the 
release of uranium as well as fission and neutron-activation products trapped inside the uranium-oxide fuel matrix. The 
environmental fate of fuel particles depends not only on the environmental conditions but mainly on the conditions of their 
formation in the reactor and during the accident. In the present work micromorphology, fuel burnup and uranium oxidation 
state of several fuel “hot” particles, collected on the Western trace of Chernobyl fallout, were studied using a combination 
of non-destructive or semi-non-destructive techniques: gamma-spectrometry, secondary-ion mass-spectroscopy, scanning 
electron microscopy with energy-dispersive X-ray spectroscopy, the X-ray absorption near-edge structure and the high-energy 
resolution fluorescence-detected X-ray absorption near-edge structure spectroscopy. An attempt has been made to assess 
the contribution of the conditions of particle formation and the conditions of being in the environment to the current state 
of particles after more than a quarter of a century of history in the environment.
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Introduction

The accident that occurred at the 4th power unit of 
the Chernobyl nuclear power plant on April 26, 1986, 
became the most widescale accident in nuclear energy 
ever. According to the IAEA International Nuclear and 
Radiological Event Scale, it belongs to the highest, i.e. 
7th Level, Major Accident,—with widespread health and 
environmental effects and external release of a significant 
fraction of reactor core inventory. The 4th power unit 
of the Chernobyl NPP was an RBMK-1000 (high 
power–1000 MW—channel reactor with water cooling) 
with low-enriched (about 2%) ceramic structure UO2 fuel 
[1].

Due to changing meteorological conditions and 
the ten-day duration of accidental radioactive release, 
multidirectional contamination spots were formed. 
The proportion of radioactive material released to the 
environment depended on the form of radionuclides: gases 
were released from the reactor core completely, volatile 
components—to a significant extent, while the release of 
the fuel component, according to estimates of non-volatile 

nuclides, was 1.5% [2–4]. For more than 37 years after the 
accident, various aspects of the impact of this accident 
on humans [5] and the environment [6–10] were studied, 
one of the most common study was radioactive Cs and Sr 
distribution and migration [6, 11–13].

The most important characteristic of nuclear fuel during 
reactor operation is its burnup. Fuel burnup determines the 
degree of fuel utilization; it can take values of more than 
100 MWd/kg(U) for various modern reactors with high 
uranium enrichment. For RBMK-1000 in the fourth power 
unit of the Chernobyl NPP, the commonly used maximum 
burnup value was 20 MWd/kg(U) while the average burnup 
value was 10.9 MWd/kg(U) [14]. As a result of burnup, the 
oxygen potential of the fuel increases due to the fission of 
uranium and formation of fission products with valent state 
lower than 4 in the sublattice and the resulting formation of 
free oxygen [15]. When the fuel rod burns out, intragranular 
fission gases (Xe, Kr isotopes) form submicron bubbles in 
the ceramic structure of the fuel. Intragranular gases migrate 
to the periphery of the fuel grain making intergranular gas 
outlet channels [16–18]. The most studied phenomenon 
in UO2 fuel is so called the high burnup structure in the 
outer region of UO2 fuel pellets which is not the case for 
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Chernobyl reactor but for reactors with burnup values 
more than 60 MWd/kg (U). This microstructure is a result 
of recrystallization of UO2 ceramic with decreasing in 
the size of fuel grains, formation of high-density faceted 
pores, which can lead to the local degradation in thermal 
conductivity of fuel pellets and enhanced fuel swelling 
[19–21]. The environmental fate of RBMK reactor fuel 
particles depending on their fuel burnup has not yet been 
studied.

Among various forms of accidental fallout into the 
environment, special attention was attracted to the particles 
of high radioactivity, so called “hot” particles, widely 
distributed in the different directions. In the first years after 
the accident, condensed particles (Cs, Ru), had the highest 
dose, and they were carefully studied. Later fuel U-(Zr)-O 
micro- and submicroparticles [22–24] and their long-term 
role in the environment began to be studied more closely. 
Different investigations of radioactive “hot” particles are 
carried out: “hot” particles composition at first [25, 26], their 
size and activity distribution [27–30], further – extracting 
of “hot” particles and their morphology determination 
[30, 31], uranium oxidation state determination [32, 33], 
“hot” particles dissolution kinetics [34–36], “hot” particles 
migration peculiarities [37–39] and dose formation [28, 34, 
40].

The development of analytical methods has contributed 
to the intensification of research on fuel “hot” particles. 
Gamma-spectrometry and radiography techniques were 
the only tools for “hot” particle research in the first years 
after the accident. Over time, fine studies began to be 
used to analyse individual “hot” particles using advanced 
techniques. Knowledge of the “hot” particle morphology, its 
elemental composition, various isotope ratios and oxidation 
states of uranium in the particles will help reconstructing 
the accident scenario and investigating the melting gradient 
of the fuel, temperature at the moment of its release from 
the reactor and Red/Ox conditions during the accident 
[32, 41–43]. Fuel burnup – one of the most important 
characteristics of the fuel “hot” particles can be calculated 
from different radionuclides ratio. In earlier works the most 
popular method used was 134Cs/137Cs ratio measurement 
by gamma-spectrometry [44]. It was an express and non-
destructive method. But this way had high measurement 
inaccuracy and now it cannot be used for Chernobyl “hot” 
particles analysis due to small half-life of 134Cs [45]. One 
more radionuclide set which ratio can be measured with 
gamma spectrometer and used for fuel burnup determination 
is following: 155Eu/144Ce versus 154Eu/144Ce [45, 46]. The 
ratios 154Eu/155Eu and 238Pu/238,240Pu were also measured and 
used for burnup estimation [47]. For 241Am/Pu and 243,244Cm 
/ Pu isotopes ratios determination sample dissolution for 
alpha-spectrometry is required [44, 48]. Currently, the 
most accurate and most used method for determining fuel 

burnup is mass spectrometry: ICP-MS [48] requires sample 
preparation, while SIMS [49–54] is conditionally non-
destructive method. The ratio of plutonium isotopes can also 
be determined for the same purpose, using resonant-laser 
secondary neutral mass-spectrometry (rL-SNMS). SIMS 
and rL-SNMS can be also used for “hot” particle isotope 
mapping [41, 55, 56]. Sometimes mass spectrometry is 
combined with other methods to comprehensively analyse 
a “hot” particle. In the research [57] Raman spectroscopy 
was used to determine the oxidation state together with mass 
spectrometry to assess the burnup of the fuel – material 
of the “hot” particle. In addition to Raman spectroscopy, 
synchrotron XANES spectroscopy is used to determine 
the oxidation state of uranium in “hot” particles. XANES 
L3 U edge spectroscopy was used to prove the presence of 
uranium in Fukushima “hot” particle [58]. In the research 
by Salbu and co-authors [32] the combination of micro-
XANES L3 U edge spectroscopy and micro-XRD was used 
to characterize the “hot” particle composition and difference 
between inner composition and the surface. In the research 
by Batuk and co-authors [59] XANES and EXAFS were 
used for establishing the form of uranium in “hot” particles 
and assessment of the degree of ordering of atoms in a 
crystal in the Chernobyl “hot” particle.

Based on the fine studies, Chernobyl fuel "hot" 
particles can be divided into two large groups: uranium 
oxide and uranium–zirconium oxide. At the same time, 
separate subgroups are distinguished within each group: 
stoichiometric UO2 particles, partially oxidized UO2+x 
particles and particles with a wide U/Zr ratio range [60]. As 
the distance from the reactor increases, the mass and size 
of the fuel particles decrease since particles with a larger 
mass sediment already at shorter distances, so the selection 
of particles takes place more efficiently in the immediate 
vicinity of the reactor [61]. Particles taken from various 
traces of Chernobyl fallout differ considerably: in the soils 
of the northern trace particles are more oxidized, while 
uranium dioxide particles were found in the western trace 
[32]. The rate of half-dissolution for different kind of “hot” 
particles varies: 1–14 years for UO2+x group of particles 
and 7–70 years for UO2 particles [35, 62]. In addition to 
the oxidation state of uranium in fuel particles, the rate 
of fuel particles half-dissolution also depends on the pH 
value of the environment, which was shown in laboratory 
experimental modelling.

“Hot” particles research is carried out for a number of 
applied reasons, including health physics and dosimetry 
as well as radioecology. A detailed study of micro- and 
nanoparticles will make it possible to obtain information 
about their health effects in case of inhalation or ingestion 
[63–68], as well as the behaviour of various radionuclides 
contained in "hot" particles in environmental conditions 
[11, 36, 62, 69, 70] and therefore assess this long-term risk. 
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Many fuel parameters have been studied previously, while 
the burnup using uranium isotope ratio has not previously 
been systematically investigated in complex with uranium 
oxidation state for Chernobyl fuel “hot” particles.

The purpose of this work is to establish the exact 
characteristics of fuel uranium oxide microparticles by 
non-destructive advanced techniques as an example of 
a methodological approach to the analysis of unique 
micro objects. In this work the fuel burnup value using 
SIMS together with morphology using SEM, elemental 
composition using EDS and oxidation state of uranium in 
individual particles using XANES-SR is studied for the first 
time.

Experimental

Sampling

Soil and moss samples were collected in the immediate 
vicinity of the reactor: in the Red Forest, which is located 
1–2 km to the west from Chernobyl NPP. Sampling was 
carried out in 2016 (30 years after the Chernobyl accident). 
Group of particles “T_” was extracted using digital and 
alpha-track radiography from moss samples. Group “SL_” 
single particles were isolated using quartering method 
with gamma spectrometry from soil samples and placed on 
double-sided tape.

“Hot” particles detection, extraction 
and characterization

“Hot” particles were localized using digital radiography 
with SR-type (super-resolution) Imaging Plates, Cyclone 
Storage Plus System scanner and OptiQuant software, as 
well as alpha-track radiography using poly-allyl diglycol 
carbonate detector MTrack GMScientific Ltd., UK. The 
scanning electron microscope Jeol JSM-6480LV with 
INCA Energy-350 spectroscopy in the back-scattered 
electron mode detected particles by bright areas in the 
image resulting from the high Z-contrast for atoms of 
heavy elements and established the particles morphology 
and elemental composition. Particle extraction on 
custom tungsten needles was carried out in an ESEM 
(Philips XL30, remX GmbH, Bruchsal, Germany) with 
an EDS detector (SDD-Detector, remX GmbH, Bruchsal, 
Germany) and a micromanipulator (Kleindiek Nanotechnik 
MM3A, Reutlingen, Germany). The particles were 
attached to the needles using an electron beam curing glue 

(SEMglu, Kleindiek Nanotechnik Reutlingen, Germany) 
[71]. Uranium isotope ratios were established using time-
of-flight secondary-ion mass spectrometer TOF–SIMS.5, 
IONTOF [49]. The fuel burnup of “hot” particles (B) was 
calculated using the empirical Eq. (1) from Mironov et al. 
[72].

where B is the fuel burnup value, 235U/238U and 236U/238U 
are uranium isotope ratio values in natural uranium (nat) and 
in the investigated sample (sample).

The content of fission products and minor actinides 
was determined by gamma spectrometry using an ORTEC 
gamma-spectrometer with an HP Ge detector and software 
LSRM.

Determination of uranium oxidation state was carried 
out using X-ray Absorption spectroscopy on the base of 
synchrotron radiation. The X-Ray Absorption Near Edge 
Structure (XANES) spectra on the L3 uranium edge were 
obtained at the STM beamline of Kurchatov Synchrotron 
Radiation Source [73]. Pellet with UO2 powder was used 
as reference sample. High-resolution measurements took 
place at ROBL [74] (Rossendorf Beamline, BM20) at 
European Synchrotron Radiation Facility (ESRF) on a 
high-resolution X-ray spectrometer [75] (XES). The X-ray 
emission spectrometer consists of 5 crystal analysers and 
a detector located together with the sample along the 
Rowland cycle in Johann-type geometry with 0.5- radius 
was used for high resolution measurements. The high-
energy resolution fluorescence-detected X-ray absorption 
near-edge structure (HERFD-XANES) measurements 
performed by scanning the incident energy along the 
absorption edge of the selected element at the X-ray line 
maximum. The X-ray spectra are measured by scanning the 
emitted energy at a fixed incident energy. The recording 
time for one particle spectrum at U L3-edge were obtained 
using Si (220) crystals was 15 min, while at U M4-edge, 
using Si (880) crystal reflections the recording time was 
25 min. 3 scans were obtained for each spectrum. Pellet 
with UO2 powder was used as reference sample.

For data evaluation the IFFEFIT package was used 
[76]. The analysis of raw data was performed in the 
ATHENA software. Each scan was deglitched and aligned 
and several scans were merged to improve signal-to-
noise ratio. Linear combination of XANES spectra on U 
M4-edge was performed using ITFA software [77, 78]. 
HERFD XANES spectra of uranium oxides UO2 and UO3 
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registered in the same conditions and “hot” particles were 
used as references for the linear combination.

Results and discussion

Particles morphology and elemental composition

Morphologically, based on size, two groups of studied 
particles can be distinguished: more than 20–25  µm 
(Fig. 1), which were subjected to further spectroscopy 
analyses and less than 20 µm, for which only radiography 
and SEM studies were carried out (Fig. 2).

Particles vary in the shape and the surface morphology. 
The particle SL10 has smooth surface particle and faceted 
shape with clear edges, it has no external signs of damage 
and destruction. The other 7 particles have uneven surface 
(see Fig. 1 and Fig. 2 for SEM images of the particles). 
More specific insight into the particles’ morphology helps 
to distinguish four particles with more or less distinct 
layering: SL6, T1, T5 and T2. The SL6 and T1 particles 
are morphologically similar to each other, as evidenced 
by their layered structure and cracks on the surface. The 
T4 particle has a shape similar to the shape of a fuel 
grain, it shows a large number of intragranular pores as a 
result of the release of fission gas, and there are no signs 

Fig. 1   SEM-images of “hot” particles in BSE-mode a, b, c, d and SE-mode e, f, g, h: a, e–SL10, b, f–SL6, c, g–T1, d, h–T4. Scale bars: 
yellow–10 µm, red–5 µm

Fig. 2   SEM images of “hot” particles in BSE mode a, b, c, d and SE mode e, f, g, h: a, e,–T5, b, f–T2, c,g–T7, d,h–SL12. Scale bars: 
blue–2 µm, red–5 µm
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of destruction such as cracks and laminations. Particle 
SL12 is composite: it consists of micrometer grains 
with submicron pores on their surface. Particle T7 is the 
smallest of the studied particles and it consists of several 
tens of spherical submicron fragments.

According to SEM–EDX data, all the particles, except 
SL10, contain small amounts of zirconium—less than 1 
percent from the sum of (U + Zr) (see Table 1), so these 
particles can be categorized into the uranium-oxide group 
of particles [60].

Fuel burnup of “hot” particles

According to the SIMS data (Table 1), particles SL6 and T1 
have similar uranium 235, and uranium 236 fractions while 
the respective fractions of particle SL10 differs sharply.

The obtained values of the uranium isotope ratio correlate 
with the data on fuel burnup in RBMK-1000 [48], while 
high content of 235U and low content of 236U indicative the 
fuel burnup in the SL10 particle is minimal. The burnup 
value, calculated according to Eq. (1) for the SL10 particle 
was 3.9 MWd/kg (U).

The uranium isotope ratios of the remaining particles 
also correspond to fuel burnup in RBMK reactors during 
long-term operation of the fuel, since the content of 235U 
decreased from 2% to close to the natural ratio of ca. 0. 7%, 
while 236U was detected (Table 1). The burnup values for 
SL6 and T1 were 13.2 MWd/kg (U) and 14.5 MWd/kg (U) 
correspondingly.

The presence of a small amount of 241Am—0.19 Bq—
in the SL10 particle, compared to other particles, in which 
the specific activity of americium is approximately an order 
of magnitude higher, also indicative a low burnup value, 
since this radionuclide is a decay product of 241Pu, which is 
produced in large amounts only during extended operation 
of nuclear fuel.

Uranium enrichment values of the extracted “hot” 
particles lie between 2.00 and 2.02% [48] (Fig. 3), which 
corresponds to uranium enrichment in the 4th unit of ChNPP 
[14].

Uranium oxidation state in “hot” particles

The SL10 U L3-edge XANES spectrum absorption 
peak (Fig. 4a) is at the same position as the peak of the 

reference UO2 spectrum indicative that in this particle 
uranium has valence state not higher than (IV). The SL6 
U M4-edge HERFD XANES spectrum along with U 
L3-edge XANES spectrum absorption peaks (Fig. 4a, b) 
are in the same position as the peaks of the UO3 spectra 
indicative uranium is oxidized in this particle. It should be 
mentioned that U M4-edge HERFD XANES spectrometry 
is the unique method of determining the oxidation states 
of trace amounts of elements [79–81], and for the analysis 
of “hot” particles it is used for the first time in this study. 

Table 1   “Hot” particles 
measured properties

SL10 SL6 T1 T4

235U/238U (SIMS) 0.02062 ± 0.00018 0.01113 ± 0.00009 0.01201 ± 0.00007 Not measured
236U/238U (SIMS) 0.00078 ± 0.00004 0.00212 ± 0.00004 0.00221 ± 0.00003 Not measured
A(241Am)/ A(137Cs) 0.008 0.05 0.07 0.09
Zr atomic% (EDX) 0 0.1 0.1 0.2

Fig. 3   Uranium isotope ratio of RBMK-1000 fuel with different 
enrichments [83] (*-literature data for fuel with varying burnup) [48]. 
Uranium isotope ratio of Chernobyl fuel “hot” particles established 
by secondary ion mass spectrometry–red dots

Fig. 4   a HERFD XANES L3 U edge spectra of “hot” particles 
SL6, T1 and T4 and XANES U L3-edge spectrum of “hot” particle 
SL10 along with reference spectra of uranium (IV) and uranium 
(VI) compounds, b HERFD-XANES U M4-edge spectrum of “hot” 
particle SL6 along with spectra of reference uranium compounds
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The HERFD-XANES at U L3-edge spectrum of T1 shows a 
correspondence between the position of the white line and 
its position for standard U(VI) oxide. The HERFD XANES 
L3 U edge spectra of SL6 and T1 particles correspond to the 
UO3 form of uranium + 6, since the spectra of compounds 
containing uranyl cation exhibit the first post-edge feature, 
which is absent in the spectrum of uranium trioxide [82]. 
The position of the white line of the T4 particle HERFD 
XANES spectrum (U L3-edge) coincides with the position 
of the white line for U(IV) oxide.

The absorption peaks of SL6 and T1 HERFD-XANES 
U L3-edge spectra (Fig. 4a) are broader than the absorption 
peaks of standard uranium oxides, which can be explained 
by the particles’ smaller size and a greater disorder of the 
structure.

Quantitative analysis of SL6 particle composition was 
performed by spectral decomposition using ITFA software. 
The experimental HERFD-XANES U M4-edge spectra of 
the oxides and particle SL6 were sufficiently reproduced 
(Fig. S1a) by using linear combinations of the three extracted 
component spectra (Fig. S1b). The first two eigenvectors 
show a non-zero signal, the eigenvector 3 is on zero-level 
(Fig. S1c), then all the three components are necessary 
to describe the spectrum of SL6 particle. The extracted 
components spectra refer to (IV) and (VI) uranium valence 
states. It was calculated that SL6 particle consists of 0.2% 
U(IV) and 99.8% U(VI).

Generalization of results

Using XANES and SIMS combination, the following 
behaviour of four particles was established over 30 years 
under the same environmental conditions. Since U/Zr 
ratio in all the fuel particles studied in the present work 
ranges from 0 to 0.2 at.%, these particles can be accounted 
as uranium–oxygen [26, 84]. XANES spectra proved 
that uranium oxidation state in SL10 and T4 particles is 
tetravalent, that is they belong to the UO2 particles subgroup, 
which is relatively stable in the environmental conditions 
with dissolution half-life up to 70 years [62]. The SIMS 
data along with intact surface morphology confirmed 
extremely low burnup value of the fuel matter of the 
particle SL10. The surface of the particle T4 is porous, with 
fission gas channels, which, together with the high 241Am 
content, makes it possible to assume a high burnup of the 
fuel material of the particle. At the same time, it should 
be noted that the overall shape of the particle T4 is similar 
to that of fuel grains and the faces and edges retain. Thus, 
two particles in which uranium is in the tetravalent state, 
have not undergone significant morphological changes over 
30 years of being in the environment, regardless of their fuel 
burnup value.

The other two particles (SL6 and T1) in which 
uranium is present in the hexavalent state differ sharply 
in morphological peculiarities, in some places, layering 
typical of U(VI) oxides and oxy-hydroxides[85] can be 
seen. Based on the SIMS results, their burnup values 
were high for Chernobyl fuel. According to the same fuel 
particles classification [26, 84], SL6 and T1 particles can 
be classified as the UO2+x particles subgroup, which is 
less stable, and its half-dissolution time was estimated in 
a range from 1 till 14 years [62]. The HERFD-XANES 
data proved the recent oxidation state of uranium in SL6 
and T1 particles, which in 30 years after accidental fallout 
corresponds not UO2+x, but to UVIO3.

Detailed studies of several fuel particles that have located 
for the same duration in the same spot of the exclusion 
zone confirm that the rate of destruction of particles in all 
probability depends not on the environmental conditions, 
but on the initial state of the particles, namely, on the 
uranium oxidation state. According to our data, fuel burnup 
doesn’t seem to have any significant effect on the behaviour 
of particles, although, fuel burn-up cannot be completely 
excluded from the causative factors list for the behaviour 
of “hot” particles. The oxidation state of uranium is one 
of the major factors, to this list, but the importance of 
environmental and burn-up factors should not be neglected.

Conclusions

The complex of instrumental techniques: HERFD-
XANES, SIMS and SEM–EDX makes it possible to 
compare uranium fuel “hot” particles to each other 
in following characteristics: uranium oxidation state, 
uranium isotope ratio and therefore fuel burnup, particle 
morphology and element composition, respectively. The 
impact of uranium in different oxidation states in “hot” 
particle using HERFD XANES M4 U edge spectroscopy 
was calculated for the first time. Two particles in which 
uranium is in the tetravalent state have not undergone 
morphological changes over 30  years of being in the 
environment, regardless of their fuel burnup value. Two 
particles in which uranium was present in the hexavalent 
state stratified and the process of their morphological 
destruction began, while their burnup values were high 
for Chernobyl fuel. The studies carried out show that the 
combination of the used spectroscopy techniques can be 
a successful tool for radioecology research and nuclear 
forensics.
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