Langfristige Entwicklung von Iod-129 in der Umwelt

R. Michel, Th. Ernst, S. Szidat, Ch. Schnabel, H.-A. Synal

Klausurtagung des Radioökologieausschusses der SSK 2001, Veröffentlichungen der Strahlenschutzkommission, Band 49, BMU (2003), Urban & Fischer, München, 26 - 56.

Langfristige Entwicklung von Iod-129 in der Umwelt

R. Michel¹, Th. Ernst¹, S. Szidat^{1,2}, Ch. Schnabel^{2,3}, H.-A. Synal⁴

1 Zentrum für Strahlenschutz und Radioökologie, Universität Hannover

2 Labor für Radio- und Umweltchemie, Universität Bern, Schweiz

3 Institut für Teilchenphysik, ETH Hönggerberg, Zürich, Schweiz

4 Paul Scherrer Institute, c/o Institut für Teilchenphysik, ETH Hönggerberg, Zürich, Schweiz

Zusammenfassung Die natürlichen Vorkommen des langlebigen Radionuklids 129 I (T_{1/2} = 15,7 Ma) wurden nachhaltig verändert durch den Fallout der oberirdischen Kernwaffenexplosionen, durch Freisetzungen aus nuklearen Unfällen und, vor allem, durch Emissionen aus Wiederaufarbeitungsanlagen. Obwohl die anthropogenen Veränderungen derzeit mit Ausnahme der nächsten Umgebung von Wiederaufarbeitungsanlagen radiologisch nicht relevant sind, sollten diese Veränderungen doch sorgfältig verfolgt und das Potential des ¹²⁹I als natürlicher und anthropogener Tracer für Umweltprozesse genutzt werden. Dies erfordert ein detailliertes Verständnis der pränuklearen Vorkommen, der anthropogenen Veränderungen, der Radioökologie des ¹²⁹I und der Umweltchemie des Elementes Iod. Wegen analytischer und methodischer Probleme ist die Radioökologie des ¹²⁹I nur unvollständig bekannt und systematische Untersuchungen der pränuklearen Vorkommen und der anthropogenen Veränderungen sind notwendig. Wir berichten hier über den gegenwärtigen Stand der Ergebnisse eines langfristigen Vorhabens, in dem ¹²⁹I und ¹²⁷I in allen relevanten Umweltkompartimenten untersucht werden. Wir berichten über die Ergebnisse der Untersuchung von ¹²⁹I und ¹²⁷I im Niederschlag, Oberflächen und Grundwasser in Niedersachsen und in Böden von verschiedenen europäischen Standorten. Aus der Analyse von ¹²⁹I im Niederschlag wurden jährliche ¹²⁹I De-positionsraten für den Zeitraum 1997- 1999 bestimmt. Es zeigt sich, daß die ¹²⁹I Depositionsraten in der Schweiz und Deutschland seit 1950 um drei Größenordnungen angestiegen sind und sich seit 1987 nur wenig verändert haben. Die unterschiedlichen ¹²⁹I/¹²⁷I Isotopenverhältnisse im Niederschlag und in Oberflächen- und Grundwasser erlauben es, die mittleren Aufenthaltszeiten von Iod in oberflächen-nahen Bodenzonen zu bestimmen. Aus der Analyse von Bodenprofilen wurden integrale¹²⁹I Depositionsdichten für verschiedene Standorte in Europa bestimmt. So konnten die natürliche¹²⁹I Gleichgewichtsdepositionsdichte und der bisherige Eintrag in West- und Osteuropa abgeschätzt bzw. bestimmt werden. Erhöhte ¹²⁹I Vorkommen in den durch den Reaktorunfall von Chernobyl hochkontaminierten Gebieten der Ukraine erlauben es, retrospektiv den Fallout von ¹³¹I nach dem Unfall zu bestimmen. Die Bodenprofile aus Deutschland belegen einerseits den Einfluß der andauernden Emissionen der europäischen Wiederaufarbeitungsanlagen, andererseits zeigen sie die Komplexität der Migration und Sorp-tion von Iod in Böden. Die ¹²⁹I/¹²⁷I Verhältnisse in der Biosphäre in Deutschland sind eine Größenordnung niedriger als im Niederschlag. Wegen des derzeitigen Ungleichgewichtes zwischen den Iod-Isotopen in den verschiedenen Umwelt-Kompartimenten sind weitere Untersuchungen der Pfade des ¹²⁹I durch die Umwelt zum Menschen erforderlich.

1. Einleitung

Das langlebige Radionuklid ¹²⁹I ($T_{1/2} = 15,7$ Ma) zerfällt über β -Zerfall mit einer β -Maximalenergie von 0,2 MeV unter Emission niederenergetischer γ -Strahlung mit einer γ -

Energie von 39,58 keV bei einer Emissionswahrscheinlichkeit von 7,52 %. ¹²⁹I entsteht in der Natur durch Spontanspaltung von Uran und durch Wechselwirkung der galaktischen kosmischen Strahlung mit Xenon-Kernen der Erdatmosphäre. Wie in Schmidt et al. [1] ausführlich dargestellt, wird das gesamte ¹²⁹I Inventar der Erde auf etwa 50 000 kg (326,8 TBq) geschätzt. Dabei ist der größte Teil in der Lithosphäre gebunden und nur 263 kg (1,7 TBq) sind als "freies" Inventar in Atmosphäre, Hydrosphäre und Biosphäre verfügbar. Die Hauptquellen für freies ¹²⁹I sind mit jeweils etwa 45 % Freisetzungen aus Vulkanen und die Produktion durch die kosmische Strahlung. Die Verwitterung von Gesteinen trägt mit weniger als 10 % zum freien Inventar bei. ¹²⁹I vermischt sich in der Atmosphäre, Hydrosphäre und Biosphäre und Biosphäre und Biosphäre mit stabilem ¹²⁷I. Mehr als 99 % des freien ¹²⁷I , etwa 8 \cdot 10¹⁴ kg, befindet sich in den Ozeanen und in jungen ozeanischen Sedimenten. Die meisten Autoren sind der Ansicht, daß das ¹²⁷I der Atmosphäre und Biosphäre hauptsächlich aus diesen Quellen stammt [2-4].

Die anthropogene Produktion von ¹²⁹I begann mit der militärischen und zivilen Nutzung der Kernspaltung. ¹²⁹I entsteht bei der durch thermische Neutronen induzierten Spaltung von ²³⁵U und ²³⁹Pu mit Isobarenausbeuten von 0,68 % bzw. 1,6 % [5]. ¹²⁹I wurde durch oberirdische Kernwaffenexplosionen freigesetzt. Dadurch wurde das natürliche freie Inventar an ¹²⁹I nach unterschiedlichen Schätzungen um zwischen 43 kg (0,28 TBq) und 150 kg (TBq) erhöht [6 - 9]. Die Unsicherheit dieser Schätzung beruht auf der Widersprüchen in den Angaben der Gesamtsprengkraft der oberirdischen Kernwaffenexplosionen. Die größten Anteile an anthropogenem ¹²⁹I in der Umwelt stammen jedoch aus der Wiederaufarbeitung von Kernbrennstoffen.

Bis zum Jahr 2000 emittierten die europäischen Wiederaufarbeitungsanlagen etwa 3500 kg (23 TBq)¹²⁹I [10 - 15], wobei ca.70 % der Gesamtemission auf die französische Wiederaufarbeitungsanlage La Hague entfiel. Die Emissionen beider Anlagen erfolgten überwiegend über das Abwasser: ca. 85 % in Sellafield und ca. 97 % des ¹²⁹I in La Hague. Große Mengen an anthropogenem ¹²⁹I befinden sich noch in abgebrannten Brennelementen: 1990 wurde dieser Anteil auf etwa 5660 kg (37 TBq) geschätzt [16]. Bisher liegen weder Informationen über die Geschichte der Emissionen aus westlichen militärischen Wiederaufarbeitungsanlagen noch allgemein über Wiederaufarbeitungsanlagen der ehemaligen UdSSR oder anderer östlicher Staaten vor.

Wie von Schmidt et al. [1] ausführlich diskutiert, ist unsere Kenntnis der Vorkommen natürlichen und anthropogenen¹²⁹I in der Umwelt noch sehr unvollständig. Dies ist hauptsächlich darauf zurückzuführen, daß mit der radiochemischen Neutronenaktivierungsanalyse (RNAA) seit 1962 für lange Jahre nur ein einziges Analysenverfahren zur Bestimmung von ¹²⁹I in Umweltproben zur Verfügung stand. Untersuchungen beschränkten sich weitgehend auf die Umgebungen von Emittenten und beschrieben bestenfalls ¹²⁹I in sog. Hintergrundgebieten, die nach heutiger Kenntnis allerdings bereit massiv vom Menschen beeinflußt waren. Das Problem bestand darin, daß die RNAA nicht empfindlich genug ist, ¹²⁹I in seinen natürlichen Vorkommen zu bestimmen. Die Nachweisgrenze der RNAA liegt bei ¹²⁹I/¹²⁷I Isotopenverhältnissen von etwa 10⁻¹⁰, ca. 2 Zehnerpotenzen höher als das natürliche Isotopenverhältnis (vgl. Kap. 2). Erst durch die Einführung der Beschleunigermassenspektrometrie (AMS = accelerator mass spectrometry) wurde es möglich, die natürlichen ¹²⁹I Vorkommen quantitativ zu erfassen. Blindwerte der ¹²⁹I/¹²⁷I Verhältnisse von $< 10^{-14}$ wurden bei der AMS Messung von AgI erreicht. Die Mehrzahl der AMS Untersuchungen beschränkten sich jedoch auf die Ausnutzung von ¹²⁹I als Tracer für Umweltprozesse und systematische Untersuchungen zur Radioökologie des ¹²⁹I fehlen weitgehend [1]. Außerdem waren die Untersuchungen von gering kontaminierten Umweltproben mittels AMS meist auf die Analyse von Wasser und marinen Materialien beschränkt.

Andere analytische Verfahren, wie γ -Spektrometrie, LSC und ICP-MS können zwar zum Nachweis von ¹²⁹I in hochkontaminierten Umweltproben herangezogen werden [17, 18], sie sind aber nicht empfindlich genug, ¹²⁹I in der Umwelt fernab von Emittenten oder die pränuklearen Vorkommen von ¹²⁹I zu bestimmen.

In dieser Arbeit wird ein Überblick über die langfristigen Veränderungen des ¹²⁹I in der Umwelt fernab von Emittenten gegeben. Dabei werden Untersuchungen zur Bestimmung der pränuklearen Isotopenverhältnisse vorgestellt, die Entwicklung des ¹²⁹I Fallouts in Deutschland und der Schweiz beschrieben, eine Bilanz der integralen Depositionsdichten in Westund Osteuropa anhand der Untersuchung von ¹²⁹I in Bodenprofilen gegeben, Daten für ¹²⁹I in Oberflächen- und Grundwässern in Niedersachsen dargestellt und die bisher vorliegenden Daten von ¹²⁹I in der terrestrischen Biosphäre in Europa diskutiert.

Dabei wird weitgehend auf Untersuchungen zurückgegriffen, die am Zentrum für Strahlenschutz und Radioökologie (ZSR) der Universität Hannover durchgeführt wurden. In Hannover wurden am Niedersächsischen Institut für Radioökologie (NIR) seit Ende der 1970er Jahre Untersuchungen von ¹²⁹I mittels RNAA durchgeführt [19 - 21]. Nach dem Zusammenschluß des NIR und der Zentraleinrichtung für Strahlenschutz der Universität Hannover zum derzeitigen ZSR im Jahre 1995 wurden diese Untersuchungen ausgedehnt und in Zusammenarbeit mit dem PSI/ETH Tandem AMS-Laboratorium an der ETH Hönggerberg in Zürich auch Untersuchungen mittels AMS durchgeführt [1, 22 - 27]. Dies erforderte umfangreiche Entwicklungen von Analysenverfahren einschließlich Arbeiten zur Kontaminationskontrolle und Qualitätssicherung der Analytik von ¹²⁹I und ¹²⁷I, die an anderem Ort beschrieben wurden [1, 22 - 25].

2. Pränukleare Vorkommen von Iod-129

Für dosimetrische Modelle der ¹²⁹I Exposition und auch im Hinblick auf den Iod-Kreislauf in der Umwelt ist es sinnvoll, die Vorkommen von ¹²⁹I in Form der ¹²⁹I/¹²⁷I Isotopenverhältnisse zu beschreiben [4]. Frühe Schätzungen des Isotopenverhältnisses im natürlichen Gleichgewicht ergaben für die marine Hydrosphäre ¹²⁹I/¹²⁷I Verhältnisse zwischen 4 × 10⁻¹⁴ und 3 × 10⁻¹² [28 - 30]. In einem detaillierten Gleichgewichtsmodell schätzte Fabryka-Martin [31] ein Verhältnis von 5,5 × 10⁻¹³ für die marine Hydrosphäre, während sie für die kontinentale Atmosphäre, für Böden und die terrestrische Biosphäre geringfügig höhere ¹²⁹I/¹²⁷I Verhältnisse von etwa 6,5 × 10⁻¹³ voraussagte. Erst mittels AMS Messungen gelang es, die natürlichen Vorkommen an pränuklearen marinen Sedimenten und ozeanischen Tiefenwasser experimentell zu verifizieren. Es ergaben sich ¹²⁹I/¹²⁷I Verhältnisse von (1,3 ± 0,3) × 10⁻¹² [32] und (1,4 ± 0,9) × 10⁻¹² [33].

Für die Atmosphäre, die terrestrische Biosphäre und die Pedosphäre konnten bisher die pränuklearen ¹²⁹I/¹²⁷I Isotopenverhältnisse nicht experimentell verifiziert werden, hauptsächlich wegen Kontaminationsproblemen mit allgegenwärtigem, anthropogenem ¹²⁹I. Die niedrigsten Isotopenverhältnisse, die bisher in nicht-marinen, pränuklearen Materialien gefunden wurden [25], sind in Tabelle 1 dargestellt.

Schilddrüsen von Schweinen und Pferden zeigten in den USA bereits im Jahr 1947¹²⁹I/¹²⁷I Isotopenverhältnisse, die 40 bis 1000 mal höher als das pränukleare marine Gleichgewichtsisotopenverhältnis waren, wahrscheinlich als Folge von ¹²⁹I Freisetzungen während des Manhattan-Projektes. Das bisher niedrigste ¹²⁹I/¹²⁷I Isotopenverhältnis in der Biosphäre wurde in einem Schilddrüsen-Pulver gemessen, das die Firma Parke-Davis & Co./USA 1943 als Referenzmaterial für die chemische Iod-Analytik herstellte. Doch auch dieses Material zeigt Isotopenverhältnisse, die ca. 5 mal höher als das marine Gleichgewichtsisotopenverhältnis liegen. Zudem wurde für dies Material noch eine Variabilität der Isotopenzusammensetzung bei der Analyse verschiedener Aliquots festgestellt. In den Pferdeschilddrüsen aus 1947 sind die Isotopenverhältnisse jedoch so hoch, daß Kontamination alleine durch Lagerung unwahrscheinlich erscheint und zusätzlicher Eintrag aus dem Manhattan-Projekt naheliegt.

Material	¹²⁹ I	¹²⁷ I	¹²⁹ I/ ¹²⁷ I
	in µBq kg ⁻¹	in mg kg ⁻¹	in 10 ⁻¹⁰
Boden Moskau (Rußland), 1910	$0,87 \pm 0,07$	$0,79 \pm 0,02$	$1,68 \pm 0,15$
Boden Bogoroditsk (Rußland), 1909	$0,85 \pm 0,07$	$5,4 \pm 0,3$	$0,25 \pm 0,03$
Boden Lutovinovo (Rußland), 1939	$0,15 \pm 0,03$	$3,87 \pm 0,14$	$0,057 \pm 0,011$
Tioriashaa Sahilddriigan Dulyar (USA) 1042	140	3 000 ^a	$0,070 \pm 0,015$
Therisches Schilddrusen-Pulver (USA), 1943	91 ± 8	2.980 ± 90	$0,046 \pm 0,005$
Schweine-Schilddrüsen-Pulver (USA), 1947	nicht bestimmt	nicht bestimmt	$0,58 \pm 0,20$
Dforda Sabilddrigan Dulyar (USA) 1047	27 400	3 380 ^a	$12,3 \pm 1,5$
Therde-Schnadrusen-Fulver (USA), 1947	34 300	3 380 ^a	$15,4 \pm 1,8$

Tab. 1: ¹²⁷*I*- und ¹²⁹*I*-Konzentrationen (bezogen auf die Trockenmasse) und intrinsische ¹²⁹*I*/¹²⁷*I* Isotopenverhältnisse in pränuklearen Boden- und Schilddrüsenproben.

^a Angaben des Herstellers: Parke, Davis & Co., USA.

In pränuklearen Bodenproben fanden wir ¹²⁹I/¹²⁷I Isotopenverhältnisse, die 4 bis 100 mal höher als das Gleichgewichtsisotopenverhältnis waren (Tab. 1). Wir interpretieren diese Ergebnisse, so, daß alle diese alten Bodenproben während der Lagerung mit anthropogenem ¹²⁹I kontaminiert wurden. Kontamination während der Analytik können angesichts von ¹²⁹I/¹²⁷I Isotopenverhältnissen (5 - 20) × 10⁻¹⁴ in Blindmaterialien, die das vollständige Analysenverfahren durchliefen, ausschließen. Die Bodenprobe von Lutovinovo/Rußland zeigt das bisher niedrigste in Böden gemessene Isotopenverhältnis und kann daher unter der Annahme, daß die mittleren pränuklearen ¹²⁹I und ¹²⁷I Konzentrationen in der Probe ein Gleichgewicht zwischen natürlichem atmosphärischem Eintrag und der Migration in tiefere Bodenschichten darstellt, zur Berechnung einer oberen Grenze der pränuklearen integralen ¹²⁹I Depositionsdichte herangezogen werden (vgl. Kap. 3).

2. Fallout von Iod-129 in Deutschland und der Schweiz

Zur systematischen Untersuchung des ¹²⁹I Fallouts in Deutschland werden in Niedersachsen durch das ZSR seit 1997 Proben von Niederschlag an vier verschiedenen Stationen des Niedersächsischen Depositionsmeßnetzes genommen. Zusätzlich werden Oberflächen- und Grundwasser an naheliegenden Stationen des IMIS Meßnetzes beprobt. Um eine räumliche Übersicht über die ¹²⁹I Deposition zu erhalten, wurde Niedersachsen in 4 Regionen unterteilt (Abb. 1): Küsten-nahes Gebiet an der Nordsee (Region I), das norddeutsche Tiefland (Region II), das Harzvorland (Region III) und das Elbetal in der Umgebung von Gorleben (Region IV). Niederschlagsproben wurden als Quartals-Mischproben, Proben von Oberflächen- und Grundwasser in viertel- bzw. halbjährigem Abstand einzeln genommen. In den Regionen II

und III wurde zusätzlich zum Freilandniederschlag auch durchfallender Niederschlag unter Bäumen beprobt. Außerdem wurden 1999/2000 drei Proben von Nordseewasser bei Spieka-Neufeld und im Jahr 2000 zwei Proben bei Amrum entnommen.

Abb. 1: Probenahmeorte natürlicher Wässer und Bodenproben in Niedersachsen.

Die Ergebnisse der ¹²⁹I und ¹²⁷I Analysen der Wasserproben mittels AMS bzw. ICP-MS sind in Tabelle 2 als geometrische Mittelwerte mit den Standardabweichungen der Einzelwerte dargestellt. Die relativen Meßunsicherheiten der Einzelwerte als 95 %-Vertrauensintervalle sind typischer Weise 12 %, 18 % und 20 % für ¹²⁹I, ¹²⁷I und die ¹²⁹I/¹²⁷I Isotopenverhältnisse. In Bezug auf die Durchführung der Analysen, die Meßunsicherheiten und Qualitätskontrolle und die ausführliche Darstellung und Diskussion der Einzelergebnisse sei auf [24, 25] verwiesen.

Sowohl die Mittelwerte der ¹²⁹I Aktivitätskonzentrationen als auch die der ¹²⁷I Konzentrationen nehmen in der Reihenfolge der Regionen I bis IV ab. Allerdings sind nur die Werte der Region I signifikant gegenüber denen der anderen Regionen erhöht. Die höheren Werte in Küstennähe werden auf den Einfluß von Seaspray zurückgeführt.

Die ¹²⁹I/¹²⁷I Isotopenverhältnisse sind ebenfalls in der Region I leicht erhöht, unterscheiden sich aber auch nicht signifikant von den in den anderen Regionen gemessenen. Die mittleren ¹²⁹I/¹²⁷I Isotopenverhältnisse im Niederschlag lagen 1997 - 1999 bei ca. 5×10^{-7} (Abb. 2). Die ¹²⁹I Konzentrationen in Niedersachsen unterscheiden sich nicht signifikant von denen, die in Proben aus Dübendorf/Schweiz gefunden wurden [34, 35].

Sowohl die ¹²⁹I Aktivitätskonzentrationen als auch die ¹²⁷I Konzentrationen sind im durchfallenden Niederschlag um den Faktor 3,5 bis 4,7 (Mittelwert 3,9) höher als die im Freilandniederschlag bei etwa gleichen ¹²⁹I/¹²⁷I Isotopenverhältnissen von ca. 5×10^{-7} . Die höheren Konzentrationen werden mit der Filterwirkung der Bäume als trockene Deposition von Iod-Isotopen auf den Blättern der Bäume interpretiert. Die ¹²⁹I/¹²⁷I Verhältnisse im Freilandniederschlag und im durchfallenden Niederschlag zeigen keine signifikanten Unterschiede.

Tab 2: ¹²⁹I, ¹²⁷I und ¹²⁹I/¹²⁷I in Niederschlag, Oberflächen- und Grundwasser aus Niedersachsen für den Zeitraum 1997-1999 [24, 25] sowie in Proben von Nordseewasser aus den Jahren 1999 und 2000. Die Daten sind in Form geometrischer Mittelwerte und Standardabweichungen angegeben.

D 1	Region n		¹²⁹ I	¹²⁷ I	$^{129}\mathrm{I}/^{127}\mathrm{I}$
Probe		п	in µBq kg ⁻¹	in µg kg ⁻¹	in 10 ⁻¹⁰
	Ι	10	$17,0 \times 1,34^{\pm 1}$	$3,10 \times 1,39^{\pm 1}$	$8.250 \times 1,20^{\pm 1}$
Niederschlag	II	9	$6,07 \times 1,41^{\pm 1}$	$1,48 \times 1,31^{\pm 1}$	$6.190 \times 1,34^{\pm 1}$
(Freiland)	III	9	$4,09 \times 1,87^{\pm 1}$	$1,33 \times 2,05^{\pm 1}$	$4.650 \times 1,82^{\pm 1}$
	IV	9	$3,57 \times 1,61^{\pm 1}$	$1,31 \times 1,45^{\pm 1}$	$3.740 \times 1,59^{\pm 1}$
Niederschlag	II	9	24,1 × 1,40 ^{±1}	$6,92 \times 1,31^{\pm 1}$	$5.260 \times 1,13^{\pm 1}$
(durchfallend)	III	9	14,2 × 1,33 ^{±1}	$5,08 \times 1,23^{\pm 1}$	$4.220 \hspace{0.1in} \times \hspace{0.1in} 1,\!29^{\pm 1}$
	Ι	12	$7,20 \times 2,25^{\pm 1}$	$23,6 \times 1,48^{\pm 1}$	$460 \times 2,07^{\pm 1}$
Oberflächen-	II	12	$0,94 \times 1,67^{\pm 1}$	$6,52 \times 1,25^{\pm 1}$	$219 \times 1,61^{\pm 1}$
wasser	III	11	$0,24 \times 1,58^{\pm 1}$	$5,74 \times 1,43^{\pm 1}$	$62,8 \hspace{0.1 in} \times \hspace{0.1 in} 1,\!68^{\pm 1}$
	IV	12	$0,67 \times 2,00^{\pm 1}$	$8,56 \times 1,61^{\pm 1}$	$118 \times 2,04^{\pm 1}$
	Ι	3	$0,283 \times 1,39^{\pm 1}$	$4,24 \times 1,30^{\pm 1}$	$99,2 \times 1,51^{\pm 1}$
Grundwasser	II	4	$0,560 \times 1,23^{\pm 1}$	$3,90 \times 1,26^{\pm 1}$	$222 \times 1,56^{\pm 1}$
	III	4	$0,0367 \times 2,37^{\pm 1}$	$1,83 \times 4,24^{\pm 1}$	$30{,}3 \hspace{0.1 in} \times \hspace{0.1 in} 1{,}93^{\pm 1}$
	IV	5	$0,0065 \times 5,76^{\pm 1}$	$4,98 \times 1,21^{\pm 1}$	$2,0 \times 5,80^{\pm 1}$
Nordseewasser	Ι	5	$495 \times 1,73^{\pm 1}$	$44,88 \times 1,82^{\pm 1}$	$16.500 \times 1,24^{\pm 1}$

Die langfristige Entwicklung der Iod-Isotopenverhältnisse im Niederschlag in Westeuropa ist in Abb. 2 dargestellt. Messungen an einem Eisbohrkern vom Fiescherhorn/Schweiz belegten erstmals, daß der ¹²⁹I Fallout nicht den charakteristischen Bomben-Peak zeigt, sondern seit den 50er Jahren bis Ende der 80er Jahre kontinuierlich anwuchs [36]. Bereits 1950 übertrafen die atmosphärischen ¹²⁹I/¹²⁷I Isotopenverhältnisse fernab von ¹²⁹I Emittenten auf der Nordhalbkugel Werte von 10⁻⁹; siehe [1] bzgl. einer Literaturübersicht. Wenn man die hochalpinen Proben von Beginn der 1950er Jahre bis Mitte der 1980er Jahre mit den mitteleuropäischen Flachlandproben seit 1987 vergleicht, so nahmen die Isotopenverhältnisse und die jährlichen Depositionsdichten in Europa bis Ende der 80er Jahre zu. Seitdem werden Isotopenverhältnisse von nahezu ca. 6.5×10^{-7} Peutschland und der Schweiz beobachtet, die bis heute in etwa konstant geblieben sind. Der Fallout von ¹²⁹I durch nasse Deposition aus dem Unfall von Tschernobyl war lediglich eine kurzzeitige Episode. Die höchsten dabei gemessenen Isotopenverhältnisse lagen in Westeuropa bei knapp 10⁻⁵.

Die ¹²⁹I/¹²⁷I Isotopenverhältnisse von ca. 6.5×10^{-7} im Niederschlag stellen im Hinblick auf den Transferpfad des ¹²⁹I ein Problem dar. Geht man davon aus, daß der Transfer des ¹²⁹I über

Emissionen mit dem Abwasser aus den Wiederaufarbeitungsanlagen erfolgt und dann über konvektive und diffusive Prozesse unter Beteiligung biologischer Aktivitäten wie der Bildung von Methyliodid durch Mikroorganismen in den Niederschlag überführt wird, sind die beobachteten Isotopenverhältnisse im Niederschlag mit den Analysenergebnissen von Raisbeck und Yiou [10, 16] gegen Ende der 1980er bzw. zu Beginn der 1990er Jahre in der Nodsee nicht zu erklären [34].

Man geht heute davon aus, daß die ¹²⁹I/¹²⁷I Isotopenverhältnisse in der ozeanischen Mischungsschicht fernab von Emittenten etwa 10⁻¹⁰ beträgt (Abb. 2). [32, 37, 38]. Für Küstengewässer des Ärmelkanals und der Nordsee sowie Einzelproben aus der zentralen Nordsee liegt bisher erst eine systematische Untersuchung von Yiou et al. [16] vor, bei der die Probenahme zwischen 1984 und 1992 erfolgte und in der ¹²⁹I/¹²⁷I Isotopenverhältnisse zwischen 10⁻¹⁰ und 8×10^{-7} gefunden wurden. Mit diesen ¹²⁹I/¹²⁷I Isotopenverhältnisse in ozeanischen Oberflächenwasser ist es nicht möglich Niederschlag mit ¹²⁹I/¹²⁷I Isotopenverhältnisse zu erklären. Die vom ZSR untersuchten Proben von Nordseewasser zeigen deutlich höhere ¹²⁹I/¹²⁷I Isotopenverhältnisse von 1,65 × 10⁻⁶. Es ist derzeit unklar, ob die Isotopenverhältnisse im Nordatlantik sich gegenüber den Daten von Yiou et al. [16] dramatisch geändert haben. Eine erneute systematische Beprobung des Nordatlantik und der Nordsee erscheint dringend erforderlich.

Abb. 2: Entwicklung der ¹²⁹I/¹²⁷I Isotopenverhältnisse im Niederschlag in der Schweiz und in Deutschland [25, 26, 34 - 36, 39 - 41]. Die Daten der Referenzen [34], [36], und [39] wurden unter der Annahme eines ¹²⁷I Gehaltes von 1,4 μg kg⁻¹ berechnet. Zum Vergleich sind die Ergebnisse der am ZSR untersuchten Proben von Nordseewasser, die Bereiche der in Oberflächen- und Grundwasser gemessenen Isotopenverhältnisse sowie das pränukleare und das derzeitige ¹²⁹I/¹²⁷I Verhältnis in der ozeanischen Mischungsschicht angegeben.

Eine andere Erklärungsmöglichkeit läge darin, daß ¹²⁹I im Niederschlag durch Emissionen über die Abluft der Wiederaufarbeitungsanlagen dominiert wird. Zwar betragen die atmosphärischen Emissionen nur wenige Prozent der Gesamtemissionen, doch erscheint auch der Luftpfad hinreichend zur Erklärung der ¹²⁹I Immissionen in Deutschland und der Schweiz und zu dem korreliert der zeitliche Verlauf der atmosphärischen Emissionen besser mit dem Verlauf der Immissionen als mit dem der marinen Immissionen [34, 35].

In Abbildung 3 werden die zusammengefaßten marinen und atmosphärischen ¹²⁹I-Emissionen von La Hague und Sellafield dargestellt. Von 1988 bis 1996 steigen die flüssigen Emissionen um einen Faktor 6,4 an. Hingegen bleiben die atmosphärischen Emissionen der Wiederaufarbeitungsanlagen im beobachteten Zeitraum in etwa konstant und weisen im Jahr 1996 einen um nur 1,4 gegenüber 1988 erhöhten Wert auf. Die im Niederschlag in Mitteleuropa seit 1988 ermittelten ¹²⁹I Konzentrationen sind mit einem zeitlich konstanten Verlauf verträglich. Der zeitliche Verlauf der ¹²⁹I Konzentrationen in Mitteleuropa seit 1988 ist folglich sehr viel besser mit der Zeitabhängigkeit der atmosphärischen als mit derjenigen der marinen Emissionen vereinbar.

Abb. 3: Zeitlicher Verlauf der Emissionen der beiden europäischen Wiederaufarbeitungsanlagen Sellafield und La Hague [10 - 15].

Unabhängig von der ungelösten Frage der Herkunft und der Immissionspfade des ¹²⁹I können die vorliegenden Daten dazu genutzt werden, die jährlichen ¹²⁹I Depositionsdichten aus den gemessenen ¹²⁹I Konzentrationen im Niederschlag und den jährlichen Niederschlagsmengen abzuschätzen. Die jährlichen ¹²⁹I Depositionsdichten stiegen danach in den letzten 5 Jahrzehnten von 0,01 mBq m⁻² a⁻¹ im Jahr 1950 in der Schweiz um nahezu drei Größenordnungen auf einen geometrischen Mittelwert von $6,4 \times 2,1^{\pm 1}$ mBq m⁻² a⁻¹ (alle vier Regionen Niedersachsens von 1997 bis 1999) an (Abb. 4). Die gegenwärtige Deposition in Niedersachsen zeigt zeitliche und räumliche Variationen [24, 25]. In Abb. 4 sind die geometrischen Jahresmittelwerte der ¹²⁹I/¹²⁷I Isotopenverhältnisse mit den Standardabweichungen der Einzelwerte aller Stationen eingetragen, in Tab. 3 sind die Bereiche der jährlichen Depositionsdichten angegeben. Obwohl die Emissionen hauptsächlich in das Meer erfolgen, ist es gegenwärtig nicht klar, ob der gegenwärtige Fallout durch die marinen oder die atmosphärischen Emissionen dominiert wird [34, 35].

Abb. 4: Zeitliche Entwicklung der jährlichen Depositionsdichten von ¹²⁹I in Deutschland (gefüllte Symbole) [25, 26, 40, 41] und der Schweiz (offene Symbole) [34, 35]. Die Fehlerbalken stellen den Zeitraum der Probennahmen und die Standardabweichungen der Einzelwerte dar.

Ort	Material	Jahr	Ref.	127	¹²⁹	
				in mg m⁻² a⁻¹	in mBq m⁻² a⁻¹	
Fiescherhorn, CH	Eis-Bohrkern	1950	32	-	0,014	
Fiescherhorn, CH	Eis-Bohrkern	84/85	32	-	0,7 - 0,9	
Mappenberg, D	Regen + Aerosol	88/89	34	-	4,0 - 6,6	
D, fünf Standorte	Niederschlag	94/95	35	-	5,1 - 11	
Dübendorf, CH	Niederschlag	94-97	30	-	2,3 - 5,3	
NS, Region I	Regen, Freiland	97-99	19, 20	1,6 - 2,6	8,4 - 15,6	
NS, Region II	Regen, Freiland	97-99	19, 20	1,0 - 1,6	3,4 - 6,6	
NS, Region III	Regen, Freiland	97-99	19, 20	0,8 - 1,9	1,9 - 6,2	
NS, Region IV	Regen, Freiland	97-99	19, 20	0,8 - 1,2	1,8 - 3,9	
NS, Region II	Regen, durchfallend	97-99	19, 20	2,4 - 4,7	7,9 - 18,1	
NS, Region III	Regen, durchfallend	97-99	19, 20	3,2 - 5,7	9,1 - 18,5	

Tab. 3: Jährliche Depositionsdichten von ¹²⁹I und ¹²⁷I in Deutschland und der Schweiz.

Neben ¹²⁹I wurden auch die langlebigen Radionuklide ¹⁴C ($T_{1/2} = 5,73$ ka) und ³⁶Cl ($T_{1/2} = 300$ ka) als Aktivierungsprodukte durch die oberirdischen Kernwaffenversuche in der Umwelt freigesetzt. Auch diese Nuklide sind wie ¹²⁹I natürlich vorkommende, kosmogene Radionuklide, deren natürliche Häufigkeiten durch die anthropogenen Freisetzungen massiv beeinflusst wurden.

Abb. 5: Zeitlicher Verlauf der $\Delta(^{14}C)$ -Werte in der Atmosphäre auf der Nord- und Südhalbkugel für Vermunt (47°N,10°E) und Wellington (41°S, 174°E), [42] und dort angegebene Literaturstellen, (oben) und der jährlichen ³⁶Cl Depositionsdichten am Fiescherhorn [44].

Messungen von ¹⁴C/C in der Atmosphäre zeigen eine globale Verdopplung der spezifischen Aktivität des atmosphärischen Kohlenstoffs anfangs der 60er Jahre [42]. Die natürlichen Variationen des ¹⁴C/C Verhältnisses lagen demgegenüber während der letzten 12 000 a bei 15 %.

Höhere als die anthropogenen $\Delta({}^{14}C)$ -Werte¹ wurden mit 3 600 °/oo bisher nur in 44 000 a alten Tropfsteinen gefunden [43] und sind nur durch eine außergewöhnliche Erhöhung der kosmogenen Produktion, die einher ging mit erhöhter Produktion von ¹⁰Be und ³⁶Cl, zu erklären. Heute sind die atmosphärischen $\Delta({}^{14}C)$ Werte nach Beendigung der Freisetzungen und als Folge der Pufferung durch marines CO₂ mit natürlichem Isotopenverhältnis nahezu wieder zum natürlichen Pegel zurückgekehrt. Atmosphärisches $\Delta({}^{14}C)$ zeigt damit den klassischen "Bomben-Peak" (Abb. 5), der auch im Fallout von ¹³⁷Cs und ⁹⁰Sr beobachtet wurde. Messungen auf der Nord- und Südhalbkugel zeigen den ¹⁴C Fallout als globales Ereignis mit lediglich geringen Unterschieden aufgrund der Transportzeit des überwiegend auf der Nordhalbkugel emittierten ¹⁴C.

Auch der Fallout von ³⁶Cl, den man mittels AMS in Proben von Eisbohrkernen retrospektiv erfassen kann, zeigt einen ausgeprägten Bomben-Peak (Abb. 5). Der Fallout von ³⁶Cl überstieg die natürlichen kosmogen bedingten Fallout anfangs der 60er Jahre um mehr als 3 Zehnerpotenzen. Messungen an Eisbohrkernen vom Fiescherhorn/Schweiz und aus Dye 3/Grönland belegen den globalen Charakter und die Gleichförmigkeit des Fallout als Folge der Freisetzungen durch oberirdische Kernwaffenexplosionen [44]. Der Vergleich der Abbildungen 2 und 4 mit Abb. 5 belegt die grundsätzlich andere Situation bei ¹²⁹I im Vergleich zu anderen anthropogenen Radionukliden wie ³H, ¹⁴C, ³⁶Cl, ⁹⁰Sr und ¹³⁷Cs in der Umwelt.

3. Iod-129 in Böden

Das Vorkommen von ¹²⁹I in Böden ist aus verschiedenen Gründen von Interesse. Zum ersten kann über die Untersuchung von ¹²⁹I in Bodenprofilen das Migrationsverhalten von I-129 im Vergleich zu dem des ¹²⁷I untersucht werden. Zum zweiten können die integralen Depositionsdichten von ¹²⁹I bestimmt werden. Dies ist sowohl im Hinblick auf die Bilanzierung der anthropogenen Veränderungen als auch auf die retrospektive Bestimmung der ¹³¹I Deposition nach dem Unfall von Tschernobyl von Interesse. Zum dritten ist die Untersuchung der Tiefenverteilung von ¹²⁷I in Böden im Hinblick auf den Iod-Haushalt in Abhängigkeit von Bewuchs und bodenkundlichen Merkmalen von Bedeutung. Am ZSR wurden daher in den letzten Jahren intensive Untersuchungen von ¹²⁹I und ¹²⁷I in Böden vorgenommen.

Bisher wurden 48 Bodenprofile bis zu einer Tiefe von 40 cm in Moskau und der nördlichen Ukraine in den Jahren von 1995 bis 1997 genommen. ¹²⁹I wurde mittels RNAA und AMS bestimmt, ¹²⁷I mittels RNAA, IC und ICP-MS [45]. Im Jahr 1999 wurden bodenkundlich wohl charakterisierte Bodenprofile an sieben Standorten in Niedersachsen bis zu einer maximalen Tiefe von 250 cm entnommen.

Aus den ¹²⁹I Aktivitätskonzentrationen der Proben der Profile wurden auf die Oberfläche projizierte tiefen-integrierte Aktivitätskonzentrationen D(d) nach Gleichung 1 berechnet. Diese sind unter der Voraussetzung, daß ein Fallout-Radionuklid nicht tiefer als die maximale Beprobungstiefe d_{max} migriert ist und daß das Radionuklid weder horizontal verfrachtet wurde noch aus der Oberfläche entweicht, Depositionsdichten des Fallouts.

$$D(d) = \int_{d}^{d_{\max}} A_s(d') \cdot \rho(d') \, \mathrm{d}d' \tag{1}$$

mit

¹ Die Δ (¹⁴C)-Werte geben die Abweichung des ¹⁴C/C Verhältnisses von dem eines Standards in Promille an.

D(d)	Depositionsdichte als Funktion der Tiefe d in Bq m ⁻²
$A_s(d)$	Aktivität pro Masseneinheit im Tiefenintervall $[d, d + \Delta d]$ in Bq kg ⁻¹
$\rho(d)$	Dichte des Bodens im Tiefenintervall $[d, d + \Delta d]$ in g cm ⁻³
D(d=0)	Integrale Depositions dichte in Bq m^{-2}

Für stabiles Iod wurden auf die Oberfläche projizierte tiefen-integrierte Elementkonzentrationen D(d) in analoger Weise definiert, indem in Gl. 1 die spezifischen Aktivitäten $A_s(d)$ durch die ¹²⁷I Konzentrationen im Boden, $C_{127}(d)$ in g g⁻¹, ersetzt wurden. Unter den oben gemachten Voraussetzungen und der Annahme, daß das stabile Iod im Boden überwiegend aus atmosphärischem Eintrag stammt, sind die auf die Oberfläche projizierten Elementkonzentrationen D(0) als integrale ¹²⁷I Depositionsdichten anzusehen. Als Beispiel zeigen wir in Abb. 6 die Tiefenabhängigkeiten der ¹²⁹I und ¹²⁷I Depositionsdichten und der ¹²⁹I/¹²⁷I Isotopenverhältnisse in einem Bodenprofil von Klein Lobke, Niedersachsen. Mehr als 99 % des ¹²⁹I befindet sich in den oberen 60 cm des Profils. Allerdings liegen die ¹²⁹I/¹²⁷I Isotopenverhältnisse in größeren Tiefen noch bei 10⁻¹⁰, d.h. noch etwa zwei Größenordnungen höher als das natürliche Gleichgewichtsisotopenverhältnis in der marinen Hydrosphäre. Der Anteil an ¹²⁹I, der bereits aus den oberen 250 cm in größere Tiefen transportiert wurde, kann aus den vorliegenden Daten nicht abgeschätzt werden.

Abb. 6: Tiefenabhängigkeit der ¹²⁷I und ¹²⁹I Depositionsdichten und der ¹²⁹I/¹²⁷I Isotopenverhältnisse in einem Bodenprofil von Klein Lobke, Niedersachsen.

Betrachtet man die *D*(0)-Werte für ¹²⁷I Daten in Abb. 6 als integrale ¹²⁷I Depositionsdichten, wird ersichtlich, daß das heute im Boden vorhandene ¹²⁷I von ca. 4 g m⁻² bei jährlichen Depositionsdichten der Größenordnung von 1 mg m⁻² a⁻¹ nur über Jahrtausende in die Böden eingetragen worden sein kann. Damit kann die Annahme, daß die nach Gl. 1 auf die Oberfläche projizierten ¹²⁷I Konzentrationen als integrale Depositionsdichten aufgefaßt werden können, nicht aufrecht erhalten werden, da das System Boden über derartige Zeiträume mit Sicherheit nicht als geschlossen angesehen werden kann. Böden unterliegen einer ständigen Entwick-

lung, die bereits im Bereich von Jahrzehnten signifikante Veränderungen bewirken kann. Der Wert von ca. 4 g m⁻² kann somit nur als untere Grenze der integralen ¹²⁷I Depositionsdichte aufgefaßt werden.

Betrachtet man die auf die Oberfläche projizierten ¹²⁹I Aktivitätskonzentrationen für d = 0 als integrale ¹²⁹I Depositionsdichten erhält man die in Tab. 4 angegebenen Ergebnisse. Die bisher niedrigsten Depositionsdichte wurde in einem Bodenprofil aus Lutovinovo, Rußland gemessen, das im Jahr 1939 genommen wurde. Dieses Profil zeigte auch das bisher niedrigste in Böden gemessene Isotopenverhältnis von $(0,057 \pm 0,011) \times 10^{-10}$ [24, 25]. Allerdings ist auch dieses Isotopenverhältnis noch um den Faktor vier höher als das pränukleare marine ¹²⁹I/¹²⁷I Gleichgewichtsisotopenverhältnis von ~ 1,4 × 10⁻¹² [33]. Wegen der Gefahr der Kontamination mit modernem Iod während der Lagerung können solche pränuklearen Bodenprofile lediglich obere Grenzen für die natürliche Gleichgewichtsdepositionsdichte geben. Kontamination während der Probenbehandlung und Analyse stellt angesichts vollständiger analytischer Blanks mit typischen ¹²⁹I/¹²⁷I Isotopenverhältnisse von 2 × 10⁻¹³ kein Problem dar.

Die integralen Depositionsdichten D(0) sind in Niedersachsen mehr als drei Größenordnungen höher als der pränukleare Wert, der aus dem Bodenprofil von Lutovinovo, Rußland ermittelt wurde. Sie sind auch höher als die in Moskau, Rußland, oder Zhytomir, Ukraine, wo keine signifikante Kontamination durch Fallout des Tschernobyl-Unfalls stattfand. Nur in Bereichen der Ukraine die durch den Unfall stark kontaminiert wurden, beobachtet man höhere integrale Depositionsdichten als in Deutschland [45]. Tabelle 4 zeigt die geometrischen Mittelwerte und Standardabweichungen der integralen Depositionsdichten in den Kontaminationszonen II (¹³⁷Cs Depositionsdichte 555 - 1480 kBq m⁻²) und III (¹³⁷Cs Depositionsdichte 185 – 555 kBq m⁻²) der nördlichen Ukraine. Dort kann ¹²⁹I dazu benutzt werden, retrospektiv den ¹³¹I Fallout des Tschernobyl Unfalls zu bestimmen. In den hochkontaminierten Gebieten der Ukraine geschah die Deposition des überwiegenden Anteils des ¹²⁹I zu einem einzigen, wohl definierten Zeitpunkt. In der Ukraine befinden sich mehr als 99 % des ¹²⁹I Fallouts des Tschernobyl Unfalls noch in den oberen 30 cm der Böden.

Allgemein zeigen die ¹²⁹I Depositionsdichten in den Bodenprofilen aus der Ukraine und aus Moskau etwa exponentielle Tiefenabhängigkeiten bis zu Tiefen von 40 cm [1, 45]. Für größere Tiefen, die bisher nur in Böden aus Niedersachsen untersucht wurden, ist die Situation wegen der komplexen Eintragsfunktion mit kontinuierlicher, stark zeitabhängiger Deposition wesentlich komplizierter (Abb. 6). Darüber hinaus belegen die Ergebnisse aus Niedersachsen, daß die Isotope ¹²⁹I und ¹²⁷I in Böden im Ungleichgewicht vorliegen. Die ¹²⁹I-Gehalte lassen deutlich die Übergänge zwischen Ober- und Unterböden erkennen. Dies ist für ¹²⁷I nicht der Fall. In Unterböden mit den niedrigsten ¹²⁷I-Gehalten wurden die vergleichsweise höchsten ¹²⁹I-Gehalte beobachtet. Damit gehorchen die Sorption bzw. die Verfügbarkeit von Iod im Oberboden einer anderen Gesetzmäßigkeit als im Unterboden. Über ¹²⁹I-¹²⁷I-Austauschprozesse und den jeweiligen Wasserhaushalt läßt sich das unterschiedliche Sorptionsverhalten erklären [46].

4. Iod-129 in Oberflächen- und Grundwässern in Niedersachsen

In den Oberflächenwässern sind die ¹²⁷I Konzentrationen gegenüber denen im Niederschlag erhöht, während die ¹²⁹I Aktivitätskonzentrationen im Niederschlag höher als im Oberflächenwasser sind (Tab. 2). Auffällig hoch sind die Werte in Region I. Hierbei handelt es sich um Proben aus dem Großen Meer (Abb. 1), das deutlich durch die Nähe der Nordsee

beeinflußt ist. Die ¹²⁹I/¹²⁷I Isotopenverhältnisse im Oberflächenwasser sind wesentlich geringer als im Niederschlag, wobei wieder die Proben aus dem Großen Meer deutlich gegenüber den Oberflächenwässern der anderen Regionen erhöht ist.

Die Nordsee und der Nordatlantik stellen für beide Iod-Isotope Puffer-Reservoire dar, wobei das ¹²⁹I hauptsächlich aus den europäischen Wiederaufarbeitungsanlagen Sellafield und La Hague stammt [10, 16]. Der anschließende Transfer durch die marine und kontinentale Atmosphäre findet auf einer kurzen Zeitskala von etwa zwei Wochen statt [47]. In der Atmosphäre werden die marinen Iod-Isotope mit solchen aus anderen natürlichen Quellen vermischt und auch ein direkter Einfluß der atmosphärischen Emissionen aus den Wiederaufarbeitungsanlagen ist möglich. Nachdem das Iod durch nasse oder trockene Deposition auf der Erdoberfläche abgelagert wird, werden die Iod-Isotope langsam in die Oberflächen- und Grundwässer transportiert. Die letztgenannten Kompartimente haben signifikant niedrigere ¹²⁹I/¹²⁷I Isotopenverhältnisse, die es ermöglichen, die Verweilzeiten des Iod in den Einzugsgebieten der Oberflächengewässer zu bestimmen. Da Iod biophil ist, können diese Verweilzeiten die biologischen Bedingungen in den jeweiligen Kompartments widerspiegeln, wenn man sie mit den Wasser-Transportzeiten auf der Grundlage von Tritium-Verweilzeiten vergleicht.

Ort	Anzahl der Profile	Tiefe in cm	Jahr der Probe- nahme	Integrale ¹²⁹ I Depositionsdich- ten in mBq m ⁻²
Lutovinovo, Rußland	1	35	1939	$0,084 \pm 0,017$
Moskau, Rußland	2	40	1996	$49 \times 1,5^{\pm 1}$
Zhytomir, Ukraine	12	40	1997	$38 \times 1,7^{\pm 1}$
Niedersachsen	7	250	1999	$168 \times 1,5^{\pm 1}$
Zone III, Ukraine	24	40	1995	$130 imes 1,5^{\pm 1}$
Zone II, Ukraine	7	40	1995	$848 imes 1,5^{\pm 1}$

 Tab. 4: Integrale ¹²⁹I Depositionsdichten in unterschiedlich kontaminierten Bereichen Europas.

Die Deposition atmosphärischen ¹²⁹I ist die wesentlichste Quelle in der terrestrischen Umwelt in Europa. Benutzt man die Niederschlagsdaten aus Abb. 2 als Eintragsfunktion in einem einfachen exponentiellen Modell [48] für den Transfer von Iod vom Ort des Niederschlags zu dem der Probenahme, kann man die mittleren Iod-Verweilzeiten in den oberflächlichen Bodenzonen berechnen und diese mit den Wasser-Transferzeiten auf der Basis von Tritium Aktivitätskonzentrationen vergleichen (Tab. 5). In einem solchen Modell wird die mittlere Verweilzeit τ nach Gleichung 2 berechnet.

$$\tau = -\frac{t}{\ln(1-H(t))} \tag{2}$$

Dabei ist *t* die Zeit konstanten Eintrags und H(t) der Anteil des Eintragsignals der im jeweiligen Kompartiment beobachtet wird. *t* charakterisiert die Zeitspanne zwischen der Probenahme und 1986, für die der Beginn des konstanten Eintrags angenommen wird. H(t) wird angenommen als das Verhältnis von ¹²⁹I/¹²⁷I in der jeweiligen Probe und dem Mittelwert im Niederschlag von $6,5 \times 10^{-7}$. τ wird für jede einzelne Probe berechnet. In Tab. 5 sind die so resultierenden geometrischen Mittelwerte mit ihren Standardabweichungen des Mittelwertes angegeben. Dieses Modell suggeriert, daß der horizontale und vertikale Iod-Transport um bis zu 3 Größenordnungen gegenüber dem Wassertransport verzögert ist. Oberflächen- und Grundwässer zeigen ähnliche Werte mit Ausnahme von Region IV, wo eine impermeable Zone über dem Ort der Grundwasser-Probenahme angenommen werden muß.

Tab. 5: Mittlere Transferzeiten von Iod in oberflächennahen Bodenzonen abgeleitet mit einem
einfachen exponentiellen Modell und mittlere Zeitkonstanten des Wassertransfers abgeleitet
aus ³ H in Grundwasser mit Standardunsicherheiten [49].

Material	Region	τ _{lod} in a	τ _{Tritium} in a
Oberflächenwa sser	Ι	kontaminiert durch Nordseewasser	_
	II	$364 \times 1,14^{\pm 1}$	_
	III	$1290\times1,\!16^{\pm1}$	_
	IV	$670 imes 1,24^{\pm 1}$	_
Grundwasser	Ι	$828 imes 1, 25^{\pm 1}$	7 ± 5
	II	$359 imes 1,23^{\pm 1}$	12 ± 1
	III	$2670\times1,\!36^{\pm1}$	9 ± 4
	IV	$40200 \times 2,15^{\pm 1}$	19 ± 2

5. Iod-129 in der Biosphäre

Auch die ¹²⁹I/¹²⁷I Isotopenverhältnisse in der Biosphäre wurden gegenüber den pränuklearen Werten drastisch verändert. Wie oben bereits erwähnt, wurde das bisher niedrigste Isotopenverhältnis in einem Schweine-Schildrüsenpulver aus den USA, das von Parke-Davis & Co. im Jahr 1943 hergestellt wurde. Der Mittelwert von zwei Analysen von $(0,058 \pm 0,012) \times 10^{-10}$ [1, 24] ist immer noch höher als das Isotopenverhältnis in pränuklearen ozeanischen Sedimenten. Schilddrüsenmaterialien in den USA aus dem Jahr 1947 zeigten ¹²⁹I/¹²⁷I Isotopenverhältnis und werden daher als kontaminiert durch Emissionen aus dem Manhattan-Projekt angesehen.

Die heutigen menschlichen und tierischen Schilddrüsen aus Niedersachsen, weit entfernt von ¹²⁹I Emittenten, zeigen wesentlich höhere Isotopenverhältnisse [20, 21, 50]. In Rinderschilddrüsen wurden ¹²⁹I/¹²⁷I Isotopenverhältnisse von (110 ± 10) × 10⁻¹⁰, (47 ± 5) × 10⁻¹⁰, bzw. (400 ± 196) × 10⁻¹⁰ in den Jahren 1978 (n = 25), 1981 (n= 22), und 1992/93 (n = 9) beobachtet [20, 21]. Der Fallout durch den Unfall von Tschernobyl verursachte in Westeuropa lediglich ein kurzzeitiges Maximum der Isotopenverhältnisse, die sich z. B. in Analysen von tierischen Schilddrüsen aus Österreich und Deutschland zeigten [51]. Schilddrüsen aus Deutschland, die vor und nach dem Tschernobyl Unfall am ZSR analysiert wurden zeigten ¹²⁹I/¹²⁷I Isotopenverhältnisse von (216 ± 114) × 10⁻¹⁰ (n = 13) bzw. (320 ± 156) × 10⁻¹⁰ (n = 26). Diese ¹²⁹I/¹²⁷I Isotopenverhältnisse sind etwa eine Größenordnung höher als die in Schilddrüsen aus Chile zeigten [50]. Dies ist einerseits in Übereinstimmung mit den generellen Unterschieden, die beim globalen Fallout aus oberirdischen Kernwaffenexplosionen zwischen der nördlichen und der südlichen Hemisphäre beobachtet wurden, andererseits ist es eine Folge des Fehlens von Wiederaufarbeitungsanlagen auf der Südhalbkugel.

Abb. 7: Zeitlicher Verlauf der ¹²⁹I/¹²⁷I Isotopenverhältnisse in menschlichen und tierischen Schilddrüsen in Niedersachsen. Zusätzlich sind die Ergebnisse von tierischen Schilddrüsen aus Österreich und Deutschland nach dem Unfall von Chernobyl eingetragen [20, 21, 50].

Um die radiologische Signifikanz der ¹²⁹I/¹²⁷I Isotopenverhältnisse zu beurteilen, kann man die durch ¹²⁹I verursachte Strahlenexposition auf der Basis eines spezifischen Aktivitätsmodells berechnen [1]. Unter der Annahme der Daten des ICRP Referenzmenschen für den menschlichen Iod-Gehalt und die Iod-Aufnahme [52] und einen Dosisfaktor für ein 1-jähriges Kind von 2,2 × 10⁻⁷ Sv Bq⁻¹ [53] bewirkt ein ¹²⁹I/¹²⁷I Gleichgewichtsisotopenverhältnis von 100 × 10⁻¹⁰ eine jährliche Schilddrüsen-Dosis von $H \approx 5$ nSv a⁻¹ durch die Aufnahme von ¹²⁹I. Somit sind die derzeitigen ¹²⁹I Kontaminationen fernab von Emittenten radiologisch nicht bedeutend. Es ist allerdings anzumerken, daß diese grobe Abschätzung der ¹²⁹I Exposition nicht für die nähere Umgebung von Emissionsquellen gilt und nicht die in der Umwelt existierenden Ungleichgewichte zwischen ¹²⁹I und ¹²⁷I in Betracht zieht.

Die bisher den 1990iger Jahren in Schilddrüsen in Deutschland gemessenen ¹²⁹I/¹²⁷I Isotopenverhältnisse sind deutlich geringer als die im Niederschlag (Abb. 7). Sie liegen zwischen 10⁻⁷ und 10⁻⁸. Ein Vergleich mit den in Oberböden gefundenen, im Mittel niedrigeren ¹²⁹I/¹²⁷I Verhältnissen von 5 × 10⁻⁸ bis 5 × 10⁻⁹ deutet darauf hin, daß die ¹²⁹I/¹²⁷I Verhältnisse in Schilddrüsen nicht durch ein spezifisches Aktivitäts-Modell beschrieben werden kann. Hier muß der Transfer von stabilem und radioaktiven Iod-Isotopen, die nicht im Gleichgewicht sind, über die einzelnen Lebensmittel und den Transfer von Atmosphäre, Boden und Wasser in Mensch und Tier detailliert untersucht werden. Derartige Untersuchungen werden z.Z. durchgeführt. Unter der Annahme eines anhaltenden kontinuierlichen Eintrags von ¹²⁹I ist ein weiterer Anstieg der biosphärischen ¹²⁹I/¹²⁷I Isotopenverhältnisse zu erwarten. Aus den bisher verfügbaren Daten der letzten 20 Jahre ist ein Anstieg des biosphärischen ¹²⁹I/¹²⁷I Isotopenverhältnisses um etwa eine Größenordnung abzulesen (Abb. 7).

6. Schlußfolgerung

Die natürlichen Vorkommen von ¹²⁹I wurden durch den Menschen nachhaltig verändert. In Westeuropa gehen diese Veränderungen weiter. Die ¹²⁹I/¹²⁷I Verhältnisse im Niederschlag stabilisierten sich nach einem jahrzehnte-langen Anstieg bei Werten von nahezu 10⁻⁶.

¹²⁹I und stabiles Iod sind in den verschiedenen Umwelt-Kompartimenten nicht im Gleichgewicht. Die höchsten ¹²⁹I/¹²⁷I Verhältnisse von im Mittel 1,65 × 10⁻⁶ wurden im küstennahen Nordseewasser gemessen. In den Regionen II - IV stellt man in Niederschlägen niedrigere ¹²⁹I/¹²⁷I Verhältnisse von ca. 5 × 10⁻⁷ fest. Oberflächenwässer haben ¹²⁹I/¹²⁷I Verhältnisse im Bereich von 5 × 10⁻⁸ - 5 × 10⁻⁹. Den gleichen Bereich finden wir in Oberböden des Großraumes Hannover. In tieferen Bodenschichten beobachten wir dort in Tiefen zwischen 50 cm und 250 cm ¹²⁹I/¹²⁷I Verhältnisse von zwischen 10⁻⁸ und 10⁻¹⁰, ein Bereich der die in Grundwässern der Regionen I - IV beobachteten Isotopenverhältnisse von 2 × 10⁻⁸ bis 2 × 10⁻¹⁰ einschließt. In Deutschland liegen die biosphärischen Iod-Isotopenverhältnisse mit 10⁻⁷ bis 10⁻⁸ ca. eine Größenordnung niedriger als im Niederschlag mit der Tendenz zu einer weiteren Erhöhung. Dies läßt einen weiteren Anstieg der biosphärischen ¹²⁹I/¹²⁷I Verhältnisse erwarten.

Obwohl die gegenwärtigen globalen ¹²⁹I Vorkommen keine nennenswerten Strahlenexpositionen bewirken, sollte die zukünftige Entwicklung doch sorgfältig beobachtet werden. ¹²⁹I ist ein hervorragender Tracer von Umweltprozessen und bietet eine Möglichkeit zur retrospektiven Erfassung von ¹³¹I Immissionen. Gerade wegen des Ungleichgewichts zwischen den Iod-Isotopen ist ¹²⁹I ein Indikator zur Quantifizierung des langfristigen menschlichen Einflusses auf die Umwelt.

Danksagung

Diese Arbeit wurde teilweise durch die Deutsche Forschungsgemeinschaft (DFG) gefördert. Für die Zusammenarbeit bei der Probenahme von Niederschlag, Oberflächen- und Grundwasser danken wir W. Städe vom Niedersächsisches Landesamt für Ökologie in Hildesheim. Die pränuklearen Bodenprofile wurden von A. Fokin von der Timiryazev Agricultural Academy in Moskau zur Verfügung gestellt. Die Untersuchung der Bodenprofile aus Niedersachsen erfolgt in Zusammenarbeit mit I. Benne, J. Biess, E. Gehrt, A. Capelle, U. Bartsch, H. Jordan, K.H. Oelkers, J. Schneider vom Niedersächsischen Landesamt für Bodenforschung, Bodentechnologisches Institut in Bremen mit S. Dultz vom Institut für Bodenkunde der Universität Hannover, mit V. Hennings, K. Köhler, W. Duijnisveld, W. Kantor von der Bundesanstalt für Geowissenschaften und Rohstoffe in Hannover und mit E. Ahlers von der Oberfinanzdirektion Hannover. T. Parker (BNFL) danken wir für die Informationen über die Emissionen aus Sellafield für die Jahre 1993 - 2000.

Literaturnachweis

A. Schmidt, Ch. Schnabel, J. Handl, D. Jakob, R. Michel, H.-A. Synal, J.M. Lopez, M. Suter, On the analysis of iodine-129 and iodine-127 in environmental materials by accelerator mass spectrometry and ion chromatography. Sci. Total Environ. 223 (1998) 131 - 156.

- [2] Y. Miyake and S. Tsunogai, Evaporation of Iodine from the ocean. J. Geophys. Res., 68 (1963) 3989 - 3993.
- [3] D.C. Kocher, On the long-term-behaviour of Iodine-129 in the terrestrial environment. IAEA-SM-257/56 (1981).
- [4] D.C. Whitehead, The distribution and transformations of iodine in the environment. Environ. Int. 10 (1984) 321 - 339.
- [5] T.R. England and B.F. Rider, Rep. LA-UR-94-3106, 1994.
- [6] A.C. Chamberlain, Radioactive Aerosols, Cambridge University Press, 1991.
- [7] M. Eisenbud, T. Gesell, Environmental Radioactivity, 4th ed., Academic Press, San Diego (1997) p. 556.
- [8] M.W. Carter, A.A. Moghissi, Three decades of nuclear testing, Health Physics 33 (1977) 55 71.
- [9] UNSCEAR report, United Nations Scientific Committee on the Effects of Atomic Radiation reports to the Genral Assembly of the United Nations (1982).
- [10] G.M. Raisbeck, F. Yiou, Z.Q. Zhou, L.R. Kilius, ¹²⁹I from nuclear fuel reprocessing facilities at Sellafield (U.K.) and La Hague (France); potential as an oceanographic tracer. J. Mar. Sys. 6 (1995) 561 - 570.
- [11] J. Gray, S.R. Jones, A.D. Smith, Discharges to the environment from the Sellafield Site 1951 -1992, J. Radiol. Prot. 15 (1995) 99-XXX.
- [12] T. Parker (BNFL), priv. comm. with C. Schnabel, May 11, 2001.
- [13] Webmaster Cogema, priv. comm. with C. Schnabel, Feb 1, 2001.
- [14] BNFL: Annual Report on Discharges and Monitoring of the Environment, 1998, British Nuclear Fuel, Risley (1999).
- [15] Inventaire des rejets radioactifs des installations nucléaires, Volume 1: Historique des rejets (in French), Groupe Radioécologie Nord-Cotentin, c/o Institut de Protection et de Sûreté Nucléaire, Fontenay-aux-Roses (1999).
- [16] F. Yiou, G.M. Raisbeck, Z.Q. Zhou, and L.R. Kilius, ¹²⁹I from nuclear fuel reprocessing; potential as an oceanographic tracer. Nucl. Instr. Meth. Phys. Res., B92 (1994) 436 439.
- [17] C. Fréchou, D. Calmet, P. Bouisset, D. Piccot, A. Gaudry, F. Yiou, G. Raisbeck, ¹²⁹I and ¹²⁹I/¹²⁷I ratio determination in environmental biological samples by RNAA, AMS and direct γ-X spectrometric measurements; 5th International Conf. on Methods and Applications of Radioanalytical Chemistry, Kailua-Kona, 9. 14. April 2000, Log No. 279.
- [18] C. Fréchou, Optimisation des protocoles de mesurage de ¹²⁹I et ¹²⁹I/¹²⁷I Établissement d'une méthodologie adaptée aux échantillons de l'environment, Rapport CEA-R-5947 (2000).
- [19] J. Handl and A. Pfau, Feed-milk-transfer of fission products following the Chernobyl accident. Atomenergie Kerntechnik, 49 (1987) 171 173.
- [20] J. Handl, A. Pfau, and F.W. Huth, Measurements of ¹²⁹I in human and bovine thyroids in Europe transfer of ¹²⁹I into the food chain. Health Phys., 58 (1990) 609 618.
- [21] J. Handl. E. Oliver, D. Jakob, K.J. Johanson, and P. Schuller, Biospheric ¹²⁹I concentrations in the pre-nuclear and nuclear age. Health Phys., 65 (1993) 265 - 271.

- [22] S. Szidat, A. Schmidt, J. Handl, D. Jakob, R. Michel, H.-A. Synal, M. Suter, Analysis of iodine-129 in environmental materials: quality assurance and applications. J. Radioanal. Chem. 244 (1999) 45 - 50.
- [23] S. Szidat, A. Schmidt, J. Handl, D. Jakob, R. Michel , H.-A. Synal, Ch. Schnabel, M. Suter, J.M. Lopez-Gutierrez, RNAA and AMS of Iodine-129 in Environmental Materials Comparison of Analytical Methods and Quality Assurance -. Kerntechnik 65 (2000) 160 167.
- [24] S. Szidat, Iod-129: Probenvorbereitung, Qualitätssicherung und Analyse von Umweltmaterialien (in German). Ph.D. thesis, Univ. of Hannover (2000). Available at: http://edok01.tib.uni-hannover.de/edoks/e002/32217211X.pdf.
- [25] S. Szidat, A. Schmidt, J. Handl, D. Jakob, W. Botsch, R. Michel, H.-A. Synal, C. Schnabel, M. Suter, J.M. López-Gutiérrez, W. Städe, Iodine-129: Sample preparation, quality control and analyses of pre-nuclear materials and of natural waters from Lower Saxony, Germany. Nucl. Instr. Meth. Phys. Res. B172 (2000) 699 710.
- [26] R. Michel, S. Szidat, J. Handl, D. Jakob, H.-A. Synal, M. Suter, Status and Trends of Iodine-129 Abundances in the European Environment. Proceedings IRPA10, Hiroshima, May 14 – 19, 2000, CD (2000) P-4a-229.
- [27] R. Michel, Th. Ernst, S. Szidat, Ch. Schnabel, H.-A. Synal, Iodine-129 as a Long-Lived Tracer in the Environment, Proc. Int. Conf. on the Study of Environmental Change using Isotope Techniques, Wien 23.-27.4.2001, IAEA, im Druck.
- [28] R.R. Edwards, Iodine-129: Its occurence in nature and its utility as a tracer. Science, 137 (1962) 851 853.
- [29] T.P. Kohman and R.R. Edwards, ¹²⁹I as a geochemical and ecological tracer, Rep. NYO-3624-1, Dept. of Chemistry, Carnegie Inst. of Technology, 1966.
- [30] R.R. Edwards and P. Rey, Terrestrial occurence and distribution of ¹²⁹I, U.S. Atomic Energy Commission, NYO-3624-3 (1968).
- [31] J. Fabryka-Martin, Natural Iodine-129 as a ground-water tracer. M. DS. thesis, Arizona (1984).
- [32] U. Fehn, G.R. Holdren, D. Elmore, T. Brunelle, R. Teng, and P.W. Kubik, Determination of natural and anthropogenic ¹²⁹I in marine sediments, Geophys. Res. Lett., 13 (1986) 137 - 139.
- [33] D.R. Schink, P.H. Santschi, O. Corapcioglu, U. Fehn, Nucl. Instr. Meth. Phys. Res. B 99 (1995) 524.
- [34] Ch. Schnabel, J.M. López-Gutiérrez, S. Szidat, M. Sprenger, H. Wernli, J. Beer, H.A. Synal, On the origin of 129I in rain water near Zurich, Radiochimica Acta 89 (2001) 1 -8.
- [35] Ch. Schnabel, J.M. Lopez-Gutierrez, S. Szidat, J. Beer und H.-A. Synal, Iod-129 in der Hydrosphäre und speziell im Niederschlag in Mitteleuropa, Umweltradioaktivität und Strahlendosen in der Schweiz: Jahresbericht 2000, Bundesamt für Gesundheit, Kapitel 7.3 (2001).
- [36] M.J.M. Wagner, B. Dittrich-Hannen, H.-A. Synal, M. Suter, U. Schotterer, Increase of iodine-129 in the environment. Nucl. Instr. Meth. Phys. Res. B113 (1996) 490 - 494.
- [37] L.R. Kilius, J.C. Rucklidge, and C. Soto, The dispersal of ¹²⁹I from the Columbia River estuary. Nucl. Instr. Meth. Phys. Res., B92 (1994) 393 397.

- [38] C.-L. Tseng and J.-H. Chao, Low-level determination of ¹²⁹I in environmental samples by neutron activation. Appl. Rad. Isot., 47 (1996) 723 726.
- [39] M. Paul, D. Fink, G. Hollos, S.A. Kaufman, W. Kutschera, M. Magaritz, Measurement of ¹²⁹I concentrations in the environment after the Chernobyl reactor accident. Nucl. Instr. Meth. Phys. Res. B29 (1987) 341 - 345.
- [40] H. Bachhuber, K. Bunzl, Background levels of atmospheric deposition to ground and temporal variation of ¹²⁹I, ¹²⁷I, ¹³⁷Cs and ⁷Be in a rural area of Germany. J. Environ. Radioactivity 16 (1992) 77 - 89.
- [41] G. Krupp, D.C. Aumann, Iodine-129 in rainfall over Germany. J. Environ. Radioactivity 46 (1999) 287 299.
- [42] Levin, I. and V. Hesshaimer, Radiocarbon a unique tracer of global carbon cycle dynamics, Radiocarbon 42 (2000) 69 - 80.
- [43] J.W. Beck, D.A. Richards, R.L. Edwards, B.W. Silverman, P :L. Smart, D.J. Donahue, S. Herera-Osterheld, G.S. Burr, L. Calsoyas, A.J.T. Jull, D. Biddulph, Extremely large variations of atmospheric ¹⁴C concentration during the last glacial period, Science 292 (2001) 2453 - 2458.
- [44] H.-A. Synal, J. Beer, G. Bonani, M. Suter, W. Wölfli, Atmospheric transport of bombproduced ³⁶Cl, Nucl. Instr. Meth. Phys. Res. B52 (1990) 483
- [45] J. Handl, Th. Ernst, W. Botsch, S. Szidat, A. Schmidt, D. Jakob, D. Beltz, R. Michel, L.D. Romantschuk, J. Santos, H.-A. Synal, C. Schnabel, M. Suter, Fallout and migration of ¹²⁹I in contaminated areas in Ukraine. In preparation (2001).
- [46] Th. Ernst, Dissertation, Universität Hannover, in Vorbereitung.
- [47] J. Fabryka-Martin, H. Bentley, D. Elmore, P.L. Airley, Natural iodine-129 as an environmental tracer, Geochim. Cosmochim. Acta 49 (1985) 337 - 347.
- [48] A. Zuber, Mathematical models for the interpretation of environmental radioisotopes in groundwater systems, in: P. Fritz, J.C. Fontes, Handbook of environmental isotope geochemistry, Vol. 2B, Elsevier, Amsterdam (1986) pp. 1 - 59.
- [49] S. Szidat, T. Ernst, R. Michel, C. Schnabel, H.-A. Synal, J.M. López-Gutiérrez, Prospects of ¹²⁹I an as an environmetal tracer, PSI Scientific Report 2000, Vol. 1 (2001) 187.
- [50] J. Handl, Concentrations of ¹²⁹I in the biosphere, Radiochim. Acta 72 (1996) 33 38.
- [51] L. vanMiddlesworth, and J. Handl, ¹²⁹I, ¹³¹I and ¹²⁷I in animal thyroids after the Chernobyl nuclear accident, Health Physics 73 (1997) 647 - 650.
- [52] ICRP, Report of the Task Group on Reference Man. ICRP Report No. 23, Pergamon Press, Oxford, 1981, 1st print 1971.
- [53] European Commission (1996) 96/29/EURATOM Council Directive of 13 May 1996 laying down basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation, OJ L-159 von 29/06/96 Seite 1.